Skip to main content Accessibility help
×
  • Cited by 144
Publisher:
Cambridge University Press
Online publication date:
September 2012
Print publication year:
2012
Online ISBN:
9781139017787

Book description

Classical solutions play an important role in quantum field theory, high-energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on Yang–Mills instantons and on bounce solutions.

Reviews

'Through careful writing this monograph achieves much more than what has been published before and may be considered, in fact, a new and very important book.'

Source: Zentralblatt Math

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] R. F., Dashen, B., Hasslacher, and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons”, Phys. Rev.D 10, 4130 (1974).
[2] A. M., Polyakov, “Particle spectrum in the quantum field theory”, JETP Lett. 20, 194 (1974).
[3] T. H. R., Skyrme, “A nonlinear theory of strong interactions”, Proc. Roy. Soc. Lond.A 247, 260 (1958).
[4] T. H. R., Skyrme, “Particle states of a quantized meson field”, Proc. Roy. Soc. Lond.A 262, 237 (1961).
[5] P. M., Morse and H., Feshbach, Methods of Theoretical Physics (New York: McGraw-Hill, 1953), p. 734.
[6] J., Goldstone and R., Jackiw, “Quantization of nonlinear waves”, Phys. Rev.D 11, 1486 (1975).
[7] J.-L., Gervais and B., Sakita, “Extended particles in quantum field theories”, Phys. Rev.D 11, 2943 (1975).
[8] J.-L., Gervais, A., Jevicki, and B., Sakita, “Perturbation expansion around extended particle states in quantum field theory”, Phys. Rev.D 12, 1038 (1975).
[9] C. G., Callan Jr., and D. J., Gross, “Quantum perturbation theory of solitons”, Nucl. Phys.B 93, 29 (1975).
[10] N. H., Christ and T. D., Lee, “Quantum expansion of soliton solutions”, Phys. Rev.D 12, 1606 (1975).
[11] E., Tomboulis, “Canonical quantization of nonlinear waves”, Phys. Rev.D 12, 1678 (1975).
[12] M., Creutz, “Quantum mechanics of extended objects in relativistic field theory”, Phys. Rev.D 12, 3126 (1975).
[13] R., Rajaraman and E. J., Weinberg, “Internal symmetry and the semiclassical method in quantum field theory”, Phys. Rev.D 11, 2950 (1975).
[14] R., Jackiw and C., Rebbi, “Solitons with fermion number 1/2”, Phys. Rev.D 13, 3398 (1976).
[15] R., Jackiw and J. R., Schrieffer, “Solitons with fermion number 1/2 in condensed matter and relativistic field theories”, Nucl. Phys.B 190, 253 (1981).
[16] R., Rajaraman, “Intersoliton forces in weak coupling quantum field theories”, Phys. Rev.D 15, 2866 (1977).
[17] N. S., Manton, “The force between 't Hooft–Polyakov monopoles”, Nucl. Phys.B 126, 525 (1977).
[18] N. S., Manton, “An effective Lagrangian for solitons”, Nucl. Phys.B 150, 397 (1979).
[19] J. K., Perring and T. H. R., Skyrme, “A model unified field equation”, Nucl. Phys. 31, 550 (1962).
[20] R. F., Dashen, B., Hasslacher, and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. I. Semiclassical functional methods”, Phys. Rev.D 10, 4114 (1974).
[21] R. F., Dashen, B., Hasslacher, and A., Neveu, “The particle spectrum in model field theories from semiclassical functional integral techniques”, Phys. Rev.D 11, 3424 (1975).
[22] R., Easther, J. T., Giblin Jr, L., Hui, and E. A., Lim, “New mechanism for bubble nucleation: Classical transitions”, Phys. Rev.D 80, 123519 (2009).
[23] J. T., Giblin Jr, L., Hui, E. A., Lim, and I.-S., Yang, “How to run through walls: Dynamics of bubble and soliton collisions”, Phys. Rev.D 82, 045019 (2010).
[24] I. L., Bogolyubsky and V. G., Makhankov, “On the pulsed soliton lifetime in two classical relativistic theory models”, JETP Lett. 24, 12 (1976).
[25] M., Gleiser, “Pseudostable bubbles”, Phys. Rev.D 49, 2978 (1994).
[26] E. J., Copeland, M., Gleiser, and H.-R., Muller, “Oscillons: Resonant configurations during bubble collapse”, Phys. Rev.D 52, 1920 (1995).
[27] M., Gleiser and D., Sicilia, “General theory of oscillon dynamics”, Phys. Rev.D 80, 125037 (2009).
[28] M. A., Amin and D., Shirokoff, “Flat-top oscillons in an expanding universe”, Phys. Rev.D 81, 085045 (2010).
[29] M. P., Hertzberg, “Quantum radiation of oscillons”, Phys. Rev.D 82, 045022 (2010).
[30] A. B., Zamolodchikov and A. B., Zamolodchikov, “Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry”, Nucl. Phys.B 133, 525 (1978).
[31] A. B., Zamolodchikov and A. B., Zamolodchikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Annals Phys. 120, 253 (1979).
[32] W. E., Thirring, “A soluble relativistic field theory?”, Annals Phys. 3, 91 (1958).
[33] S., Coleman, “The quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev.D 11, 2088 (1975).
[34] S., Mandelstam, “Soliton operators for the quantized sine-Gordon equation”, Phys. Rev.D 11, 3026 (1975).
[35] G. H., Derrick, “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys. 5, 1252 (1964).
[36] A. M., Polyakov and A. A., Belavin, “Metastable states of two-dimensional isotropic ferromagnets”, JETP Lett. 22, 245 (1975).
[37] H. B., Nielsen and P., Olesen, “Vortex line models for dual strings”, Nucl. Phys.B 61, 45 (1973).
[38] B., Plohr, “The behavior at infinity of isotropic vortices and monopoles”, J. Math. Phys. 22, 2184 (1981).
[39] L., Perivolaropoulos, “Asymptotics of Nielsen–Olesen vortices”, Phys. Rev.D 48, 5961 (1993).
[40] L., Jacobs and C., Rebbi, “Interaction energy of superconducting vortices”, Phys. Rev.B 19, 4486 (1979).
[41] E. J., Weinberg, “Multivortex solutions of the Ginzburg–Landau equations”, Phys. Rev.D 19, 3008 (1979).
[42] C. H., Taubes, “Arbitrary N-vortex solutions to the first order Landau–Ginzburg equations”, Commun. Math. Phys. 72, 277 (1980).
[43] R., Jackiw and P., Rossi, “Zero modes of the vortex–fermion system”, Nucl. Phys.B 190, 681 (1981).
[44] E. J., Weinberg, “Index calculations for the fermion–vortex system”, Phys. Rev.D 24, 2669 (1981).
[45] E., Witten, “Superconducting strings”, Nucl. Phys.B 249, 557 (1985).
[46] C. G., Callan Jr., and J. A., Harvey, “Anomalies and fermion zero modes on strings and domain walls”, Nucl. Phys.B 250, 427 (1985).
[47] G., Lazarides and Q., Shafi, “Superconducting strings in axion models”, Phys. Lett. 151B, 123 (1985).
[48] A., Vilenkin and E. P. S., Shellard, Cosmic Strings and other Topological Defects (Cambridge University Press, 1994).
[49] N. D., Mermin, “The topological theory of defects in ordered media”, Rev. Mod. Phys. 51, 591 (1979).
[50] S., Coleman, “Classical lumps and their quantum descendants.” In Aspects of Symmetry, S., Coleman (Cambridge University Press, 1985).
[51] T., Vachaspati and A., Achucarro, “Semilocal cosmic strings”, Phys. Rev.D 44, 3067 (1991).
[52] M., Hindmarsh, “Existence and stability of semilocal strings”, Phys. Rev. Lett. 68, 1263 (1992).
[53] M., Hindmarsh, “Semilocal topological defects”, Nucl. Phys.B 392, 461 (1993).
[54] A., Achucarro, K., Kuijken, L., Perivolaropoulos, and T., Vachaspati, “Dynamical simulations of semilocal strings”, Nucl. Phys.B 388, 435 (1992).
[55] T., Vachaspati, “Vortex solutions in the Weinberg–Salam model”, Phys. Rev. Lett. 68, 1977 (1992).
[56] T., Vachaspati, “Electroweak strings”, Nucl. Phys.B 397, 648 (1993).
[57] M., James, L., Perivolaropoulos, and T., Vachaspati, “Detailed stability analysis of electroweak strings”, Nucl. Phys.B 395, 534 (1993).
[58] A. S., Schwarz, “Field theories with no local conservation of the electric charge”, Nucl. Phys.B 208, 141 (1982).
[59] M. G., Alford, K., Benson, S., Coleman, J., March-Russell, and F., Wilczek, “The interactions and excitations of non-Abelian vortices”, Phys. Rev. Lett. 64, 1632 (1990).
[60] M. G., Alford, K., Benson, S., Coleman, J., March-Russell, and F., Wilczek, “Zero modes of non-Abelian vortices”, Nucl. Phys.B 349, 414 (1991).
[61] M., Bucher, H.-K., Lo, and J., Preskill, “Topological approach to Alice electrodynamics”, Nucl. Phys.B 386, 3 (1992).
[62] M., Bucher, K.-M., Lee, and J., Preskill, “On detecting discrete Cheshire charge”, Nucl. Phys.B 386, 27 (1992).
[63] J., Preskill and L. M., Krauss, “Local discrete symmetry and quantum mechanical hair”, Nucl. Phys.B 341, 50 (1990).
[64] E., Cartan, “La topologie des espaces représentatifs des groupes de Lie”, Œuvres complètes I, 2 (Paris: Éditions du CNRS, 1984), p. 1307.
[65] G., 't Hooft, “Magnetic monopoles in unified gauge theories”, Nucl. Phys.B 79, 276 (1974).
[66] P. A. M., Dirac, “Quantized singularities in the electromagnetic field”, Proc. Roy. Soc. Lond.A 133, 60 (1931).
[67] D., Zwanziger, “Quantum field theory of particles with both electric and magnetic charges”, Phys. Rev. 176, 1489 (1968).
[68] J. S., Schwinger, “Sources and magnetic charge”, Phys. Rev. 173, 1536 (1968).
[69] E., Witten, “Dyons of charge еθ/2π”, Phys. Lett. 86B, 283 (1979).
[70] T. T., Wu and C. N., Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev.D 12, 3845 (1975).
[71] J. J., Thomson, “On momentum in the electric field”, Philos. Mag. 8, 331 (1904).
[72] I., Tamm, “Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles”, Z. Phys. 71, 141 (1931).
[73] T. T., Wu and C. N., Yang, “Dirac monopole without strings: Monopole harmonics”, Nucl. Phys.B 107, 365 (1976).
[74] H. A., Olsen, P., Osland, and T. T., Wu, “On the existence of bound states for a massive spin-one particle and a magnetic monopole”, Phys. Rev.D 42, 665 (1990).
[75] E. J., Weinberg, “Monopole vector spherical harmonics”, Phys. Rev.D 49, 1086 (1994).
[76] M. I., Monastyrsky and A. M., Perelomov, “Concerning the existence of monopoles in gauge field theories”, JETP Lett. 21, 43 (1975).
[77] H., Georgi and S. L., Glashow, “Unified weak and electromagnetic interactions without neutral currents”, Phys. Rev. Lett. 28, 1494 (1972).
[78] T. W., Kirkman and C. K., Zachos, “Asymptotic analysis of the monopole structure”, Phys. Rev.D 24, 999 (1981).
[79] K., Lee and E. J., Weinberg, “Nontopological magnetic monopoles and new magnetically charged black holes”, Phys. Rev. Lett. 73, 1203 (1994).
[80] E. J., Weinberg and A. H., Guth, “Nonexistence of spherically symmetric monopoles with multiple magnetic charge”, Phys. Rev.D 14, 1660 (1976).
[81] E. B., Bogomolny, “Stability of classical solutions”, Sov. J. Nucl. Phys. 24, 449 (1976).
[82] M. K., Prasad and C. M., Sommerfield, “An exact classical solution for the 't Hooft monopole and the Julia–Zee dyon”, Phys. Rev. Lett. 35, 760 (1975).
[83] E. J., Weinberg, “Parameter counting for multimonopole solutions”, Phys. Rev.D 20 (1979) 936.
[84] A., Jaffe and C., Taubes, Vortices and Monopoles (Boston: Birkhäuser, 1980).
[85] N. H., Christ, A. H., Guth, and E. J., Weinberg, “Canonical formalism for gauge theories with application to monopole solutions”, Nucl. Phys.B 114, 61 (1976).
[86] B., Julia and A., Zee, “Poles with both magnetic and electric charges in non-Abelian gauge theory”, Phys. Rev.D 11, 2227 (1975).
[87] R., Jackiw and C., Rebbi, “Spin from isospin in a gauge theory”, Phys. Rev. Lett. 36, 1116 (1976).
[88] P., Hasenfratz and G., 't Hooft, “Fermion–boson puzzle in a gauge theory”, Phys. Rev. Lett. 36, 1119 (1976).
[89] A. S., Goldhaber, “Spin and statistics connection for charge–monopole composites”, Phys. Rev. Lett. 36, 1122 (1976).
[90] C., Callias, “Index theorems on open spaces”, Commun. Math. Phys. 62, 213 (1978).
[91] V. A., Rubakov, “Adler–Bell–Jackiw anomaly and fermion number breaking in the presence of a magnetic monopole”, Nucl. Phys.B 203, 311 (1982).
[92] C. G., Callan Jr., “Disappearing dyons”, Phys. Rev.D 25, 2141 (1982).
[93] C. G., Callan Jr., “Dyon–fermion dynamics”, Phys. Rev.D 26, 2058 (1982).
[94] A. S., Blaer, N. H., Christ, and J.-F., Tang, “Anomalous fermion production by a Julia–Zee dyon”, Phys. Rev. Lett. 47, 1364 (1981).
[95] A. S., Blaer, N. H., Christ, and J.-F., Tang, “Fermion emission from a Julia–Zee dyon”, Phys. Rev.D 25, 2128 (1982).
[96] P., Klimo and J. S., Dowker, “Dirac monopoles for general gauge theories”, Int. J. Theor. Phys. 8, 409 (1973).
[97] F., Englert and P., Windey, “Quantization condition for 't Hooft monopoles in compact simple Lie groups”, Phys. Rev.D 14, 2728 (1976).
[98] P., Goddard, J., Nuyts, and D. I., Olive, “Gauge theories and magnetic charge”, Nucl. Phys.B 125, 1 (1977).
[99] E., Lubkin, “Geometric definition of gauge invariance”, Annals Phys. 23, 233 (1963).
[100] R. A., Brandt and F., Neri, “Stability analysis for singular non-Abelian magnetic monopoles”, Nucl. Phys.B 161, 253 (1979).
[101] S., Coleman, “The magnetic monopole fifty years later.” In The Unity of Fundamental Interactions, ed. A., Zichichi (New York: Plenum, 1983).
[102] A., Sinha, “SU(3) magnetic monopoles”, Phys. Rev.D 14, 2016 (1976).
[103] Yu. S., TyupkinV. A., Fateev, and A. S., Shvarts, “Existence of heavy particles in gauge field theories”, JETP Lett. 21, 41 (1975).
[104] E. J., Weinberg, D., London, and J. L., Rosner, “Magnetic monopoles with Zn charges”, Nucl. Phys.B 236, 90 (1984).
[105] C. P., Dokos and T. N., Tomaras, “Monopoles and dyons in the SU(5) model”, Phys. Rev.D 21, 2940 (1980).
[106] C. L., Gardner and J. A., Harvey, “Stable grand unified monopoles with multiple Dirac charge”, Phys. Rev. Lett. 52, 879 (1984).
[107] G., Lazarides and Q., Shafi, “The fate of primordial magnetic monopoles”, Phys. Lett. 94B, 149 (1980).
[108] A., Abouelsaood, “Are there chromodyons?”, Nucl. Phys.B 226, 309 (1983).
[109] P. C., Nelson and A., Manohar, “Global color is not always defined”, Phys. Rev. Lett. 50, 943 (1983).
[110] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Monopole topology and the problem of color”, Phys. Rev. Lett. 50, 1553 (1983).
[111] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Nonabelian monopoles break color. I. Classical mechanics”, Phys. Rev.D 29, 2919 (1984).
[112] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Nonabelian monopoles break color. II. Field theory and quantum mechanics”, Phys. Rev.D 29, 2936 (1984).
[113] P. A., Horvathy and J. H., Rawnsley, “Internal symmetries of nonabelian gauge field configurations”, Phys. Rev.D 32, 968 (1985).
[114] P. A., Horvathy and J. H., Rawnsley, “The problem of ‘global color’ in gauge theories”, J. Math. Phys. 27, 982 (1986).
[115] H., Guo and E. J., Weinberg, “Instabilities of chromodyons in SO(5) gauge theory”, Phys. Rev.D 77, 105026 (2008).
[116] V. A., Rubakov, “Superheavy magnetic monopoles and proton decay”, JETP Lett. 33, 644 (1981).
[117] C. G., Callan Jr., “Monopole catalysis of baryon decay”, Nucl. Phys.B 212, 391 (1983).
[118] F., Wilczek, “Remarks on dyons”, Phys. Rev. Lett. 48, 1146 (1982).
[119] S., Dawson and A. N., Schellekens, “Monopole catalysis of proton decay in SO(10) grand unified models”, Phys. Rev.D 27, 2119 (1983).
[120] A. H., Guth, “The inflationary universe: a possible solution to the horizon and flatness problems”, Phys. Rev.D 23, 347 (1981).
[121] D. A., Kirzhnits and A. D., Linde, “Macroscopic consequences of the Weinberg model”, Phys. Lett. 42B, 471 (1972).
[122] L. A., Dolan and R., Jackiw, “Symmetry behavior at finite temperature”, Phys. Rev.D 9, 3320 (1974).
[123] S., Weinberg, “Gauge and global symmetries at high temperature”, Phys. Rev.D 9, 3357 (1974).
[124] D. A., Kirzhnits and A. D., Linde, “Symmetry behavior in gauge theories”, Annals Phys. 101, 195 (1976).
[125] S., Coleman and E. J., Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking”, Phys. Rev.D 7, 1888 (1973).
[126] A. H., Guth and E. J., Weinberg, “Could the universe have recovered from a slow first-order phase transition?”, Nucl. Phys.B 212, 321 (1983).
[127] A. H., Guth and E. J., Weinberg, “Cosmological consequences of a first-order phase transition in the SU(5) grand unified model”, Phys. Rev.D 23, 876 (1981).
[128] T. W. B., Kibble, “Topology of cosmic domains and strings”, J. Phys.A 9, 1387 (1976).
[129] M. B., Einhorn, D. L., Stein, and D., Toussaint, “Are grand unified theories compatible with standard cosmology?”, Phys. Rev.D 21, 3295 (1980).
[130] A., Vilenkin, “Gravitational field of vacuum domain walls and strings”, Phys. Rev.D 23, 852 (1981).
[131] A., Vilenkin, “Gravitational field of vacuum domain walls”, Phys. Lett. 133B, 177 (1983).
[132] J., Ipser and P., Sikivie, “Gravitationally repulsive domain wall”, Phys. Rev.D 30, 712 (1984).
[133] Ya. B., Zeldovich, I. Yu., Kobzarev, and L. B., Okun, “Cosmological consequences of a spontaneous breakdown of a discrete symmetry”, JETP 40, 1 (1975).
[134] T., Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, 2006).
[135] N., Bevis, M., Hindmarsh, M., Kunz, and J., Urrestilla, “Fitting CMB data with cosmic strings and inflation”, Phys. Rev. Lett. 100, 021301 (2008).
[136] R., Battye and A., Moss, “Updated constraints on the cosmic string tension”, Phys. Rev.D 82, 023521 (2010).
[137] T. W. B., Kibble, “Cosmic strings reborn?”, [astro-ph/0410073].
[138] J., Polchinski, “Introduction to cosmic F- and D-strings”, [hep-th/0412244].
[139] Ya. B., Zeldovich and M. Y., Khlopov, “On the concentration of relic magnetic monopoles in the universe”, Phys. Lett. 79B, 239 (1978).
[140] J., Preskill, “Cosmological production of superheavy magnetic monopoles”, Phys. Rev. Lett. 43, 1365 (1979).
[141] E. N., Parker, “The origin of magnetic fields”, Astrophys. J. 160, 383 (1970).
[142] M. S., Turner, E. N., Parker, and T. J., Bogdan, “Magnetic monopoles and the survival of galactic magnetic fields”, Phys. Rev.D 26, 1296 (1982).
[143] F. C., Adams, M., Fatuzzo, K., Freese, G., Tarle, R., Watkins, and M. S., Turner, “Extension of the Parker bound on the flux of magnetic monopoles”, Phys. Rev. Lett. 70, 2511 (1993).
[144] Y., Rephaeli and M. S., Turner, “The magnetic monopole flux and the survival of intracluster magnetic fields”, Phys. Lett. 121B, 115 (1983).
[145] M., Ambrosio et al. [MACRO Collaboration], “Final results of magnetic monopole searches with the MACRO experiment”, Eur. Phys. J.C 25, 511 (2002).
[146] E. W., Kolb, S. A., Colgate, and J. A., Harvey, “Monopole catalysis of nucleon decay in neutron stars”, Phys. Rev. Lett. 49, 1373 (1982).
[147] S., Dimopoulos, J., Preskill, and F., Wilczek, “Catalyzed nucleon decay in neutron stars”, Phys. Lett. 119B, 320 (1982).
[148] K., Freese, M. S., Turner, and D. N., Schramm, “Monopole catalysis of nucleon decay in old pulsars”, Phys. Rev. Lett. 51, 1625 (1983).
[149] E. W., Kolb and M. S., Turner, “Limits from the soft X-ray background on the temperature of old neutron stars and on the flux of superheavy magnetic monopoles”, Astrophys. J. 286, 702 (1984).
[150] J. A., Harvey, “Monopoles in neutron stars”, Nucl. Phys.B 236, 255 (1984).
[151] K., Freese and E., Krasteva, “Bound on the flux of magnetic monopoles from catalysis of nucleon decay in white dwarfs”, Phys. Rev.D 59, 063007 (1999).
[152] J., Arafune, M., Fukugita, and S., Yanagita, “Monopole abundance in the Solar System and the intrinsic heat in the Jovian planets”, Phys. Rev.D 32, 2586 (1985).
[153] P., Langacker and S.-Y., Pi, “Magnetic monopoles in grand unified theories”, Phys. Rev. Lett. 45, 1 (1980).
[154] T. W. B., Kibble and E. J., Weinberg, “When does causality constrain the monopole abundance?”, Phys. Rev.D 43, 3188 (1991).
[155] E. J., Weinberg and P., Yi, “Magnetic monopole dynamics, supersymmetry, and duality”, Phys. Rept. 438, 65 (2007).
[156] S., Coleman, S. J., Parke, A., Neveu, and C. M., Sommerfield, “Can one dent a dyon?”, Phys. Rev.D 15, 544 (1977).
[157] C. H., Taubes, “The existence of a nonminimal solution to the SU(2) Yang–Mills–Higgs equations on R3.PartI”, Commun. Math. Phys. 86, 257 (1982).
[158] C. H., Taubes, “The existence of a nonminimal solution to the SU(2) Yang–Mills–Higgs equations on R3.PartII”, Commun. Math. Phys. 86, 299 (1982).
[159] J., Hong, Y., Kim, and P. Y., Pac, “On the multivortex solutions of the Abelian Chern–Simons–Higgs theory”, Phys. Rev. Lett. 64, 2230 (1990).
[160] R., Jackiw and E. J., Weinberg, “Self-dual Chern–Simons vortices”, Phys. Rev. Lett. 64, 2234 (1990).
[161] R., Jackiw, K., Lee, and E. J., Weinberg, “Self-dual Chern–Simons solitons”, Phys. Rev.D 42, 3488 (1990).
[162] C., Lee, K., Lee, and H., Min, “Self-dual Maxwell–Chern–Simons solitons”, Phys. Lett.B 252, 79 (1990).
[163] L., Brink, J. H., Schwarz, and J., Scherk, “Supersymmetric Yang–Mills theories”, Nucl. Phys.B 121, 77 (1977).
[164] E., Witten and D. I., Olive, “Supersymmetry algebras that include topological charges”, Phys. Lett. 78B, 97 (1978).
[165] C. M., Miller, K., Schalm, and E. J., Weinberg, “Nonextremal black holes are BPS”, Phys. Rev.D 76, 044001 (2007).
[166] H., Nastase, M. A., Stephanov, P., van Nieuwenhuizen, and A., Rebhan, “Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons”, Nucl. Phys.B 542, 471 (1999).
[167] N., Graham and R. L., Jaffe, “Energy, central charge, and the BPS bound for (1+1)-dimensional supersymmetric solitons”, Nucl. Phys.B 544, 432 (1999).
[168] M. A., Shifman, A. I., Vainshtein, and M. B., Voloshin, “Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry”, Phys. Rev.D 59, 045016 (1999).
[169] O., Bergman, “Three-pronged strings and 1/4 BPS states in N = 4 super-Yang–Mills theory”, Nucl. Phys.B 525, 104 (1998).
[170] O., Bergman and B., Kol, “String webs and 1/4 BPS monopoles”, Nucl. Phys.B 536, 149 (1998).
[171] K., Lee and P., Yi, “Dyons in N = 4 supersymmetric theories and three-pronged strings”, Phys. Rev.D 58, 066005 (1998).
[172] W., Nahm, “The construction of all self-dual multimonopoles by the ADHM method.” In Monopoles in Quantum Field Theory, eds. N.S., Craigie et al. (Singapore: World Scientific, 1982).
[173] W., Nahm, “Multimonopoles in the ADHM construction.” In Gauge Theories and Lepton Hadron Interactions, eds. Z., Horvath et al. (Budapest: Central Research Institute for Physics, 1982).
[174] W., Nahm, “All self-dual multimonopoles for arbitrary gauge groups.” In Structural Elements in Particle Physics and Statistical Mechanics, eds. J., Honerkamp et al. (New York: Plenum, 1983).
[175] W., Nahm, “Self-dual monopoles and calorons.” In Group Theoretical Methods in Physics, eds. G., Denardo et al. (Berlin: Springer-Verlag, 1984).
[176] N., Manton and P., Sutcliffe, Topological Solitons (Cambridge University Press, 2004).
[177] S. A., Brown, H., Panagopoulos, and M. K., Prasad, “Two separated SU(2) Yang–Mills–Higgs monopoles in the ADHMN Construction”, Phys. Rev.D 26, 854 (1982).
[178] P., Houston and L., O'Raifeartaigh, “On the charge distribution of static axial and mirror symmetric monopole systems”, Phys. Lett. 94B, 153 (1980).
[179] R. S., Ward, “A Yang–Mills–Higgs monopole of charge 2”, Commun. Math. Phys. 79, 317 (1981).
[180] P., Forgacs, Z., Horvath, and L., Palla, “Exact multimonopole solutions in the Bogomolny–Prasad–Sommerfield limit”, Phys. Lett. 99B, 232 (1981)
[180a] P., Forgacs, Z., Horvath, and L., Palla, “Exact multimonopole solutions in the Bogomolny–Prasad–Sommerfield limit”, Phys. Lett. 101, 457 (1981)].
[181] M. K., Prasad and P., Rossi, “Construction of exact Yang–Mills–Higgs multimonopoles of arbitrary charge”, Phys. Rev. Lett. 46, 806 (1981).
[182] C., Rebbi and P., Rossi, “Multimonopole solutions in the Prasad–Sommerfield limit”, Phys. Rev.D 22, 2010 (1980).
[183] N. J., Hitchin, N. S., Manton, and M. K., Murray, “Symmetric monopoles”, Nonlinearity 8, 661 (1995).
[184] C. J., Houghton and P. M., Sutcliffe, “Tetrahedral and cubic monopoles”, Commun. Math. Phys. 180, 343 (1996).
[185] C. J., Houghton and P. M., Sutcliffe, “Monopole scattering with a twist”, Nucl. Phys.B 464, 59 (1996).
[186] P. M., Sutcliffe, “Monopole zeros”, Phys. Lett.B 376, 103 (1996).
[187] C. J., Houghton and P. M., Sutcliffe, “Octahedral and dodecahedral monopoles”, Nonlinearity 9, 385 (1996).
[188] C. J., Houghton, N. S., Manton, and P. M., Sutcliffe, “Rational maps, monopoles and skyrmions”, Nucl. Phys.B 510, 507 (1998).
[189] N. S., Manton, “A remark on the scattering of BPS monopoles”, Phys. Lett. 110B, 54 (1982).
[190] P. J., Ruback, “Vortex string motion in the Abelian Higgs model”, Nucl. Phys.B 296, 669 (1988).
[191] N. S., Manton and T. M., Samols, “Radiation from monopole scattering”, Phys. Lett.B 215, 559 (1988).
[192] D., Stuart, “The geodesic approximation for the Yang–Mills–Higgs equations”, Commun. Math. Phys. 166, 149 (1994).
[193] N. S., Manton, “Monopole interactions at long range”, Phys. Lett. 154B, 397 (1985).
[194] G. W., Gibbons and N. S., Manton, “The moduli space metric for well separated BPS monopoles”, Phys. Lett.B 356, 32 (1995).
[195] M. F., Atiyah and N. J., Hitchin, “Low-energy scattering of non-Abelian magnetic monopoles”, Phil. Trans. Roy. Soc. Lond.A 315, 459 (1985).
[196] M. F., Atiyah and N. J., Hitchin, “Low-energy scattering of non-Abelian monopoles”, Phys. Lett. 107A, 21 (1985).
[197] M. F., Atiyah and N. J., Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University Press, 1988).
[198] G. W., Gibbons and N. S., Manton, “Classical and quantum dynamics of BPS monopoles”, Nucl. Phys.B 274, 183 (1986).
[199] E. J., Weinberg, “Fundamental monopoles and multimonopole solutions for arbitrary simple gauge groups”, Nucl. Phys.B 167, 500 (1980).
[200] E. J., Weinberg and P., Yi, “Explicit multimonopole solutions in SU(N) gauge theory”, Phys. Rev.D 58, 046001 (1998).
[201] S. A., Connell, “The dynamics of the SU(3) charge (1, 1) magnetic monopole”, University of South Australia preprint (1994).
[202] J. P., Gauntlett and D. A., Lowe, “Dyons and S-duality in N = 4 supersymmetric gauge theory”, Nucl. Phys.B 472, 194 (1996).
[203] K., Lee, E. J., Weinberg, and P., Yi, “Electromagnetic duality and SU(3) monopoles”, Phys. Lett.B 376, 97 (1996).
[204] K., Lee, E. J., Weinberg, and P., Yi, “The moduli space of many BPS monopoles for arbitrary gauge groups”, Phys. Rev.D 54, 1633 (1996).
[205] M. K., Murray, “A note on the (1, 1,…, 1) monopole metric”, J. Geom. Phys. 23, 31 (1997).
[206] G., Chalmers, “Multimonopole moduli spaces for SU(N) gauge group”, hep-th/9605182 (1996).
[207] C., Lu, “Two monopole systems and the formation of non-Abelian clouds”, Phys. Rev.D 58, 125010 (1998).
[208] E. J., Weinberg, “Fundamental monopoles in theories with arbitrary symmetry breaking”, Nucl. Phys.B 203, 445 (1982).
[209] K., Lee, E. J., Weinberg, and P., Yi, “Massive and massless monopoles with non-Abelian magnetic charges”, Phys. Rev.D 54, 6351 (1996).
[210] E. J., Weinberg, “A continuous family of magnetic monopole solutions”, Phys. Lett. 119B, 151 (1982).
[211] R. S., Ward, “Magnetic monopoles with gauge group SU(3) broken to U(2)”, Phys. Lett. 107B, 281 (1981).
[212] A. S., Dancer and R. A., Leese, “A numerical study of SU(3) charge-two monopoles with minimal symmetry breaking”, Phys. Lett.B 390, 252 (1997).
[213] A. S., Dancer, “Nahm data and SU(3) monopoles”, Nonlinearity 5, 1355 (1992).
[214] P., Irwin, “SU(3) monopoles and their fields”, Phys. Rev.D 56, 5200 (1997).
[215] C. J., Houghton and E. J., Weinberg, “Multicloud solutions with massless and massive monopoles”, Phys. Rev.D 66, 125002 (2002).
[216] A. S., Dancer, “Nahm's equations and hyper-Kähler geometry”, Commun. Math. Phys. 158, 545 (1993).
[217] A., Dancer and R., Leese, “Dynamics of SU(3) monopoles”, Proc. Roy. Soc. Lond.A 440, 421 (1993).
[218] X., Chen and E. J., Weinberg, “Scattering of massless and massive monopoles in an SU(N)theory”, Phys. Rev.D 64, 065010 (2001).
[219] C. M., Miller and E. J., Weinberg, “Interactions of massless monopole clouds”, Phys. Rev.D 80, 065025 (2009).
[220] X., Chen, H., Guo, and E. J., Weinberg, “Massless monopoles and the moduli space approximation”, Phys. Rev.D 64, 125004 (2001).
[221] C., Montonen and D. I., Olive, “Magnetic monopoles as gauge particles?”, Phys. Lett. 72B, 117 (1977).
[222] H., Osborn, “Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1”, Phys. Lett. 83B, 321 (1979).
[223] A., Sen, “Dyon–monopole bound states, self-dual harmonic forms on the multimonopole moduli space, and SL(2,Z) invariance in string theory”, Phys. Lett.B 329, 217 (1994).
[224] T., Banks, C. M., Bender, and T. T., Wu, “Coupled anharmonic oscillators. I. Equal-mass case”, Phys. Rev.D 8, 3346 (1973).
[225] T., Banks and C. M., Bender, “Coupled anharmonic oscillators. II. Unequal-mass case”, Phys. Rev.D 8, 3366 (1973).
[226] S., Coleman, “Fate of the false vacuum: Semiclassical theory”, Phys. Rev.D 15, 2929 (1977).
[227] A. A., Belavin, A. M., Polyakov, A. S., Shvarts, and Y. S., Tyupkin, “Pseudoparticle solutions of the Yang–Mills equations”, Phys. Lett. 59B, 85 (1975).
[228] S., Coleman, “The uses of instantons.” In Aspects of Symmetry, S., Coleman (Cambridge University Press, 1985).
[229] J. S., Langer, “Theory of the condensation point”, Annals Phys. 41, 108 (1967).
[230] C. G., Callan Jr., and S., Coleman, “Fate of the false vacuum. II. First quantum corrections”, Phys. Rev.D 16, 1762 (1977).
[231] S., Coleman, “Quantum tunneling and negative eigenvalues”, Nucl. Phys.B 298, 178 (1988).
[232] R. P., Feynman and A. R., Hibbs, Quantum Mechanics and Path Integrals (New York: McGraw-Hill, 1965).
[233] R., Jackiw and C., Rebbi, “Vacuum periodicity in a Yang–Mills quantum theory”, Phys. Rev. Lett. 37, 172 (1976).
[234] C. G., Callan Jr., R. F., Dashen, and D. J., Gross, “The structure of the gauge theory vacuum”, Phys. Lett. 63B, 334 (1976).
[235] C. W., Bernard and E. J., Weinberg, “The interpretation of pseudoparticles in physical gauges”, Phys. Rev.D 15, 3656 (1977).
[236] V. N., Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys.B 139, 1 (1978).
[237] R., Jackiw and C., Rebbi, “Conformal properties of a Yang–Mills pseudoparticle”, Phys. Rev.D 14, 517 (1976).
[238] G., 't Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle”, Phys. Rev.D 14, 3432 (1976).
[239] G., 't Hooft, unpublished
[240] R., Jackiw, C., Nohl, and C., Rebbi, “Conformal properties of pseudoparticle configurations”, Phys. Rev.D 15, 1642 (1977).
[241] A. S., Schwarz, “On regular solutions of Euclidean Yang–Mills equations”, Phys. Lett. 67B, 172 (1977).
[242] R., Jackiw and C., Rebbi, “Degrees of freedom in pseudoparticle systems”, Phys. Lett. 67B, 189 (1977).
[243] M. F., Atiyah, N. J., Hitchin, and I. M., Singer, “Deformations of instantons”, Proc. Nat. Acad. Sci. 74, 2662 (1977).
[244] L. S., Brown, R. D., Carlitz, and C., Lee, “Massless excitations in instanton fields”, Phys. Rev.D 16, 417 (1977).
[245] M. F., Atiyah and I. M., Singer, “The index of elliptic operators. 1”, Annals Math. 87, 484 (1968).
[246] M. F., Atiyah, N. J., Hitchin, V. G., Drinfeld, and Y. I., Manin, “Construction of instantons”, Phys. Lett. 65A, 185 (1978).
[247] V. G., Drinfeld and Y. I., Manin, “A description of instantons”, Commun. Math. Phys. 63, 177 (1978).
[248] N. H., Christ, E. J., Weinberg, and N. K., Stanton, “General self-dual Yang–Mills solutions”, Phys. Rev.D 18, 2013 (1978).
[249] E., Corrigan, D. B., Fairlie, S., Templeton, and P., Goddard, “A Green's function for the general self-dual gauge field”, Nucl. Phys.B 140, 31 (1978).
[250] E., Corrigan and P., Goddard, “Construction of instanton and monopole solutions and reciprocity”, Annals Phys. 154, 253 (1984).
[251] E., Witten, “Small instantons in string theory”, Nucl. Phys.B 460, 541 (1996).
[252] M. R., Douglas, “Gauge fields and D-branes”, J. Geom. Phys. 28, 255 (1998).
[253] A. A., Belavin and A. M., Polyakov, “Quantum fluctuations of pseudoparticles”, Nucl. Phys.B 123, 429 (1977).
[254] C. W., Bernard, N. H., Christ, A. H., Guth, and E. J., Weinberg, “Pseudoparticle parameters for arbitrary gauge groups”, Phys. Rev.D 16, 2967 (1977).
[255] J. S., Bell and R., Jackiw, “A PCAC puzzle: π0→ γγ in the σ-model”, Nuovo Cim.A 60, 47 (1969).
[256] S. L., Adler, “Axial vector vertex in spinor electrodynamics”, Phys. Rev. 177, 2426 (1969).
[257] W. A., Bardeen, “Anomalous Ward identities in spinor field theories”, Phys. Rev. 184, 1848 (1969).
[258] K., Fujikawa, “Path integral measure for gauge invariant fermion theories”, Phys. Rev. Lett. 42, 1195 (1979).
[259] C. G., Callan Jr., R. F., Dashen, and D. J., Gross, “Toward a theory of the strong interactions”, Phys. Rev.D 17, 2717 (1978).
[260] S., Weinberg, “The U(1) problem”, Phys. Rev.D 11, 3583 (1975).
[261] G., 't Hooft, “Symmetry breaking through Bell–Jackiw anomalies”, Phys. Rev. Lett. 37, 8 (1976).
[262] N. S., Manton, “Topology in the Weinberg–Salam theory”, Phys. Rev.D 28, 2019 (1983).
[263] F. R., Klinkhamer and N. S., Manton, “A saddle point solution in the Weinberg–Salam theory”, Phys. Rev.D 30, 2212 (1984).
[264] V. A., Rubakov and M. E., Shaposhnikov, “Electroweak baryon number nonconservation in the early universe and in high-energy collisions”, Usp. Fiz. Nauk 166, 493 (1996).
[265] K., Nakamura et al. [Particle Data Group Collaboration], “Review of particle physics”, J. Phys. G 37, 075021 (2010).
[266] R. J., Crewther, P. Di, Vecchia, G., Veneziano, and E., Witten, “Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics”, Phys. Lett. 88B, 123 (1979).
[267] R. D., Peccei and H. R., Quinn, “CP conservation in the presence of instantons”, Phys. Rev. Lett. 38, 1440 (1977).
[268] R. D., Peccei and H. R., Quinn, “Constraints imposed by CP conservation in the presence of instantons”, Phys. Rev.D 16, 1791 (1977).
[269] S., Weinberg, “A new light boson?”, Phys. Rev. Lett. 40, 223 (1978).
[270] F., Wilczek, “Problem of strong P and T invariance in the presence of instantons”, Phys. Rev. Lett. 40, 279 (1978).
[271] S., Coleman, V., Glaser, and A., Martin, “Action minima among solutions to a class of Euclidean scalar field equations”, Commun. Math. Phys. 58, 211 (1978).
[272] A., Kusenko, K., Lee, and E. J., Weinberg, “Vacuum decay and internal symmetries”, Phys. Rev.D 55, 4903 (1997).
[273] E. J., Weinberg, “Vacuum decay in theories with symmetry breaking by radiative corrections”, Phys. Rev.D 47, 4614 (1993).
[274] I., Affleck, “Quantum statistical metastability”, Phys. Rev. Lett. 46, 388 (1981).
[275] A. D., Linde, “Decay of the false vacuum at finite temperature”, Nucl. Phys.B 216, 421 (1983).
[276] S., Coleman and F., De Luccia, “Gravitational effects on and of vacuum decay”, Phys. Rev.D 21, 3305 (1980).
[277] A. R., Brown and E. J., Weinberg, “Thermal derivation of the Coleman–De Luccia tunneling prescription”, Phys. Rev.D 76, 064003 (2007).
[278] G. W., Gibbons and S. W., Hawking, “Cosmological event horizons, thermodynamics, and particle creation”, Phys. Rev.D 15, 2738 (1977).
[279] G. W., Gibbons and S. W., Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev.D 15, 2752 (1977).
[280] S. J., Parke, “Gravity, the decay of the false vacuum and the new inflationary universe scenario”, Phys. Lett. 121B, 313 (1983).
[281] L. G., Jensen and P. J., Steinhardt, “Bubble nucleation and the Coleman–Weinberg model”, Nucl. Phys.B 237, 176 (1984).
[282] L. G., Jensen and P. J., Steinhardt, “Bubble nucleation for flat potential barriers”, Nucl. Phys.B 317, 693 (1989).
[283] J. C., Hackworth and E. J., Weinberg, “Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime”, Phys. Rev.D 71, 044014 (2005).
[284] P., Batra and M., Kleban, “Transitions between de Sitter minima”, Phys. Rev.D 76, 103510 (2007).
[285] T., Banks, “Heretics of the false vacuum: Gravitational effects on and of vacuum decay. 2”, hep-th/0211160 (2002).
[286] S. W., Hawking and I. G., Moss, “Supercooled phase transitions in the very early universe”, Phys. Lett. 110B, 35 (1982).
[287] K., Lee and E. J., Weinberg, “Decay of the true vacuum in curved space-time”, Phys. Rev.D 36, 1088 (1987).
[288] L. F., Abbott and S., Deser, “Stability of gravity with a cosmological constant”, Nucl. Phys.B 195, 76 (1982).
[289] J. C., Hackworth, “Vacuum decay in de Sitter spacetime”, Ph. D. thesis, Columbia University (2006).
[290] G., Lavrelashvili, “The number of negative modes of the oscillating bounces”, Phys. Rev.D 73, 083513 (2006).
[291] T., Tanaka, “The no-negative mode theorem in false vacuum decay with gravity”, Nucl. Phys.B 556, 373 (1999).
[292] A., Khvedelidze, G. V., Lavrelashvili, and T., Tanaka, “On cosmological perturbations in closed FRW model with scalar field and false vacuum decay”, Phys. Rev.D 62, 083501 (2000).
[293] G. V., Lavrelashvili, “Negative mode problem in false vacuum decay with gravity”, Nucl. Phys. Proc. Suppl. 88, 75 (2000).
[294] S., Gratton and N., Turok, “Homogeneous modes of cosmological instantons”, Phys. Rev.D 63, 123514 (2001).
[295] S., Coleman and P. J., Steinhardt, unpublished.
[296] A. A., Starobinsky, “Stochastic de Sitter (inflationary) stage in the early universe.” In Field Theory, Quantum Gravity and Strings, eds. H. J., De Vega and N., Sanchez (New York: Springer-Verlag, 1986).
[297] A. S., Goncharov, A. D., Linde, and V. F., Mukhanov, “The global structure of the inflationary universe”, Int. J. Mod. Phys.A 2, 561 (1987).
[298] A. D., Linde, “Hard art of the universe creation (stochastic approach to tunneling and baby universe formation)”, Nucl. Phys.B 372, 421 (1992).
[299] A. D., Linde, “A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. 108B, 389 (1982).
[300] A., Albrecht and P. J., Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett. 48, 1220 (1982).
[301] J., Garriga and A., Megevand, “Coincident brane nucleation and the neutralization of Λ”, Phys. Rev.D 69, 083510 (2004).
[302] A., Masoumi and E. J., Weinberg, “Bounces with O(3)×O(2) symmetry.” (2012).
[303] S. W., Hawking, I. G., Moss, and J. M., Stewart, “Bubble collisions in the very early universe”, Phys. Rev.D 26, 2681 (1982).
[304] J., Garriga, A. H., Guth, and A., Vilenkin, “Eternal inflation, bubble collisions, and the persistence of memory”, Phys. Rev.D 76, 123512 (2007).
[305] S., Chang, M., Kleban, and T. S., Levi, “When worlds collide”, JCAP 0804, 034 (2008).
[306] S., Chang, M., Kleban, and T. S., Levi, “Watching worlds collide: effects on the CMB from cosmological bubble collisions”, JCAP 0904, 025 (2009).
[307] A., Aguirre, M. C., Johnson, and M., Tysanner, “Surviving the crash: Assessing the aftermath of cosmic bubble collisions”, Phys. Rev.D 79, 123514 (2009).
[308] B., Freivogel, M., Kleban, A., Nicolis, and K., Sigurdson, “Eternal inflation, bubble collisions, and the disintegration of the persistence of memory”, JCAP 0908, 036 (2009).
[309] J. J., Blanco-Pillado and M. P., Salem, “Observable effects of anisotropic bubble nucleation”, JCAP 1007, 007 (2010).
[310] L. F., Abbott and S., Coleman, “The collapse of an anti-de Sitter bubble”, Nucl. Phys.B 259, 170 (1985).
[311] J. E., Humphreys, Introduction to Lie Algebras and Representation Theory (New York: Springer-Verlag, 1972).
[312] P., Ramond, Group Theory (Cambridge University Press, 2010).
[313] H. J., de Vega and F. A., Schaposnik, “Classical vortex solution of the Abelian Higgs model”, Phys. Rev.D 14, 1100 (1976).
[314] J. E., Kiskis, “Fermions in a pseudoparticle field”, Phys. Rev.D 15, 2329 (1977).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.