Book contents
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
11 - Reflectance spectroscopy
Published online by Cambridge University Press: 04 October 2009
- Frontmatter
- Contents
- Acknowledgments
- 1 Introduction
- 2 Electromagnetic-wave propagation
- 3 The absorption of light
- 4 Specular reflection
- 5 Single-particle scattering: perfect spheres
- 6 Single-particle scattering: irregular particles
- 7 Propagation in a nonuniform medium: the equation of radiative transfer
- 8 The bidirectional reflectance of a semiinfinite medium
- 9 The bidirectional reflectance in other geometries
- 10 Other quantities related to reflectance, integrated reflectances, planetary photometry, reflectances of mixtures
- 11 Reflectance spectroscopy
- 12 Photometric effects of large-scale roughness
- 13 Effects of thermal emission
- 14 Polarization
- Appendix A A brief review of vector calculus
- Appendix B Functions of a complex variable
- Appendix C The wave equation in spherical coordinates
- Appendix D Table of symbols
- Bibliography
- Index
Summary
Introduction
One of the objectives of studying a planet by reflectance is to infer certain properties of the surface by inverting the remote measurement. In the laboratory, the objective of a reflectance measurement is usually to determine the spectral absorption coefficient of the material or, at least, some quantity proportional to it, by inversion of the reflectance.
There are at least three reasons why reflectance spectroscopy is a powerful technique for measuring the characteristic absorption spectrum of a particulate material. First, the dynamic range of the measurement is extremely large. Multiple scattering amplifies the contrast within very weak absorption bands in the light transmitted through the particles, while very strong bands can be detected by anomalous dispersion in radiation reflected from the particle surfaces. Hence, the measurement of a single spectrum can give information on the spectral absorption coefficient over a range of several orders of magnitude in α. Second, sample preparation is convenient and simply requires grinding the material to the desired degree of fineness and sieving it to constrain the particle size. Third, reflectance techniques are effective in the range k ∼10−3–10−1, where both transmission- and specular-reflection techniques are very difficult. By contrast, if α(λ) is measured by transmission, the sample must be sliced into a thin section that must then be polished on both sides; also, the range by which α(λ) can vary is limited to about one order of magnitude.
- Type
- Chapter
- Information
- Theory of Reflectance and Emittance Spectroscopy , pp. 284 - 324Publisher: Cambridge University PressPrint publication year: 1993
- 2
- Cited by