Published online by Cambridge University Press: 08 July 2022
This chapter describes the fundamental and applied science underlying the synthesis of UNCD films, using microwave plasma chemical vapor deposition (MOCVD) and hot filament chemical vapor deposition (HFCVD), and systematic characterization of the mechanical (hardness), tribological (coefficient of friction and surface resistance to wear), chemical (resistance to chemical attach by corrosive liquids and other environments, including body fluids), electrical, and biocompatibility properties of the UNCD films, which make UNCD coatings a multifunctional material for a new generation of external and implantable medical devices and prostheses with order of magnitude superior performance than current metals and polymers used in current medical devices and prostheses.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.