Skip to main content Accessibility help
×
Publisher:
Cambridge University Press
Online publication date:
May 2010
Print publication year:
2008
Online ISBN:
9780511721564

Book description

Integration of differential equations is a central problem in mathematics and several approaches have been developed by studying analytic, algebraic, and algorithmic aspects of the subject. One of these is Differential Galois Theory, developed by Kolchin and his school, and another originates from the Soliton Theory and Inverse Spectral Transform method, which was born in the works of Kruskal, Zabusky, Gardner, Green and Miura. Many other approaches have also been developed, but there has so far been no intersection between them. This unique introduction to the subject finally brings them together, with the aim of initiating interaction and collaboration between these various mathematical communities. The collection includes a LMS Invited Lecture Course by Michael F. Singer, together with some shorter lecture courses and review articles, all based upon a mini-programme held at the International Centre for Mathematical Sciences (ICMS) in Edinburgh.

Reviews

'… a useful book that serves as an introduction to both the Galois theory of (linear) differential equations and several other algebraic approaches to such equations. Libraries will definitely want to have a copy.'

Source: MAA Reviews

'… useful for graduate mathematicians working in differential systems and their invariants. The text covers a large area of research on relatively few pages and contains many examples.'

Source: EMS Newsletter

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.