Skip to main content Accessibility help
×
  • Cited by 13
Publisher:
Cambridge University Press
Online publication date:
May 2012
Print publication year:
2012
Online ISBN:
9780511863158

Book description

The famous Circuit Double Cover conjecture (and its numerous variants) is considered one of the major open problems in graph theory owing to its close relationship with topological graph theory, integer flow theory, graph coloring and the structure of snarks. It is easy to state: every 2-connected graph has a family of circuits covering every edge precisely twice. C.-Q. Zhang provides an up-to-date overview of the subject containing all of the techniques, methods and results developed to help solve the conjecture since the first publication of the subject in the 1940s. It is a useful survey for researchers already working on the problem and a fitting introduction for those just entering the field. The end-of-chapter exercises have been designed to challenge readers at every level and hints are provided in an appendix.

Reviews

"This book draws a comprehensive panoramic image of material from a large number of results spread through various papers.The most essential of these results are virtually rewritten, and the fabric of connections among them is revealed. The author establishes a uniform framework in which most of the work done so far, as well as potential directions for future work, is described and can be understood in a clear and systematic manner. The book is recommended to researchers and students interested in graph theory."
Martin Kochol, Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] Alon, N., and Tarsi, M. 1985. Covering multigraphs by simple circuits. SIAM J. Algebraic Discrete Methods, 6, 345–350.
[2] Alspach, B., and Godsil, C. 1985. Unsolved problems. Pages 461–467 of: Cycles in Graphs, Ann. Discrete Math., vol. 27. Amsterdam: North-Holland.
[3] Alspach, B., and Zhang, C.-Q. 1993. Cycle covers of cubic multigraphs. Discrete Math., 111, 11–17.
[4] Alspach, B., Goddyn, L. A., and Zhang, C.-Q. 1994. Graphs with the circuit cover property. Trans. Amer. Math. Soc., 344, 131–154.
[5] Appel, K., and Haken, W. 1977. Every map is four colorable, Part I: Discharging. Illinois J. Math., 21, 429–490.
[6] Appel, K., and Haken,W. 1989. Every Map is Four Colorable. Contemp. Math. AMS, vol. 98. Providence, RI: American Mathematical Society.
[7] Appel, K., Haken, W., and Koch, J. 1977. Every map is four colorable, Part II: Reducibility. Illinois J. Math., 21, 491–567.
[8] Archdeacon, D. 1984. Face coloring of embedded graphs. J. Graph Theory, 8, 387–398.
[9] Ash, P., and Jackson, B. 1984. Dominating cycles in bipartite graph. Pages 81–87 of: Bondy, J. A., and Murty, U. S. R. (eds), Progress in Graph Theory. New York: Academic Press.
[10] Barnette, D. W. 1996. Cycle covers of planar 3-connected graphs. J. Combin. Math. Combin. Comput., 20, 245–253.
[11] Berge, C. 1973. Graph and Hypergraph. New York: North-Holland. (translated by E. Minieka).
[12] Bermond, J. C., Jackson, B., and Jaeger, F. 1983. Shortest coverings of graphs with cycles. J. Combin. Theory Ser. B, 35, 297–308.
[13] Biggs, N. L., Lloyd, E. K., and Wilson, R. J. 1976. Graph Theory 1736–1936. Oxford: Clarendon Press.
[14] Blanuša, D. 1946. Problem ceteriju boja (The problem of four colors). Hrvatsko Prirodoslovno Društvo Glasnik Mat-Fiz. Astr, Ser. II, 1, 31–42.
[15] Bollobás, B. 1978. Extremal Graph Theory. London: Academic Press.
[16] Bondy, J. A. 1990. Small cycle double covers of graphs. Pages 21–40 of: Hahn, G., Sabidussi, G., and Woodrow, R. (eds), Cycles and Rays. NATO ASI Ser. C. Dordrecht: Kluwer Academic Publishers.
[17] Bondy, J. A., and Hell, P. 1990. A note on the star chromatic number. J. Graph Theory, 14, 479–482.
[18] Bondy, J. A., and Murty, U. S. R. 1976. Graph Theory with Applications. London: Macmillan.
[19] Bondy, J. A., and Murty, U. S. R. 2008. Graph Theory. Springer.
[20] Brinkmann, G., and Steffen, E. 1998. Snarks and reducibility. Ars Combin., 50, 292–296.
[21] Brinkmann, G., Goedgebeur, J., Hägglund, J., and Markström, K. 2011. Generation and properties of snarks. Preprint.
[22] Cai, L., and Corneil, D. 1992. On cycle double covers of line graphs. Discrete Math., 102, 103–106.
[23] Carroll, L. 1874. (C. L. Dodgson) The Hunting of the Snark (An Agony in 8 Fits). London: Macmillan.
[24] Catlin, P. A. 1988. A reduction method to find spanning eulerian subgraph. J. Graph Theory, 12, 29–45.
[25] Catlin, P. A. 1989. Double cycle covers and the Petersen graph. J. Graph Theory, 13, 465–483.
[26] Catlin, P. A. 1990. Double cycle covers and the Petersen graph, II. Congr. Numer., 76, 173–181.
[27] Catlin, P. A. 1992. Supereulerian graphs: a survey. J. Graph Theory, 16, 177–196.
[28] Catlin, P. A., Han, Z.-Y., and Lai, H.-J. 1996. Graphs without spanning closed trails. Discrete Math., 160, 81–91.
[29] Cavicchioli, A., Meschiari, M., Ruini, B., and Spaggiari, F. 1998. A survey on snarks and new results: products, reducibility and a computer Search. J. Graph Theory, 28, 57–86.
[30] Cavicchioli, A., Murgolo, T. E., Ruini, B., and Spaggiari, F. 2003. Special classes of snarks. Acta Applicandae Mathematicae, 76, 57–88.
[31] Celmins, U. A. 1984. On cubic graphs that do not have an edge 3-coloring. Ph.D. thesis, University of Waterloo, Ontario, Canada.
[32] Celmins, U. A., Fouquet, J. L., and Swart, E. R. 1980. Construction and characterization of snarks. Research Report, University of Waterloo, Ontario, Canada.
[33] Chan, M. 2009. A survey of the cycle double cover conjecture. Preprint, Princeton University.
[34] Chartrand, G., and Lesniak, L. 1986. Graphs and Digraphs. Second edn. Belmont, CA: Wadsworth and Brooks/Cole.
[35] Chen, C. C., and Quimpo, N. F. 1981. On strongly hamiltonian abelian group graphs. Pages 23–34 of: McAvaney, K. L. (ed), Combinatorial Mathematics VIII. Lecture Notes in Math., vol. 884. Berlin: Springer-Verlag.
[36] Chen, Z.-H., and Lai, H.-J. 1995. Reductions techniques for supereulerian graphs and related topics – a survey. Pages 53–69 of: Ku, T.-H. (ed), Combinatorics and Graph Theory 95. Singapore: World Scientific.
[37] Chetwynd, A. G., and Wilson, R. J. 1981. Snarks and supersnarks. Pages 215–241 of: The Theory and Applications of Graphs. New York: Wiley.
[38] Cutler, J., and Häggkvist, R. 2004. Cycle double covers of graphs with disconnected frames. Research report 6, Department of Mathematics, Umeå University, Sweden.
[39] Descartes, B. 1948. Network-colourings. Math. Gazette, 32, 67–69.
[40] DeVos, M., Johnson, T., and Seymour, P. D.Cut Coloring and Circuit Covering. Submitted for publication, http://www.math.princeton.edu/∼pds/papers/cutcolouring/.
[41] Diestel, R. 2010. Graph Theory. Fourth edn. Springer-Verlag.
[42] Ding, S.-K., Hoede, C., and Vestergaard, P. D. 1990. Strong cycle covers. Ars Combin., 29C, 130–139.
[43] Edmonds, J. 1965. Maximum matching and a polyhedron with (0, 1)- vertices. J. Res. Nat. Bur. Standards B, 69, 125–130.
[44] Edmonds, J., and Johnson, E. L. 1973. Matching, Euler tours and the Chinese postman. Mathematical Programming, 5, 88–124.
[45] Eisenberg, M. 1974. Topology. New York: Holt, Rinehart and Winston, Inc.
[46] Ellingham, M. N. 1984. Petersen subdivisions in some regular graphs. Congr. Numer., 44, 33–40.
[47] Ellingham, M. N., and Zha, X.-Y. 2011. Orientable embeddings and orientable cycle double covers of projective-planar graphs. European J. Combin., 32, 495–509.
[48] Esteva, E. G. M., and Jensen, T. R. 2007. On semiextensions and circuit double covers. J. Combin. Theory Ser. B, 97, 474–482.
[49] Esteva, E. G. M., and Jensen, T. R. 2009. A note on semiextensions of stable circuits. Discrete Math., 309, 4952–4954.
[50] Fan, G.-H. 1992. Covering graphs by cycles. SIAM J. Discrete Math., 5, 491–496.
[51] Fan, G.-H. 1994. Short cycle covers of cubic graphs. J. Graph Theory, 18, 131–141.
[52] Fan, G.-H. 1998. Proofs of two minimum circuit cover conjectures. J. Combin. Theory Ser. B, 74, 353–367.
[53] Fan, G.-H., and Raspaud, A. 1994. Fulkerson's conjecture and circuits covers. J. Combin. Theory Ser. B, 61, 133–138.
[54] Fan, G.-H., and Zhang, C.-Q. 2000. Circuit decompositions of eulerian graphs. J. Combin. Theory Ser. B, 78, 1–23.
[55] Fiorini, S., and Wilson, R. J. 1977. Edge colourings of graphs. Research Notes in Mathematics, vol. 16. Pitman.
[56] Fiorini, S., and Wilson, R. J. 1978. Edge colourings of graphs. Pages 103–126 of: Beineke, L. W., and Wilson, R. J. (eds), Selected Topics in Graph Theory. London: Academic Press.
[57] Fish, J. M., Klimmek, R., and Seyffarth, K. 2002. Line graphs of complete multipartite graphs have small cycle double covers. Discrete Math., 257, 39–61.
[58] Fleischner, H. 1976. Eine gemeinsame Basis für die Theorie der eulerschen Graphen und den Satz von Petersen. Monatsh. Math., 81, 267–278.
[59] Fleischner, H. 1980. Eulersche Linien und Kreisuberdeckungen die vorgegebene Duurchgange inden Kanten vermeiden. J. Combin. Theory Ser. B, 29, 145–167.
[60] Fleischner, H. 1983. Eulerian Graph. Pages 17–53 of: Beineke, L. W., and Wilson, R. J. (eds), Selected Topics in Graph Theory (2). London: Academic Press.
[61] Fleischner, H. 1984. Cycle decompositions, 2-coverings, removable cycles and the four-color disease. Pages 233–246 of: Bondy, J. A., and Murty, U. S. R. (eds), Progress in Graph Theory. New York: Academic Press.
[62] Fleischner, H. 1986. Proof of the strong 2-cover conjecture for planar graphs. J. Combin. Theory Ser. B, 40, 229–230.
[63] Fleischner, H. 1988. Some blood, sweat, but no tears in eulerian graph theory. Congr. Numer., 63, 9–48.
[64] Fleischner, H. 1990. Communication at Cycle Double Cover Conjecture Workshop, Barbados, February 25–March 4.
[65] Fleischner, H. 1991. Eulerian Graphs and Related Topics, Part 1, Vol. 2. Ann. Discrete Math., vol. 50. North-Holland.
[66] Fleischner, H. 1994. Uniqueness of maximal dominating cycles in 3- regular graphs and Hamiltonian cycles in 4-regular graphs. J. Graph Theory, 18, 449–459.
[67] Fleischner, H. 2002. Bipartizing matchings and Sabidussi's compatibility conjecture. Discrete Math., 244, 77–82.
[68] Fleischner, H. 2010. Uniquely hamiltonian (simple) graphs of minimum degree four. 8th French Combinatorial Conference, June 30th 2010. University Paris XI - Sud, Orsay, France.
[69] Fleischner, H. 2011. Personal communication, Vienna.
[70] Fleischner, H., and Frank, A. 1990. On cycle decomposition of eulerian graph. J. Combin. Theory Ser. B, 50, 245–253.
[71] Fleischner, H., and Fulmek, M. 1990. P(D)-compatible eulerian trails in digraphs and a new splitting lemma. Pages 291–303 of: Bodendiek, R. (ed), Contemporary Methods in Graph Theory.
[72] Fleischner, H., and Häggkvist, R. 2009. Circuit double covers in special types of cubic graphs. Discrete Math., 309, 5724–5728.
[73] Fleischner, H., and Kochol, M. 2002. A note about the dominating circuit conjecture. Discrete Math., 259, 307–309.
[74] Fleischner, H., Hilton, A. J. W., and Jackson, B. 1990. On the maximum number of pairwise compatible Euler cycles. J. Graph Theory, 14, 51–63.
[75] Fleischner, H., Genest, F., and Jackson, B. 2007. Compatible circuit decompositions of 4-regular graphs. J. Graph Theory, 56, 227–240.
[76] Ford, L. R., and Fulkerson, D. R. 1962. Flows in Networks. Princeton, NJ: Princeton University Press.
[77] Fouquet, J. 1982. Note sur la non existence d'un snark d'ordre 16. Discrete Math., 38, 163–171.
[78] Fowler, T. G. 1998. Unique Coloring of Planar Graphs. Ph.D. thesis, Georgia Tech.
[79] Franklin, P. 1941. The Four Color Problem. New York: Scripta Mathematica, Yeshiva College.
[80] Fulkerson, D. R. 1971. Blocking and antiblocking pairs of polyhedral. Math. Programming, 1, 168–194.
[81] Gardner, M. 1976. Mathematical Games. Scientific American, 4, 126–130.
[82] Goddyn, L. A. 1985. A girth requirement for the double cycle cover conjecture. Pages 13–26 of: Alspach, B., and Godsil, C. (eds), Cycles in Graphs. Ann. Discrete Math., vol. 27. Amsterdam: North-Holland.
[83] Goddyn, L. A. 1988. Cycle covers of graphs. Ph.D. thesis, University of Waterloo, Ontario, Canada.
[84] Goddyn, L. A. 1989. Cycle double covers of graphs with Hamilton paths. J. Combin. Theory Ser. B, 46, 253–254.
[85] Goddyn, L. A. 1991. Cycle double covers–current status and new approaches. Contributed lecture at Cycle Double Cover Conjecture Workshop, IINFORM, Vienna, January 1991.
[86] Goddyn, L. A. 1993. Cones, lattices and Hilbert bases of circuits and perfect matching. Contemporary Mathematics, 147, 419–440.
[87] Goddyn, L. A., van den Heuvel, J., and McGuinness, S. 1997. Removable circuits in multigraphs. J. Combin. Theory Ser. B, 71, 130–143.
[88] Goddyn, L. A., Tarsi, M., and Zhang, C.-Q. 1998. On (k, d)-colorings and fractional nowhere zero flows. J. Graph Theory, 28, 155–161.
[89] Goldwasser, J. L., and Zhang, C.-Q. 1996. On minimal counterexamples to a conjecture about unique edge-3-coloring. Congr. Numer., 113, 143–152.
[90] Goldwasser, J. L., and Zhang, C.-Q. 1999. Permutation graphs and Petersen graph. Ars Combin., 51, 240–248.
[91] Goldwasser, J. L., and Zhang, C.-Q. 2000. Uniquely edge-3-colorable graphs and snarks. Graph and Combinatorics, 16, 257–267.
[92] Gould, R. 1988. Graph Theory. Menlo Park, CA: Benjamin/Cummings Publishing Company, Inc.
[93] Greenwell, D., and Kronk, H. V. 1973. Uniquely line-colorable graphs. Canad. Math. Bull., 16, 525–529.
[94] Gross, J. L., and Tucker, T. W. 1987. Topological Graph Theory. New York: John Willey & Sons.
[95] Guan, M.-G., and Fleischner, H. 1985. On the minimum weighted cycle covering problem for planar graphs. Ars Combin., 20, 61–68.
[96] Gusfield, D. 1983. Connectivity and edge-disjoint spanning trees. Inform. Process. Lett., 16, 87–89.
[97] Haggard, G. 1977. Edmonds Characterization of disc embedding. Pages 291–302 of: Proceeding of the 8th Southeastern Conference of Combinatorics, Graph Theory and Computing, Utilitas Mathematica.
[98] Häggkvist, R. 2009. Lollipop Andrew strikes again (abstract). 22nd British Combinatorial Conference, July 5–10, 2009. University of St Andrews, UK.
[99] Häggkvist, R., and Markström, K. 2006a. Cycle double covers and spanning minors I. J. Combin. Theory Ser. B, 96, 183–206.
[100] Häggkvist, R., and Markström, K. 2006b. Cycle double covers and spanning minors II. Discrete Math., 306, 762–778.
[101] Häggkvist, R., and McGuinness, S. 2005. Double covers of cubic graphs with oddness 4. J. Combin. Theory Ser. B, 93, 251–277.
[102] Hägglund, J. 2011. Personal communication.
[103] Hägglund, J., and Markström, K. 2011. On stable cycles and the cycle double covers of graphs with large circumference. Discrete Math. doi:10.1016.j.disc.2011.08.024.
[104] Heawood, P. J. 1898. On the four-color map theorem. Quarterly J. Pure Math. Applied Math., 29, 270–285.
[105] Heinrich, K., Liu, J.-P., and Zhang, C.-Q. 1998. Triangle-free circuit decompositions and Petersen-minor. J. Combin. Theory Ser. B, 72, 197–207.
[106] Hind, H. R. 1988. Restricted edge-colourings, Chapter 5. Ph.D. thesis, Cambridge University, UK.
[107] Hoffman, A. J. 1958. Page 80 of Théorie des Graph (by C. Berge).
[108] Hoffman, A. J. 1960. Some recent applications of the theorem of linear inequalities to extremal combinatorial analysis. Proc. Symp. Appl. Math., 10, 113–127.
[109] Hoffman, F., Locke, S. C., and Meyerowitz, A. D. 1991. A note on cycle double cover in Cayley graphs. Mathematica Pannonica, 2, 63–66.
[110] Hoffmann-Ostenhof, A. 2007. A counterexample to the bipartizing matching conjecture. Discrete Math., 307, 2723–2733.
[111] Hoffmann-Ostenhof, A. 2012. Nowhere-zero flows and structures in cubic graphs. Ph.D. thesis, University of Vienna, Austria.
[112] Holton, D. A., and Sheehan, J. 1993. The Petersen Graph. Australian Mathematical Society Lecture Series, vol. 7. Cambridge University Press.
[113] Holyer, I. 1981. The NP-completeness of edge-coloring. SIAM J. Comput., 10, 718–720.
[114] Huck, A. 1993. On cycle-double covers of bridgeless graphs with hamiltonian paths. Tech. rept. 254. Institute of Mathematics, University of Hannover, Germany.
[115] Huck, A. 2000. Reducible configurations for the cycle double cover conjecture. Discrete Appl. Math., 99, 71–90.
[116] Huck, A. 2001. On cycle-double covers of graphs of small oddness. Discrete Math., 229, 125–165.
[117] Huck, A., and Kochol, M. 1995. Five cycle double covers of some cubic graphs. J. Combin. Theory Ser. B, 64, 119–125.
[118] Isaacs, R. 1975. Infinite families of non-trivial trivalent graphs which are not Tait colorable. Amer. Math. Monthly, 82, 221–239.
[119] Itai, A., and Rodeh, M. 1978. Covering a graph by circuits. Pages 289–299 of: Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 62. Berlin: Springer-Verlag.
[120] Jackson, B. 1990. Shortest circuit covers and postman tours of graphs with a nowhere-zero 4-flow. SIAM J. Comput., 19, 659–665.
[121] Jackson, B. 1993. On circuit covers, circuit decompositions and Euler tours of graphs. Pages 191–210 of: Walker, K. (ed), Surveys in Combinatorics. London Math. Soc. Lecture Note Series, vol. 187. Cambridge: Cambridge University Press.
[122] Jackson, B. 1994. Shortest circuit covers of cubic graphs. J. Combin. Theory Ser. B, 60, 299–307.
[123] Jaeger, F. 1975. On nowhere-zero flows in multigraphs. Proceedings of the Fifth British Combinatorial Conference 1975. Congr. Numer., XV, 373–378.
[124] Jaeger, F. 1976. Balanced valuations and flows in multigraphs. Proc. Amer. Math. Soc., 55, 237–242.
[125] Jaeger, F. 1978a. On interval hypergraphs and nowhere-zero flow in graphs. Research Report of Mathematics Application and Information, Universite Scientifique et Medicale et Institut National Polytechnique de Grenoble, No. 126, Juillet.
[126] Jaeger, F. 1978b. Sue les flots dans les graphes et certaines valuations dans les hypergraphes d'intervalles. Pages 189–193 of: Benzaken, C. (ed), Proc. Colloque Alg`ebre Appliquèe et Combinatoire, Grenoble.
[127] Jaeger, F. 1979. Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B, 26, 205–216.
[128] Jaeger, F. 1980. Tait's theorem for graphs with crossing number at most one. Ars Combin., 9, 283–287.
[129] Jaeger, F. 1984. On circular flows in graphs. Pages 391–402 of: Finite and Infinite Sets, Vol. I, II (Eger, 1981), Colloquia Mathematica Societatis János Bolyai 37. Amsterdam: North Holland.
[130] Jaeger, F. 1985. A survey of the cycle double cover conjecture. Pages 1–12 of: Alspach, B., and Godsil, C. (eds), Cycles in Graphs. Ann. Discrete Math., vol. 27. Amsterdam: North-Holland.
[131] Jaeger, F. 1988. Nowhere-zero flow problems. Pages 71–95 of: Beineke, L. W., and Wilson, R. J. (eds), Selected Topics in Graph Theory (3). London: Academic Press.
[132] Jaeger, F., and Swart, T. 1980. Conjecture 1. Pages 304–305 of: Deza, M., and Rosenberg, I.G. (eds), Combinatorics 79. Ann. Discrete Math., vol. 9. Amsterdam: North-Holland.
[133] Jamshy, U., and Tarsi, M. 1992. Shortest cycle covers and the cycle double cover conjecture. J. Combin. Theory Ser. B, 56, 197–204.
[134] Jamshy, U., Raspaud, A., and Tarsi, M. 1987. Short circuit covers for regular matroids with nowhere-zero, 5-flow. J. Combin. Theory Ser. B, 43, 354–357.
[135] Jensen, T. R. 2010. Splits of circuits. Discrete Math., 310, 3026.–3029.
[136] Jensen, T. R., and Toft, B. 1994. Graph Coloring Problems. John Wiley & Sons.
[137] Kahn, J., Robertson, N., and Seymour, P. D. 1987. Communication at Bellcore.
[138] Kaiser, T., and Raspaud, A. 2010. Perfect matchings with restricted intersection in cubic graphs. European J. Combin., 31, 1307.–1315.
[139] Kaiser, T., and Škrekovski, R. 2008. Cycles intersecting edges-cuts of prescribed sizes. SIAM J. Discrete Math., 22, 861–874.
[140] Kaiser, T., Kràl, D., Lidicky, B., and Nejedly, P. 2010. Short Cycle Covers of Graphs with Minimum Degree Three. SIAM J. Discrete Math., 24, 330–355.
[141] Kilpatrick, P. A. 1975. Tutte's first colour-cycle conjecture. Ph.D. thesis, Cape Town, South Africa.
[142] Knuth, D. E. 2008. The Art of Computer Programming. Vol. 4, Fascicle 0, Introduction to Combinatorial Algorithms and Boolean Function. Addison-Wesley.
[143] Kochol, M. 1993a. Construction of cyclically 6-edge-connected snarks. Technical Report TR-II-SAS-07/93-5, Institute for Information, Slovak Academy of Sciences, Bratislava, Slovakia.
[144] Kochol, M. 1993b. Cycle double covering of graphs. Technical Report TR-II-SAS-08/93-7, Institute for Informatics, Slovak Academy of Sciences, Bratislava, Slovakia.
[145] Kochol, M. 1996a. A cyclically 6-edge-connected snark of order 118. Discrete Math., 161, 297–300.
[146] Kochol, M. 1996b. Snarks without small cycles. J. Combin. Theory Ser. B, 67, 34–47.
[147] Kochol, M. 2000. Equivalence of Fleischner's and Thomassen's conjectures. J. Combin. Theory Ser. B, 78, 277–279.
[148] Kochol, M. 2001. Stable dominating circuits in snarks. Discrete Math., 233, 247–256.
[149] Kochol, M. 2004. Reduction of the 5-flow conjecture to cyclically 6-edgeconnected snarks. J. Combin. Theory Ser. B, 90, 139–145.
[150] Kochol, M. 2010. Smallest counterexample to the 5-flow conjecture has girth at least eleven. J. Combin. Theory Ser. B, 100, 381–389.
[151] Kostochka, A. V. 1995. The 7/5-conjecture strengthens itself. J. Graph Theory, 19, 65–67.
[152] Kotzig, A. 1958. Bemerkung zu den faktorenzerlegungen der endlichen paaren regulren graphen. Cnasopis Pěst. Mat., 83, 348–354.
[153] Kotzig, A. 1962. Construction of third-order Hamiltonian graphs. Časopis Pěst. Mat., 87, 148–168.
[154] Kotzig, A. 1964. Hamilton graphs and Hamilton circuits. Pages 63–82 of: Theory of Graphs and its Applications, Proceedings of the Symposium of Smolenice 1963. Prague: Publ. House Czechoslovak Acad. Sci.
[155] Kotzig, A., and Labelle, J. 1978. Strongly Hamiltonian graphs. Utilitas Mathematica, 14, 99–116.
[156] Kaàl, D., Nejedly, P., and Šámal, R. 2008. Short cycle covers of cubic graphs. KAM-DIMATIA Series 2008.(2008–846) Department of Applied Mathematics, Charles University, Prague, Czech.
[157] Kràl, D., Máčajová, E., Pangràc,, O., Raspaud, A., Sereni, J.-S., and Škoviera, M. 2009. Projective, affine, and abelian colourings of cubic graphs. European J. Combin., 30, 53–69.
[158] Kriesell, M. 2006. Contractions, cycle double covers, and cyclic colorings in locally connected graphs. J. Combin. Theory Ser. B, 96, 881–900.
[159] Kundu, S. 1974. Bounds on the number of disjoint spanning trees. J. Combin. Theory Ser. B, 17, 199–203.
[160] Kuratowski, C. 1930. Sur le problème des courbes gauches en topologie. Fund. Math., 15, 271–283.
[161] Lai, H.-J. 1994. Extension of a 3-coloring result of planar graphs. Unpublished manuscript.
[162] Lai, H.-J. 1995. The size of graphs without nowhere-zero 4-flows. J. Graph Theory, 19, 385–395.
[163] Lai, H.-J., and Lai, H.-Y. 1991a. Cycle covering of plane triangulations. J. Combin. Math. Combin. Comput., 10, 3–21.
[164] Lai, H.-J., and Lai, H.-Y. 1991b. Small cycle covers of planar graphs. Congr. Numer., 85, 203–209.
[165] Lai, H.-J., and Zhang, C.-Q. 2001. Hamilton weight and Petersen minor. J. Graph Theory, 38, 197–219.
[166] Lai, H.-J., Yu, X.-X., and Zhang, C.-Q. 1994. Small circuit double covering of cubic graphs. J. Combin. Theory Ser. B, 60, 177–194.
[167] Little, C. H. C., and Ringeisen, R. D. 1978. On the strong graph embedding conjecture. Pages 479–487 of: Proceeding of the 9th Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica.
[168] Little, C. H. C., Tutte, W. T., and Younger, D. H. 1988. A theorem on integer flows. Ars Combin., 26A, 109–112.
[169] Loupekine, F., and Watkins, J. J. 1985. Cubic graphs and the fourcolor theorem. Pages 519–530 of: Alavi, Y., Chartrand, G., Lesniak, L., Lick, D.R., and Wall, C.E. (eds), Graph Theory and its Application to Algorithms and Computer Science. New York: John Wiley & Sons, Inc.
[170] Lovász, L. 1978. Kneser's conjecture chromatic number, and homotopy. J. Combin. Theory Ser. A, 25, 319–324.
[171] MacGillivray, G., and Seyffarth, K. 2001. Classes of line graphs with small cycle double covers. Austral. J. Combin., 24, 91–114.
[172] Markström, K. 2011. Even cycle decompositions of 4-regular graphs and line graphs. Discrete Math., doi:10.1016.j.disc.2011.12.007.
[173] Massey, W. S. 1967. Algebraic Topology: An Introduction. New York: Springer-Verlag.
[174] Matthews, K. R. 1978. On the eulericity of a graph. J. Graph Theory, 2, 143–148.
[175] Máčajová, E., and Škoviera, M. 2005. Fano colourings of cubic graphs and the Fulkerson conjecture. Theor. Comput. Sci., 349, 112–120.
[176] Máčajová, E., and Škoviera, M. 2009. On a Conjecture of Fan and Raspaud. Electronic Notes in Discrete Mathematics, 34, 237–241.
[177] Máčajová, E., Raspaud, A., and Škoviera, M. 2005. Abelian colourings of cubic graphs. Electronic Notes in Discrete Mathematics, 22, 333–339.
[178] Máčajová, E., Raspaud, A., Tarsi, M., and Zhu, X.-D. 2011. Short cycle covers of graphs and nowhere-zero flows. J. Graph Theory, 68, 340–348.
[179] McGuinness, S. 1984. The double cover conjecture. Ph.D. thesis, Queen's University, Kingston, Ontario, Canada.
[180] Menger, K. 1927. Zur allgemeinen Kurventheorie. Fund. Math., 10, 96–115.
[181] Mohar, B. 2010. Strong embeddings of minimum genus. Discrete Math., 310, 2595–2599.
[182] Mohar, B., and Thomassen, C. 2001. Graphs on Surfaces. Baltimore, MD: The Johns Hopkins University Press.
[183] Naserasr, R., and Škrekovski, R. 2003. The Petersen graph is not 3-edge-colorable – a new proof. Discrete Math., 268, 325–326.
[184] Nash-Williams, C.St., J. A. 1961. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., s1–36, 445–450.
[185] Nelson, D., Plummer, M. D., Robertson, N., and Zha, X.-Y. 2011. On a conjecture concerning the Petersen graph. Electronic Journal of Combinatorics, 18, P20.
[186] Nowakowski, R. J., and Seyffarth, K. 2008. Small cycle double covers of products I: Lexicographic product with paths and cycles. J. Graph Theory, 57, 99–123.
[187] Nowakowski, R. J., and Seyffarth, K. 2009. Small cycle double covers of products II: Categorical and strong products with paths and cycles. Graph and Combinatorics, 25, 385–400.
[188] Ore, O. 1967. The Four-Color Problem. New York: Academic Press.
[189] Petersen, J. 1891. Die Theorie der Regulären Graphen. Acta Math., 15, 193–220.
[190] Petersen, J. 1898. FSur le théoreme de Tait. Intermed. Math., 15, 225–227.
[191] Polesskii, V. P. 1971. A lower bound for the reliability of information network. Probl. Peredachi Inf., 7:2, 88–96.
[192] Preissmann, M. 1981. Sur les colorations des arêtes des graphes cubiques, Thèse de Doctorat de 3eme. Ph.D. thesis, Université de Grenoble, France.
[193] Preissmann, M. 1982. Snarks of order 18. Discrete Math., 42, 125–126.
[194] Rizzi, R. 2001. On 4-connected graphs without even cycle decompositions. Discrete Math., 234, 181–186.
[195] Robertson, N., Seymour, P.D., and Thomas, R.Cyclically 5-connected cubic graphs. in preparation.
[196] Robertson, N., Seymour, P.D., and Thomas, R.Excluded minors in cubic graphs. in preparation.
[197] Robertson, N., Sanders, D., Seymour, P. D., and Thomas, R. 1997a. The 4-color theorem. J. Combin. Theory Ser. B, 70, 2–44.
[198] Robertson, N., Seymour, P. D., and Thomas, R. 1997b. The Tutte's 3-edge-coloring conjecture. J. Combin. Theory Ser. B, 70, 166–183.
[199] Sanders, D. P., and Thomas, R.Edge 3-coloring cubic apex graphs. in preparation.
[200] Sanders, D. P., Seymour, P.D., and Thomas, R.Edge 3-coloring cubic doublecross graphs. in preparation.
[201] Seyffarth, K. 1989. Cycle and Path Covers of Graphs. Ph.D. thesis, University of Waterloo, Ontario, Canada.
[202] Seyffarth, K. 1992. Hajós' conjecture and small cycle double covers of planar graphs. Discrete Math., 101, 291–306.
[203] Seyffarth, K. 1993. Small cycle double covers of 4-connected planer. Combinatorica, 13, 477–482.
[204] Seymour, P. D. 1979a. On multi-colorings of cubic graphs and the conjecture of Fulkerson and Tutte. Proc. London Math. Soc., s3–38, 423–460.
[205] Seymour, P. D. 1979b. Sums of circuits. Pages 342–355 of: Bondy, J. A., and Murty, U.S.R. (eds), Graph Theory and Related Topics. New York: Academic Press.
[206] Seymour, P. D. 1981a. Even circuits in planar graphs. J. Combin. Theory Ser. B, 31, 327–338.
[207] Seymour, P. D. 1981b. Nowhere-zero 6-flows. J. Combin. Theory Ser. B, 30, 130–135.
[208] Seymour, P. D. 1981c. On Tutte's extension of the four-color problem. J. Combin. Theory Ser. B, 31, 82–94.
[209] Seymour, P. D. 1990. Communication at Cycle Double Cover Conjecture Workshop, Barbados, February 25–March 4.
[210] Seymour, P. D. 1995. Personal communication.
[211] Seymour, P. D. 2012. Personal communication.
[212] Seymour, P. D., and Truemper, K. 1998. A Petersen on a Pentagon. J. Combin. Theory Ser. B, 72, 63–79.
[213] Shu, J., and Zhang, C.-Q. 2005. A note about shortest cycle covers. Discrete Math., 301, 232–238.
[214] Shu, J., Zhang, C.-Q., and Zhang, T.-Y. 2012. Flows and parity subgraphs of graphs with large odd edge connectivity. J. Combin. Theory Ser. B, (to appear).
[215] Stahl, S. 1998. The multichromatic numbers of some Kneser graphs. Discrete Math., 185, 287–291.
[216] Steinberg, R. 1976. Grötzsch's Theorem dualized. M.Phil. thesis, University of Waterloo, Ontario, Canada.
[217] Steinberg, R. 1984. Tutte's 5-flow conjecture for projective plane. J. Graph Theory, 8, 277–285.
[218] Stephens, D. C., Tucker, T. W., and Zha, X.-Y. 2007. Representativity of Cayley maps. Preprint.
[219] Szekeres, G. 1973. Polyhedral decompositions of cubic graphs. Bull. Austral. Math. Soc., 8, 367–387.
[220] Tait, P. G. 1880. Remarks of the coloring of maps. Proc. R. Soc. Edinburgh, 10, 729.
[221] Tarsi, M. 1986. Semi-duality and the cycle double cover conjecture. J. Combin. Theory Ser. B, 41, 332–340.
[222] Tarsi, M. 2010. Personal communication.
[223] Thomas, R.Generalizations of The Four Color Theorem. http://people.math.gatech.edu/∼thomas/FC/generalize.html.
[224] Thomas, R. 1998. An update on the four-color theorem. Notices of the AMS, 45, 848–859.
[225] Thomason, A. 1978. Hamiltonian Cycles and uniquely edge colorable graphs. Ann. Discrete Math., 3, 259–268.
[226] Thomason, A. 1982. Cubic graphs with three hamiltonian cycles are not always uniquely edge colorable. J. Graph Theory, 6, 219–221.
[227] Thomassen, C. 1997. On the complexity of finding a minimum cycle covers of graphs. SIAM J. Comput., 26, 675–677.
[228] Tutte, W. T. 1946. On Hamilton circuits. J. London Math. Soc., s1–21, 98–101.
[229] Tutte, W. T. 1949. On the imbedding of linear graphs in surfaces. Proc. London Math. Soc., s2–51, 474–483.
[230] Tutte, W. T. 1954. A contribution on the theory of chromatic polynomial. Canad. J. Math., 6, 80–91.
[231] Tutte, W. T. 1956. A class of Abelian groups. Canad. J. Math., 8, 13–28.
[232] Tutte, W. T. 1961. On the problem of decompositing a graph into n connected factors. J. London Math. Soc., s1–36, 221–230.
[233] Tutte, W. T. 1966. On the algebraic theory of graph colourings. J. Combin. Theory, 1, 15–50.
[234] Tutte, W. T. 1967. A geometrical version of the four color problem. In: Bose, R. C., and Dowling, T. A. (eds), Combinatorial Mathematics and its Applications. Chapel Hill, NC: University of North Carolina Press.
[235] Tutte, W. T. 1976. Hamiltonian circuits. Pages 193–199 of: Colloquio Internazional sulle Teorie Combinatorics, Atti dei Convegni Lincei 17, Accad. Naz. Lincei, Roma I.
[236] Tutte, W. T. 1984. Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21. Cambridge Mathematical Library.
[237] Tutte, W. T. 1987. Personal correspondence with H. Fleischner (July 22, 1987).
[238] Veblen, O. 1912–1913. An application of modular equations in analysis situs. Ann. Math., 12, 86–94.
[239] Vince, A. 1988. Star chromatic number. J. Graph Theory, 12, 551–559.
[240] Watkins, J. J. 1989. Snarks. In: Capobianco, M., Guan, M., Hsu, D. F., and Tian, F. (eds), Graph Theory and Its Applications: East and West, Proceeding of the First China–USA International Graph Theory Conference. New York: New York Academy of Sciences.
[241] Watkins, J. J., and Wilson, R. J. 1991. A survey of snarks. Pages 1129–1144 of: Alavi, Y., Chartrand, G., Oellermann, O.R., and Schwenk, A.J. (eds), Graph Theory, Combinatorics, and Applications, Proceeding of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs. New York: John Wiley & Sons, Inc.
[242] West, D. B. 1996. Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.
[243] White, A. T. 1984. Graphs, Groups and Surfaces. Revised edn. North-Holland Mathematics Studies, vol. 8. Amsterdam: North-Holland.
[244] Wilson, R. J. 1976. Problem 2. In: Proc. 5th British Comb. Conf., Utilitas Mathematica.
[245] Xie, D.-Z., and Zhang, C.-Q. 2009. Flows, flow-pair covers, cycle double covers. Discrete Math., 309, 4682–4689.
[246] Xu, R. 2009. Note on cycle double covers of graphs. Discrete Math., 309, 1041–1042.
[247] Ye, D. 2010. Personal communication.
[248] Ye, D., and Zhang, C.-Q. 2009. Circumference and Circuit Double Covers. Preprint.
[249] Ye, D., and Zhang, C.-Q. 2012. Cycle Double Covers and Semi-Kotzig Frame. European J. Combin., 33, 624–631.
[250] Younger, D. H. 1983. Integer flows. J. Graph Theory, 7, 349–357.
[251] Zha, X.-Y. 1995. The closed 2-cell embeddings of 2-connected doubly toroidal graphs. Discrete Math., 145, 259–271.
[252] Zha, X.-Y. 1996. Closed 2-cell embeddings of 4 cross-cap embeddable graphs. Discrete Math., 162, 251–266.
[253] Zha, X.-Y. 1997. Closed 2-cell embeddings of 5-crosscap embeddable graphs. European J. Combin., 18, 461–477.
[254] Zhang, C.-Q. 1990. Minimum cycle coverings and integer flows. J. Graph Theory, 14, 537–546.
[255] Zhang, C.-Q. 1994. On even circuit decompositions of eulerian graphs. J. Graph Theory, 18, 51–57.
[256] Zhang, C.-Q. 1995. Hamiltonian weights and unique 3-edge-colorings of cubic graphs. J. Graph Theory, 20, 91–99.
[257] Zhang, C.-Q. 1996a. Nowhere-zero 4-flows and cycle double covers. Discrete Math., 154, 245–253.
[258] Zhang, C.-Q. 1996b. On embeddings of graphs containing no K5-minor. J. Graph Theory, 21, 401–404.
[259] Zhang, C.-Q. 1997. Integer Flows and Cycle Covers of Graphs. New York: Marcel Dekker.
[260] Zhang, C.-Q. 2002. Circular flows of nearly eulerian graphs and vertexsplitting. J. Graph Theory, 40, 147–161.
[261] Zhang, C.-Q. 2010. Cycle covers (I) – minimal contra pairs and Hamilton weights. J. Combin. Theory Ser. B, 100, 419–438.
[262] Zhang, X.-D., and Zhang, C.-Q. 2012. Kotzig frames and circuit double covers. Discrete Math., 312, 174–180.
[263] Zhu, X.-D. 2001. Circular chromatic number: a survey. Discrete Math., 229, 371–410.
[264] Zhu, X.-D. 2006. Recent developments in circular colouring of graphs. Pages 497–550 of: Klazar, M., Kratochvil, J., Matousek, J., Thomas, R., and Valtr, P. (eds), Topics in Discrete Mathematics. Springer.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.