Skip to main content Accessibility help
×
  • Cited by 67
Publisher:
Cambridge University Press
Online publication date:
August 2012
Print publication year:
2012
Online ISBN:
9781139017749

Book description

The sphere is what might be called a perfect shape. Unfortunately nature is imperfect and many bodies are better represented by an ellipsoid. The theory of ellipsoidal harmonics, originated in the nineteenth century, could only be seriously applied with the kind of computational power available in recent years. This, therefore, is the first book devoted to ellipsoidal harmonics. Topics are drawn from geometry, physics, biosciences and inverse problems. It contains classical results as well as new material, including ellipsoidal bi-harmonic functions, the theory of images in ellipsoidal geometry and vector surface ellipsoidal harmonics, which exhibit an interesting analytical structure. Extended appendices provide everything one needs to solve formally boundary value problems. End-of-chapter problems complement the theory and test the reader's understanding. The book serves as a comprehensive reference for applied mathematicians, physicists, engineers and for anyone who needs to know the current state of the art in this fascinating subject.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
References
[1] A.A., Abramov, A. L., Dyshko, N. B., Konyukhova, and T.V., Levitina. Evaluation of Lamé angular wave functions by solving auxiliary differential equations. USSR Computational Mathematics and Mathematical Physics, 29: 119–131, 1989 Google Scholar.
[2] A.A., Abramov, A. L., Dyshko, N. B., Konyukhova, and T.V., Levitina. Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method. USSR Computational Mathematics and Mathematical Physics, 31: 25–42, 1991 Google Scholar.
[3] M., Abramowitz and I.A., Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1964 Google Scholar.
[4] E., Almansi. Sull'integrazione dell'equazione differenziale ∇2mu = 0. Annali di Matematica Pura ed Applicada, II: 1–51, 1899 Google Scholar.
[5] H., Ammari, Y., Capdeboscq, H., Kang, H., Lee, G., Milton, and H., Zribi. Progress on the strong Eshelby's conjecture and extremal structures for the elastic moment tensors. Journal des Mathématiques Pures et Appliquées, 94: 93–106, 2010 Google Scholar.
[6] H., Ammari, P., Garapon, H., Kang, and H., Lee. Effective viscosity properties of dilute suspensions of arbitrary shape particles. Asymptotic Analysis Google Scholar, preprint.
[7] H., Ammari, P., Garapon, H., Kang, and H., Lee. A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quarterly of Applied Mathematics, 66: 139–175, 2008 Google Scholar.
[8] H., Ammari and H., Kang. Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, Volume 1846. Berlin: Springer-Verlag, 2004 Google Scholar.
[9] H., Ammari and H., Kang. Polarization and Moment Tensors:with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences Series, Volume 162. New York: Springer-Verlag, 2007 Google Scholar.
[10] H., Ammari, H., Kang, and H., Lee. A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids. Journal of Computational Mathematics, 25: 2–12, 2007 Google Scholar.
[11] T. S., Angell and R. E., Kleinman. Polarizability tensors in low-frequency inverse scattering. Radio Science, 22: 1120–1126, 1987 Google Scholar.
[12] T., Apostolopoulos and G., Dassios. A parallel algorithm for solving the inverse scattering moment problem. Journal of Computational and Applied Mathematics, 42: 63–77, 1992 Google Scholar.
[13] Y., Arnaoudov, G., Dassios, and V., Georgiev. High-frequency asymptotics in inverse scattering by ellipsoids. Mathematical Methods in Applied Sciences, 16: 1–12, 1993 Google Scholar.
[14] F.M., Arscott. Recurrence formulae for Lamé polynomials. Journal of the London Mathematical Society, 31: 360–364, 1956 Google Scholar.
[15] F.M., Arscott. On Lamé polynomials. Journal of the London Mathematical Society, 32: 37–48, 1957 Google Scholar.
[16] F.M., Arscott. Relations between spherical and ellipsoidal harmonics and some applications. Journal of the London Mathematical Society, 33: 39–49, 1958 Google Scholar.
[17] F.M., Arscott. Corrigendum: Relations between spherical and ellipsoidal harmonics and some applications. Journal of the London Mathematical Society, 33: 481, 1958 Google Scholar.
[18] F.M., Arscott. Integral equations and relations for Lamé functions. Quarterly Journal of Mathematics, Oxford Series (2), 15: 103–115, 1964 Google Scholar.
[19] F.M., Arscott. Periodic Differential Equations; An Introduction to Mathieu, Lamé, and Allied Functions. Oxford: Pergamon Press, 1964 Google Scholar.
[20] F.M., Arscott and A., Darai. Curvilinear co-ordinate systems in which the Helmholtz equation separates. IMA Journal of Applied Mathematics, 27: 33–70, 1981 Google Scholar.
[21] F.M., Arscott and I.M., Khabaza. Tables of Lamé Polynomials. Oxford: Pergamon Press, 1962 Google Scholar.
[22] C., Athanasiadis. The dielectric ellipsoidal in the presence of a low-frequency electromagnetic wave. Journal of the Institute of Mathematics and Computer Sciences, 4: 225–240, 1991 Google Scholar.
[23] C., Athanasiadis. The hard-core multi-layered ellipsoid in a low-frequency acousticfield. International Journal of Engineering Science, 32: 1351–1359, 1994 Google Scholar.
[24] C., Athanasiadis. The multi-layered ellipsoid with a soft core in the presence of a low-frequency acoustic wave. Quarterly Journal of Mechanics and Applied Mathematics, 47: 441–459, 1994 Google Scholar.
[25] C., Athanasiadis and K., Skourogiannis. Low-frequency scattering by a chiral ellipsoidal dielectric Google Scholar. Preprint.
[26] G., Balmino. Gravitational potential harmonics from the shape of an homogeneous body. Celestial Mechanics and Dynamical Astronomy, 60: 331–364, 1994 Google Scholar.
[27] L., Baratchart, J., Leblond, and J. P., Marmorat. Inverse source problems in a 3D ball from best meromorphic approximation on 2D slices. Electronic Transactions on Numerical Analysis, 25: 41–53, 2006 Google Scholar.
[28] G., Barton. Elements of Green's Functions and Propagation, Potentials, Diffusion and Waves. New York: Oxford University Press, 1989 Google Scholar.
[29] G.K., Batchelor. An Introduction to Fluid Mechanics. Cambridge: Cambridge University Press, 1967 Google Scholar.
[30] H., Bateman. Higher Transcendental Functions, Volume III. New York: McGraw-Hill, 1955 Google Scholar.
[31] R. J. T., Bell. An Elementary Treatise on Coordinate Geometry of Three Dimensions, 10th edn. London: MacMillan and Company, 1937 Google Scholar.
[32] N., Bellomo, N.K., Li, and P.K., Maini. On the foundations of cancer modelling: selected topics, speculations, and perspectives. Mathematical Models and Methods in Applied Sciences, 18: 593–646, 2008 Google Scholar.
[33] F., Beukers and A., van der Waall. Lamé equations with algebraic solutions. Journal of Differential Equations, 197: 1–25, 2004 Google Scholar.
[34] B.A., Bilby, J.D., Eshelby, M. L., Kolbuszewski, and A.K., Kundu. The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity - some comments on a discussion by N.C. Gay. Tectonophysics, 35: 408–409, 1976 Google Scholar.
[35] B.A., Bilby, J.D., Eshelby, and A.K., Kundu. The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity. Tectonophysics, 28: 265–274, 1975 Google Scholar.
[36] F. J., Bloore. The shape of pebbles. Mathematical Geology, 9: 113–122, 1977 Google Scholar.
[37] L. F., Boron. Differential Geometry. Groningen: Noordhoff, 1954 Google Scholar.
[38] F., Bowman. Introduction to Elliptic Functions with Applications. New York: Dover, 1947 Google Scholar.
[39] L., Brand. Vector and Tensor Analysis. New York: John Wiley and Sons, 1947 Google Scholar.
[40] L., Brand. Vector Analysis. New York: John Wiley and Sons, 1957 Google Scholar.
[41] Z. B., Bronzan. The magnetic scalar potential. American Journal of Physics, 39: 1357–1359, 1971 Google Scholar.
[42] W. E., Byerly. Elements of Integral Calculus. Boston, MA: Gin and Company, 1888 Google Scholar.
[43] W. E., Byerly. An Elementary Treatise on Fourier's Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Boston, MA: Gin and Company, 1893 Google Scholar.
[44] P. F., Byrd and M.D., Friedman. Handbook of Elliptic Integrals for Engineers and Physicists. Berlin: Springer-Verlag, 1954 Google Scholar.
[45] H.M., Byrne. Modelling avascular tumor growth. In L., Preziosi, editor, Cancer Modelling and Simulation, pp. 75–120. London: Chapman and Hall, 2003 Google Scholar.
[46] F., Cakoni and G., Dassios. The Atkinson-Wilcox theorem in thermoelasticity. Quarterly of Applied Mathematics, 57: 771–795, 1999 Google Scholar.
[47] B. C., Carlson. Ellipsoidal distributions of charge or mass. Journal of Mathematical Physics, 2: 441–450, 1961 Google Scholar.
[48] B. C., Carlson. Some inequalities for hypergeometric functions. Proceedings of the American Mathematical Society, 17: 32–39, 1966 Google Scholar.
[49] B. C., Carlson. Elliptic integrals of the first kind. SIAM Journal of Mathematical Analysis, 8: 231–242, 1977 Google Scholar.
[50] D.H., Chambers and J.G., Berryman. Target characterization using decomposition of the time-reversal operator: electromagnetic scattering from small ellipsoids. Inverse Problems, 22: 2145–2163, 2006 Google Scholar.
[51] S., Chandrasekhar. Ellipsoidal Figures of Equilibrium. New York: Dover, 1987 Google Scholar.
[52] A., Charalambopoulos. An analytic algorithm for shape reconstruction from low-frequency moments. Journal of Mathematical Physics, 52, 093705, 2011 Google Scholar.
[53] A., Charalambopoulos and G., Dassios. Inverse scattering via low-frequency moments. Journal of Mathematical Physics, 32: 4206–4216, 1992 Google Scholar.
[54] A., Charalambopoulos and G., Dassios. Scattering of a spherical wave by a small ellipsoid. IMA Journal of Applied Mathematics, 62: 117–136, 1999 Google Scholar.
[55] A., Charalambopoulos, G., Dassios, G., Perrusson, and D., Lesselier. The localized non-linear approximation in ellipsoidal geometry: a novel approach to the low-frequency scattering problem. International Journal of Engineering Science, 40: 67–91, 2002 Google Scholar.
[56] S.K., Chaudhuri. A time domain synthesis of electromagnetic backscattering by conducting ellipsoids. IEEE Transactions on Antennas and Propagation, 28: 523–530, 1980 Google Scholar.
[57] S.K., Chaudhuri and W.M., Boerner. Polarization utilization in profile inversion of a perfectly conducting prolate spheroid. IEEE Transactions on Antennas and Propagation, 25: 505–511, 1978 Google Scholar.
[58] J. B., Chittenden. Theory of Hermite's form of Lamé's equation. PhD thesis, Albertus-Universität, 1893 Google Scholar.
[59] R., Courant and D., Hilbert. Methods of Mathematical Physics I. New York: Interscience, 1953 Google Scholar.
[60] R., Courant and D., Hilbert. Methods of Mathematical Physics II. New York: Interscience, 1962 Google Scholar.
[61] T., Craig. Orthomorphic projection of an ellipsoid upon a sphere. Americal Journal of Mathematics, 3: 114–127, 1880 Google Scholar.
[62] G.H., Darwin. Ellipsoidal harmonic analysis. Philosophical Transactions of the Royal Society of London, 197: 461–557, 1901 Google Scholar.
[63] G.H., Darwin. On the pear-shaped figure of equilibrium of a rotating mass of liquid. Philosophical Transactions of the Royal Society of London, 198: 301–331, 1902 Google Scholar.
[64] G., Dassios. Convergent low-frequency expansions for penetrable scatterers. Journal of Mathematical Physics, 18: 126–137, 1977 Google Scholar.
[65] G., Dassios. Second-order low-frequency scattering by the soft ellipsoid. SIAM Journal on Applied Mathematics, 38: 373–381, 1980 Google Scholar.
[66] G., Dassios. Scattering of acoustic waves by a coated pressure-release ellipsoid. Acoustical Society of America, 70: 176–185, 1981 Google Scholar.
[67] G., Dassios. Low-frequency scattering theory for a penetrable body with an impenetrable core. SIAM Journal on Applied Mathematics, 42(2): 272–280, 1982 Google Scholar.
[68] G., Dassios. The inverse scattering problem for the soft ellipsoid. Journal of Mathematical Physics, 28: 2858–2862, 1987 Google Scholar.
[69] G., Dassios. On the harmonic radius and the capacity of an inverse ellipsoid. Journal of Mathematical Physics, 29: 835–836, 1988 Google Scholar.
[70] G., Dassios. The Atkinson–Wilcox expansion theorem for elastic waves. Quarterly of Applied Mathematics, 46: 285–299, 1988 Google Scholar.
[71] G., Dassios. Optimal geometrical and physical bounds of elastic Rayleigh scattering. IUTAM Symposium on Elastic Wave Propagation, pp. 405–410, Galway, 1988 Google Scholar.
[72] G., Dassios. Low-frequency expansions for lossy scatterers. International Journal of Engineering Science, 27: 723–726, 1989 Google Scholar.
[73] G., Dassios. Low-frequency moments in inverse scattering theory. Journal of Mathematical Physics, 31: 1691–1692, 1990 Google Scholar.
[74] G., Dassios. On a physical characterization of the surface of an ellipsoid. International Journal of Engineering Science, 28: 1205–1208, 1990 Google Scholar.
[75] G., Dassios. Ellipsoidal fitting for the Atkinson–Wilcox expansion. In D., Fotiadis and C., Massalas, editors, 5th International Workshop on Mathematical Methods in Scattering and Biomedical Technology, pp. 35–43, 2002 Google Scholar.
[76] G., Dassios. Low-Frequency Scattering. In R., Pike and P., Sabatier, editors, Scattering I, II, pp. 230–244. New York: Academic Press, 2002 Google Scholar.
[77] G., Dassios. The Atkinson–Wilcox theorem in ellipsoidal geometry. Journal of Mathematical Analysis and its Applications, 274: 828–845, 2002 Google Scholar.
[78] G., Dassios. The magnetic potential for the ellipsoidal MEG problem. Journal of Computational Mathematics, 25: 145–156, 2007 Google Scholar.
[79] G., Dassios. On ellipsoidal tumors. In D., Fotiadis and K., Nikita, editors, 8th IEEE International Conference on BioInformatics and Bio Engineering, Athens, 2008 Google Scholar.
[80] G., Dassios. The scalar magnetic potential in magnetoencephalography. In G., Uhlmann, editor, Journal of Physics: Conference Series, doi:10.1088/1742-6596/124/1/012020. New York: Institute of Physics, 2008 Google Scholar.
[81] G., Dassios. Electric and magnetic activity of the brain in spherical and ellipsoidal geometry. In H., Ammari, editor, Mathematical Modeling in Biomedical Imaging, pp. 133–202. New York: Springer-Verlag, Mathematical Biosciences Subseries, 183, 2009 Google Scholar.
[82] G., Dassios. The double analytic structure that allows the introduction of vector ellipsoidal harmonics. In Advanced Topics in Scattering Theory and Biomedical Engineering, Proceedings of the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, pp. 3–11, 2010 Google Scholar.
[83] G., Dassios. Neuronal current decomposition via vector surface ellipsoidal harmonics. In Workshop on Analytic and Geometric Methods in Medical Imaging, Isaac Newton Institute for Mathematical Sciences, http://www.newton.ac.ul/programmes/INV/seminars/082411451.pdf, 2011 Google Scholar.
[84] G., Dassios Google Scholar. Explicit electrostatic cloaking with three degrees of freedom. (submitted).
[85] G., Dassios. On the Young–Laplace relation and the evolution of a perturbed ellipsoid. Quarterly of Applied mathematics Google Scholar, in press.
[86] G., Dassios and A. S., Fokas. Electro-magneto-encephalography for the three-shell model: a single dipole in ellipsoidal geometry. Mathematical Methods in the Applied Sciences Google Scholar, preprint.
[87] G., Dassios and A. S., Fokas. Electro-magneto-encephalography for the three-shell model: dipoles and beyond for the spherical geometry. Inverse Problems, 25, doi: 10.1088/0266-5611/25/3/035001, 2009 Google Scholar.
[88] G., Dassios and A. S., Fokas. On two useful identities in the theory of ellipsoidal harmonics. Studies in Applied Mathematics, 123: 361–373, 2009 Google Scholar.
[89] G., Dassios, A. S., Fokas, and F., Kariotou. On the non-uniqueness of the inverse MEG problem. Inverse Problems, 21: L1–L5, 2005 Google Scholar.
[90] G., Dassios, S., Giapalaki, A., Kandili, and F., Kariotou. The exterior magnetic field for the multilayer ellipsoidal model of the brain. Quarterly Journal of Mechanics and Applied Mathematics, 60: 1–25, 2007 Google Scholar.
[91] G., Dassios and D., Hadjiloizi. On the non-uniqueness of the inverse problem associated with electroencephalography. Inverse Problems, 25: 1–18, 2009 Google Scholar.
[92] G., Dassios, D., Hadjiloizi, and F., Kariotou. The octapolic ellipsoidal term in magnetoencephalography. Journal of Mathematical Physics, 50: 1–18, 2009 Google Scholar.
[93] G., Dassios and F., Kariotou. Magnetoencephalography in ellipsoidal geometry. Journal of Mathematical Physics, 44: 220–241, 2003 Google Scholar.
[94] G., Dassios and F., Kariotou. On the exterior magnetic field and silent sources in magnetoencephalography. Abstract and Applied Analysis, 2004: 307–314, 2004 Google Scholar.
[95] G., Dassios and F., Kariotou. The effect of an ellipsoidal shell on the direct EEG problem. In D., Fotiadis and C., Massalas, editors, Advances in Scattering and Biomedical Engineering, pp. 495–503, 2004 Google Scholar.
[96] G., Dassios and F., Kariotou. The direct MEG problem in the presence of an ellipsoidal shell inhomogeneity. Quarterly of Applied Mathematics, 63: 601–618, 2005 Google Scholar.
[97] G., Dassios and F., Kariotou. On the ellipsoidal kernel space for the bi-Laplacian operator. Bulletin of the Greek Mathematical Society, 57: 161–174, 2010 Google Scholar.
[98] G., Dassios, F., Kariotou, and M., Tsampas. On the ellipsoidal growth of tumors. In A., Charalambopoulos, D. I., Fotiadis, and D., Polyzos, editors, Advanced Topics in Scattering and Biomedical Engineering, pp. 254–260, 2008 Google Scholar.
[99] G., Dassios, F., Kariotou, M.N., Tsampas, and B.D., Sleeman. Mathematical modelling of avascular ellipsoidal tumor growth. Quarterly of Applied Mathematics, 70: 1–24, 2012 Google Scholar.
[100] G., Dassios and K., Karveli. Scattering of a spherical dyadic field by a small rigid sphere. Mathematics and Mechanics of Solids, 7: 3–40, 2002 Google Scholar.
[101] G., Dassios, K., Karveli, S. E., Kattis, and N., Kathreptas. The disturbance of a plane dyadic wave by a small spherical cavity. International Journal of Engineering Science, 40: 1975–2000, 2002 Google Scholar.
[102] G., Dassios and K., Kiriaki. The low-frequency theory of elastic wave scattering. Quarterly of Applied Mathematics, 42: 225–248, 1984 Google Scholar.
[103] G., Dassios and K., Kiriaki. The rigid ellipsoid in the presence of a low-frequency elastic wave. Quarterly of Applied Mathematics, 43: 435–456, 1986 Google Scholar.
[104] G., Dassios and K., Kiriaki. The ellipsoidal cavity in the presence of a low-frequency elastic wave. Quarterly of Applied Mathematics, 44: 709–735, 1987 Google Scholar.
[105] G., Dassios and K., Kiriaki. Size, orientation, and thickness identification of an ellipsoidal shell. In G., Roach, editor, Workshop on Inverse Problems and Imaging, pp. 38–48, 1991 Google Scholar.
[106] G., Dassios, K., Kiriaki, and V., Kostopoulos. Inverse thermoelastic Rayleigh scattering by a rigid ellipsoid. In G., Roach, editor, Workshop on Inverse Problems and Imaging, pp. 49–67, 1991 Google Scholar.
[107] G., Dassios and R., Kleinman. On Kelvin inversion and low-frequency scattering. SIAM Review, 31: 565–585, 1989 Google Scholar.
[108] G., Dassios and R., Kleinman. On the capacity and Rayleigh scattering for non-convex bodies. Quarterly Journal of Mechanics and Applied Mathematics, 42: 467–475, 1989 Google Scholar.
[109] G., Dassios and R., Kleinman. Low-Frequency Scattering. Oxford: Oxford University Press, 2000 Google Scholar.
[110] G., Dassios and V., Kostopoulos. On Rayleigh expansions in thermoelastic scattering. SIAM Journal on Applied Mathematics, 50: 1300–1324, 1990 Google Scholar.
[111] G., Dassios and V., Kostopoulos. Thermoelastic scattering by a rigid ellipsoid. Computational and Applied Mathematics, 9: 153–173, 1990 Google Scholar.
[112] G., Dassios and R., Lucas. An inverse problem in low-frequency scattering by an ellipsoidally embossed surface. Wave Motion, 20: 33–39, 1994 Google Scholar.
[113] G., Dassios and R., Lucas. Inverse scattering for the penetrable ellipsoid and ellipsoidal boss. Journal of the Acoustical Society of America, 99: 1877–1882, 1996 Google Scholar.
[114] G., Dassios and R., Lucas. Electromagnetic imaging of ellipsoids and ellipsoidal bosses. Quarterly Journal of Mechanics and Applied Mathematics, 51: 413–426, 1998 Google Scholar.
[115] G., Dassios and T., Miloh. Rayleigh scattering for the Kelvin-inverted ellipsoid. Quarterly of Applied Mathematics, 57: 757–770, 1999 Google Scholar.
[116] G., Dassios, S., Paipetis, and A., Pournaras. An inverse scattering problem for an ellipsoidal inclusion with an interphase in an acousticfield. In S., Paipetis, editor, Phase Interaction in Composite Materials, pp. 390–395, 1988 Google Scholar.
[117] G., Dassios and L. E., Payne. Estimates for low-frequency elastic scattering by a rigid body. Journal of Elasticity, 20: 161–180, 1988 Google Scholar.
[118] G., Dassios and L. E., Payne. Energy bounds for Rayleigh scattering by an elastic cavity. Journal of Mathematical Analysis and its Applications, 138: 106–128, 1989 Google Scholar.
[119] G., Dassios and B., Sleeman. A note on the reconstruction of ellipsoids from the X-ray transform. SIAM Journal on Applied Mathematics, 53: 141–153, 1993 Google Scholar.
[120] G., Dassios and J.C.-E., Sten. The image system and Green's function for the ellipsoid. In H., Ammari and H., Kang, editors, Imaging Microstructures: Mathematical and Computational Challenges, Volume 494 of Contemporary Mathematics, pp. 185–195. Providence, RI: American Mathematical Society, 2009 Google Scholar.
[121] G., Dassios and M., Tsampas. Vector ellipsoidal harmonics and neuronal current decomposition in the brain. Inverse Problems and Imaging, 3: 243–257, 2009 Google Scholar.
[122] G., Dassios and P., Vafeas. The Happel model for an ellipsoid via Papkovich–Neuber. In D., Fotiadis and C., Massalas, editors, Advances in Scattering and Biomedical Engineering, pp. 277–285, 2004 Google Scholar.
[123] D., Dechambre and D. J., Scheeres. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients. Astronomy and Astrophysics, 387: 1114–1122, 2002 Google Scholar.
[124] E., Di Benedetto and A., Friedman. Bubble growth in porous media. Indiana University Mathematics Journal, 35: 573–606, 1986 Google Scholar.
[125] A. C., Dixon. Expansions by means of Lamé's functions. Proceedings of the London Mathematical Society, 35: 162–197, 1902 Google Scholar.
[126] J. E., Dobkins and R. L., Folk. Shape development on Tahiti-Nui. Journal of Sedimentary Petrology, 40: 1167–1203, 1970 Google Scholar.
[127] H-J., Dobner and S., Ritter. Verified computation of Lamé functions with high accuracy. Computing, 60: 81–89, 1998 Google Scholar.
[128] D. J., Durian, H., Bideaud, P., Duringer, A., Schröder, and C.M., Marques. The shape and erosion of pebbles. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 75: 021301–021310, 2007 Google Scholar.
[129] D. J., Durian, H., Bideaud, P., Duringer, A., Schröder, F., Thalmann, and C.M., Marques. What is in a pebble shape?Physical Review Letters, 97: 028001–028004, 2006 Google Scholar.
[130] D., Edwards. Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Quarterly Journal of Mathematics, 26: 70–78, 1892 Google Scholar.
[131] J., Eells and A., Ratto. Harmonic maps between spheres and ellipsoids. International Journal of Mathematics, 1: 1–27, 1990 Google Scholar.
[132] L. P., Eisenhart. A Treatise on the Differential Geometry of Curves and Surfaces. Boston, MA: Ginn and Company, 1909 Google Scholar.
[133] L. P., Eisenhart. An Introduction to Differential Geometry with use of the Tensor Calculus. Princeton, MA: Princeton University Press, 1947 Google Scholar.
[134] A., Erdélyi. On algebraic Lamé functions. Philosophical Magazine, 32: 348–350, 1941 Google Scholar.
[135] A., Erdélyi. On Lamé functions. Philosophical Magazine, 31: 123–130, 1941 Google Scholar.
[136] A., Erdélyi. Integral equations for Lamé functions. Proceedings of the Edinburgh Mathematical Society (2), 7: 3–15, 1942 Google Scholar.
[137] A., Erdélyi. Expansions of Lamé functions into series of Legendre functions. Proceedings of the Royal Society of Edinburgh, Series A, 62: 247–267, 1948 Google Scholar.
[138] A., Erdélyi, W., Magnus, F., Oberhettinger, and F.G., Tricomi. Higher Transcendental Functions, Volume III. New York: McGraw-Hill, 1955 Google Scholar.
[139] J.D., Eshelby. The determination of the elasticfield of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London A, 241: 376–396, 1957 Google Scholar.
[140] J.D., Eshelby. The elasticfield outside an ellipsoidal inclusion. Proceedings of the Royal Society of London A, 252: 561–569, 1959 Google Scholar.
[141] J.D., Eshelby. Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, 2: 89–140, 1961 Google Scholar.
[142] J.D., Eshelby. Axisymmetric stress field around spheroidal inclusions and cavities in a transversally isotropic material. Journal of Applied Mechanics, 36: 652, 1969 Google Scholar.
[143] R., Everaers and M. R., Ejtehadi. Interaction potentials for soft and hard ellipsoids. Physical Reviews E, 67, 2003 Google Scholar.
[144] L., Eyges. Solutions of boundary value problems with Laplace's equation for ellipsoids and elliptic cylinders. Journal of Mathematical Physics, 21: 571–581, 1980 Google Scholar.
[145] W. E., Featherstone and M. C., Dentith. A geodetic approach to gravity data reduction for geophysics. Computers and Geosciences, 23: 1063–1070, 1998 Google Scholar.
[146] J., Feng, D.D., Joseph, R., Glowinski, and T.W., Pan. A three-dimensional computation of the force and torque on an ellipsoid setting slowly through a viscoelastic fluid. Journal of Fluid Mechanics, 283: 1–16, 1995 Google Scholar.
[147] N.M., Ferrers (editor). Mathematical Papers of the Late George Green. London: MacMillan, 1871 Google Scholar.
[148] N.M., Ferrers. An Elementary Treatise on Spherical Harmonics and Subjects Connected with them. London: MacMillan, 1877 Google Scholar.
[149] N.M., Ferrers. On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae, and elliptic rings, of variable densities. Quarterly Journal of Pure and Applied Mathematics, 14: 1–22, 1877 Google Scholar.
[150] A. S., Fokas. Electro-magneto-encephalography for the three-shell model: Distributed current in arbitrary, spherical and ellipsoidal geometries. Journal of the Royal Society. Interface, doi:10.1098/rsif.2008.0309, 2008 Google Scholar.
[151] A. S., Fokas, I.M., Gelfand, and Y., Kurylev. Inversion method for magnetoencephalography. Inverse Problems, 12: L9–L11, 1996 Google Scholar.
[152] A. S., Fokas, Y., Kurylev, and V., Marinakis. The unique determination of the neuronal currents in the brain via magnetoencephalography. Inverse Problems, 20: 1067–1087, 2004 Google Scholar.
[153] A. R., Forsyth. Lectures on the Differential Geometry of Curves and Surfaces. Cambridge: Cambridge University Press, 1912 Google Scholar.
[154] A., Friedman and M., Sakai. A characterization of null quadrature domains in RN. Indiana University Mathematics Journal, 35: 607–610, 1986 Google Scholar.
[155] L. S., Fu and T., Mura. The determination of the elastodynamic fields of an ellipsoidal inhomogeneity. Transactions of the American Society of Mechanical Engineering, 50: 390–396, 1983 Google Scholar.
[156] R., Garmier and J-P., Barriot. Ellipsoidal harmonic expansions of the gravitational potential: theory and application. Celestial Mechanics and Dynamical Astronomy, 79: 235–275, 2001 Google Scholar.
[157] D. B., Geselowitz. On bioelectric potentials in an inhomogeneous volume conductor. Biophysics, 7: 1–11, 1967 Google Scholar.
[158] D. B., Geselowitz. On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources. IEEE Transactions in Biomagnetism, 6: 346–347, 1970 Google Scholar.
[159] J. L., Gibbs. Vector Analysis. New Haven, CT: Yale University Press, 1901 Google Scholar.
[160] H., Goldstein. Classical Mechanics. Reading, MA: Addison-Wesley, 1950 Google Scholar.
[161] G., Green. An essay on the application of mathematical analysis to the theories of electricity and magnetism. Private Publication, Nottingham, 1828 Google Scholar.
[162] G., Green. On the determination of the exterior and interior attractions of ellipsoids of variable densities. Transactions of the Cambridge Philosophical Society, 5: 395–430, 1835 Google Scholar.
[163] S. L., Green. Algebraic Solid Geometry. Cambridge: Cambridge University Press, 1957 Google Scholar.
[164] A.G., Greenhill. The Applications of Elliptic Functions. New York: Dover, 1959 Google Scholar.
[165] F. P., Greenleaf. Introduction to Complex Variables. Philadelphia: Saunders Company, 1972 Google Scholar.
[166] H. P., Greenspan. Models for the growth of a solid tumor. Studies in Applied Mathematics, 52: 317–340, 1972 Google Scholar.
[167] H. P., Greenspan. On the growth and stability of cell cultures and solid tumors. Journal of Theoretical Biology, 56: 229–242, 1976 Google Scholar.
[168] V., Guillemin. Sojourn time and asymptotic properties of the scattering matrix. Publications RIMS, Kyoto University, 12, Supplement: 69–88, 1977 Google Scholar.
[169] R.M., Gulrajani. Bioelectricity and Biomagnetism. New York: John Wiley and Sons, 1998 Google Scholar.
[170] M., Hamalainen, R., Hari, R. J., Ilmoniemi, J., Knuutila, and O., Lounasmaa. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65: 1413–497, 1993 Google Scholar.
[171] H., Hancock. Elliptic Integrals. New York: Dover, 1958 Google Scholar.
[172] W.W., Hansen. A new type of expansion in radiation problems. Physical Review, 47: 139–143, 1935 Google Scholar.
[173] J., Happel and H., Brenner. Low Reynolds Number Hydrodynamics. Dordrecht: Martinus Nijhoff, 1986 Google Scholar.
[174] E., Heine. Beitrag zur Theorie der Anziehung und der Wärme. Journal für die Reine und Angewandte Mathematik, 29: 185–208, 1845 Google Scholar.
[175] E., Heine. Auszug eines Schreibens des Prof. C.G. J. Jacobi an Herrn Prof. Heine in Bonn. Journal für die Reine und Angewandte Mathematik, 35: 35–40, 1851 Google Scholar.
[176] E., Heine. Theorie der Kugelfunctionen und der Verwandten Functionen. Berlin: Druck und Verlag von G. Reimer, 1878 Google Scholar.
[177] R.A., Herman. Equations of the stream lines due to the motion of an ellipsoid in perfect and in viscous fluid. The Quarterly Journal of Pure and Applied Mathematics, 23: 378–384, 1889 Google Scholar.
[178] C., Hermite. Sur quelques Applications des Fonctions Elliptiques. Paris: Gauthier-Villars, 1885 Google Scholar.
[179] D., Hilbert and S., Cohn-Vossen. Geometryandthe Imagination. New York: Chelsea, 1952 Google Scholar.
[180] E.W., Hobson. On a theorem in differentiation, and its application to spherical harmonics. Proceedings of the London Mathematical Society, 24: 55–67, 1892 Google Scholar.
[181] E.W., Hobson. The harmonic functions for the elliptic cone. Proceedings of the London Mathematical Society, 23: 231–240, 1892 Google Scholar.
[182] E.W., Hobson. On the evaluation of a certain surface-integral, and its application to the expansion, in series, of the potential of ellipsoids. Proceedings of the London Mathematical Society, 24: 80–96, 1893 Google Scholar.
[183] E.W., Hobson. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge: Cambridge University Press, 1931 Google Scholar.
[184] B.K. P., Horn. Robot Vision. Cambridge, MA: MIT Press, 1986 Google Scholar.
[185] J.H., Huang and W-S., Kuo. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. Journal of Applied Physics, 81: 1378–1386, 1997 Google Scholar.
[186] E. L., Ince. On the connection between linear differential systems and integral equations. Proceedings of the Royal Society of Edinburgh, 42: 43–53, 1922 Google Scholar.
[187] A., Irimia. Electricfield and potential calculation for a bioelectric current dipole in an ellipsoid. Journal of Physics A: Mathematical and General, 38: 8123–8138, 2005 Google Scholar.
[188] A., Irimia. Calculation of the magneticfield due to a bioelectric current dipole in an ellipsoid. Applications of Mathematics, 2: 131–142, 2008 Google Scholar.
[189] A., Irimia and L.A., Bradshaw. Ellipsoidal electrogastrographic forward modelling. Physics in Medicine and Biology, 50: 4429–4444, 2005 Google Scholar.
[190] A., Irimia and L.A., Bradshaw. Theoretical ellipsoidal model of gastric electrical control activity propagation. Physical Review E, 68:051905-1–051905-5, 2003 Google Scholar.
[191] P., Ivanov. On Lamé's equation of a particular kind. Journal of Physics A: Mathematical and General, 34: 8145–8150, 2001 Google Scholar.
[192] G., Jäger. Über das elektrische Feld eines ellipsoidischen Leiters. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe, Abtheilung 2a, Wien, 110: 449–453, 1901 Google Scholar.
[193] G. B., Jeffery. The motion of ellipsoidal particles immersed in a viscousfluid, Proceeding of the Royal Society A, 102: 161–179, 1922 Google Scholar.
[194] C., Jekeli. The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscripta Geodaetica, 13: 106–113, 1988 Google Scholar.
[195] P. F., Jones and B.D., Sleeman. Mathematical modelling of avascular and vascular tumor growth. In A., Charalambopoulos, D. I., Fotiadis, and D., Polyzos, editors, Advanced Topics in Scattering and Biomedical Engineering, 2008 Google Scholar.
[196] R. C., Jones. A generalization of the dielectric ellipsoid problem. Physical Review, 68: 93–96, 1945 Google Scholar.
[197] E.G., Kalnins, J.M., Kress, and W., Miller. Jacobi, ellipsoidal coordinates and superintegrable systems. Journal of Nonlinear Mathematical Physics, 12: 209–229, 2005 Google Scholar.
[198] F., Kariotou. Electroencephalography in ellipsoidal geometry. Journal of Mathematical Analysis and its Applications, 290: 324–342, 2004 Google Scholar.
[199] J. B., Keller. Inverse problems. American Mathematical Monthly, 83: 107–118, 1976 Google Scholar.
[200] J. B., Keller, R. E., Kleinman, and T. B.A., Senior. Dipole moments in Rayleigh scattering. Journal of the Institute of Mathematics and its Applications, 9: 14–22, 1972 Google Scholar.
[201] O.D., Kellogg. Foundations of Potential Theory. New York: Dover, 1954 Google Scholar.
[202] M., Kerker. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969 Google Scholar.
[203] M., Kerker. Invisible bodies. Journal of the Optical Society of America, 65: 376–379, 1975 Google Scholar.
[204] D., Khavinson. Cauchy's problem for harmonic functions with entire data on a sphere. Canadian Mathematical Bulletin, 40: 60–66, 1997 Google Scholar.
[205] S., Kim and P.V., Arunachalam. The general solution for an ellipsoid in low-Reynolds numberflow. Journal of Fluid Mechanics, 178: 535–547, 1987 Google Scholar.
[206] S., Kim and S. S., Karrila. Microhydrodynamics: Principles and Selected Applications. Boston, MA: Butterworth-Heinemann, 1991 Google Scholar.
[207] L.V., King. On the Direct Numerical Calculations of Elliptic Functions and Integrals. Cambridge: Cambridge University Press, 1924 Google Scholar.
[208] K., Kiriaki. Low-frequency expansions for a penetrable ellipsoidal scatterer in an elastic medium. Journal of Engineering Mathematics, 23: 295–314, 1989 Google Scholar.
[209] K., Kiriaki and C., Athanasiadis. Low-frequency scattering by an ellipsoidal dielectric with a confocal ellipsoidal perfect conductor core. Mathematica Balkanica, 3: 370–389, 1989 Google Scholar.
[210] K., Kiriaki and V., Kostopoulos. The ellipsoidal cavity in the presence of a low-frequency thermoelastic wave. In R. E., Kleinman et al., editor, SIAM Conference in Mathematical and Numerical Aspects of Wave Propagation, pp. 286–295, 1993 Google Scholar.
[211] M. S., Klamkin. Elementary approximations to the area of N-dimensional ellipsoids. American Mathematical Monthly, 78: 280–283, 1971 Google Scholar.
[212] M. S., Klamkin. Correction to “Elementary approximations to the area of N-dimensional ellipsoids.”American Mathematical Monthly, 78: 478, 1971 Google Scholar.
[213] F., Klein. Über Lamé'sche Functionen. Mathematische Annalen, 18: 237–246, 1881 Google Scholar.
[214] F., Klein. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, 2nd edn. London: Kegan Paul, Trench, Trubner and Company, 1913 Google Scholar.
[215] R. E., Kleinman. The Rayleigh region. Proceedings of the IEEE, 53: 848–856, 1965 Google Scholar.
[216] R. E., Kleinman and T. B.A., Senior. Rayleigh scattering. In V.K., Varadan and V. V., Varadan, editors, Low and High Frequency Asymptotics, pp. 1–70. Amsterdam: North-Holland, 1986 Google Scholar.
[217] J., Korringa, I-H., Lin, and R. L., Mills. General theorems about homogeneous ellipsoidal inclusions. Americal Journal of Physics, 46: 517–521, 1978 Google Scholar.
[218] K., Krienes. The elliptic wing based on the potential theory. National Advisory Committee for Aeronautics, Report No. 971, 1941 Google Scholar.
[219] V.D., Kupradze. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Amsterdam: North-Holland, 1979 Google Scholar.
[220] A., Kurzhanski and I., Vályi. Ellipsoidal Calculus for Estimation and Control. Basel, MJ: Birkhäuser, 1997 Google Scholar.
[221] A, Lakhtakia. Polarizability dyadics of small chiral ellipsoids. Chemical Physics Letters, 174: 583–586, 1990 Google Scholar.
[222] H., Lamb. Hydrodynamics. New York: Dover, 1945 Google Scholar.
[223] M.G., Lamé. Sur les surfaces isothermes dans les corps solides homogènes en équilibre de température. Journal de Mathématiques Pures et Appliquées, 2: 147–183, 1837 Google Scholar.
[224] M.G., Lamé. Sur l'équilibre des temperatures dans un ellipsoïde à trois axes inégaux. Journal de Mathématiques Pures et Appliquées, 4: 126–163, 1839 Google Scholar.
[225] M.G., Lamé. La méthode de recherche des surfaces isothermes. Journal de Mathématiques Pures et Appliquées, 8: 515–520, 1843 Google Scholar.
[226] M.G., Lamé. Sur les surfaces orthogonales et isothermes. Journal de Mathématiques Pures et Appliquées, 8: 397–434, 1843 Google Scholar.
[227] M.G., Lamé. Leçons sur les Fonctions Inverses des Transcendantes et les Surfaces Isothermes. Paris: Mallet-Bachelier, 1857 Google Scholar.
[228] M.G., Lamé. Leçons sur les Coordonnées Curvilignes et Leurs Diverses Applications. Paris: Mallet-Bachelier, 1859 Google Scholar.
[229] L.D., Landau and E.M., Lifshitz. Electrodynamics of Continuous Media. London: Pergamon Press, 1960 Google Scholar.
[230] P. S., Laplace. Théorie des Attractions des Sphéroïdes et de la Figure des Planètes, Volume III, Paris: Mechanique Celeste, 1785 Google Scholar.
[231] J., Leblond, C., Paduret, S., Rigat, and M., Zghal. Sources localization in ellipsoids by best meromorphic approximation in planar sections. Inverse Problems, 24:035017(20pp), 2008 Google Scholar.
[232] N. R., Lebovitz. The mathematical development of the classical ellipsoid. International Journal of Engineering Science, 36: 1407–1420, 1998 Google Scholar.
[233] A-M., Legendre. Recherches sur l'attraction des sphéroïdes homogènes. Mémoires de Mathématiques et de Physique, présentés à l'Académie des Sciences (Paris), 10: 411–435, 1785 Google Scholar.
[234] D.H., Lehmer. Approximations to the area of an n-dimensional ellipsoid. Canadian Journal of Mathematics, 2: 267–282, 1950 Google Scholar.
[235] I.V., Lindell. Electrostatic image theory for the dielectric sphere. Radio Science, 27: 1–8, 1992 Google Scholar.
[236] F., Lindemann. Entwicklung der Functionen einer complexen Variabeln nach Lamé'schen Functionen und nach Zugeordneten der Kugelfunctionen. Mathematische Annalen, 19: 323–386, 1882 Google Scholar.
[237] J., Liouville. Sur diverses questions d'analyse et de physique mathématique. Journal de Mathématiques Pures et Appliquées, 10: 222–228, 1845 Google Scholar.
[238] J., Liouville. Sur diverses questions d'analyse et de physique mathématique concernant l'ellipsoïde. Journal de Mathématiques Pures et Appliquées, 11: 217–236, 1846 Google Scholar.
[239] J., Liouville. Sur une transformation de l'équation. Journal de Mathématiques Pures et Appliquées, 11: 458–461, 1846 Google Scholar.
[240] J., Liouville. Des lignes de courbure de la surface de l'Ellipsoïde. In G., Monge, editor, Application de L'Analyse à la Géométrie, pp. 139–160. Paris: Bachelier, 1850 Google Scholar.
[241] J. S., Lomont and J., Brillhart. Elliptic Polynomials. New York: Chapman and Hall, 2001 Google Scholar.
[242] A. E.H., Love. A Treatise of the Mathematical Theory of Elasticity. Toronto: Dover, 1944 Google Scholar.
[243] R. J., Lucas. An inverse problemin low-frequency scattering by a rigid ellipsoid. Journal of the Acoustical Society of America, 95: 2330–2333, 1994 Google Scholar.
[244] A. L., Lur'eThree-dimensional Problems of the Theory of Elasticity. New York: Interscience, 1964 Google Scholar.
[245] W.D., MacMillan. The Theory of the Potential. New York: Dover, 1958 Google Scholar.
[246] W., Magnus, F., Oberhettinger, and R. P., Soni. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. New York: Springer-Verlag, 1966 Google Scholar.
[247] S. F., Mahmoud and J. R., Wair. Magnetic response of a hollow ellipsoid. IEEE Antennas and Propagation Magazine, 41: 7–12, 1999 Google Scholar.
[248] A., Majda. High-frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering. Communications in Pure and Applied Mathematics, 29: 261–291, 1976 Google Scholar.
[249] A., Majda. A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Communications in Pure and Applied Mathematics, 30: 165–194, 1977 Google Scholar.
[250] J., Malmivuo and R., Plonsey. Bioelectromagnetism. New York: Oxford University Press, 1995 Google Scholar.
[251] E., Martensen. A spectral property of the electrostatic integral operator. Journal of Mathematical Analysis and Applications, 238: 551–557, 1999 Google Scholar.
[252] H., Massoudi, C.H., Durney, and C.C., Johnson. Comparison of the average specific absorption rate in the ellipsoidal conductor and dielectric models of humans and monkeys at radio frequencies. Radio Science, 12: 65–72, 1977 Google Scholar.
[253] H., Massoudi, C.H., Durney, and C. C., Johnson. Long-wavelength analysis of plane wave irradiation of an ellipsoidal model of man. IEEE Transactions on Microwave Theory and Techniques, 25: 41–46, 1977 Google Scholar.
[254] J. C, Maxwell. A Treatise on Electricity and Magnetism, Volume I. Oxford: Clarendon Press, 1891 Google Scholar.
[255] J. C, Maxwell. A Treatise on Electricity and Magnetism, Volume II. Oxford: Clarendon Press, 1891 Google Scholar.
[256] T.M., Michelitsch, H., Gao, and V.M., Levin. Dynamic Eshelby tensor and potentials for ellipsoidal inclusions. Proceedings of the Royal Society of London A, 459: 863–890, 2002 Google Scholar.
[257] T.M., Michelitsch, H., Gao, and V.M., Levin. On the dynamic potential of ellipsoidal shells. Quarterly Journal of Mechanics and Applied Mathematics, 56: 629–648, 2003 Google Scholar.
[258] L.M., Milne-Thomson. Theoretical Hydrodynamics, 5th edn. London: MacMillan, 1968 Google Scholar.
[259] T., Miloh. The ultimate image singularities for external ellipsoidal harmonics. SIAM Journal of Applied Mathematics, 26: 334–344, 1974 Google Scholar.
[260] T., Miloh. A generalized self-consistent method for the effective conductivity of composites with ellipsoidal inclusions and cracked bodies. Journal of Applied Physics, 63: 789–796, 1988 Google Scholar.
[261] T., Miloh. A note on the potential of a heterogeneous ellipsoid in ellipsoidal coordinates. Journal of Physics A: Mathematical and General, 23: 581–584, 1990 Google Scholar.
[262] T., Miloh and Y., Beneveniste. On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proceedings of the Royal Society of London A, 455: 2687–2706, 1999 Google Scholar.
[263] D., Ming-de. New method of solving Lamé–Helmholtz equation and ellipsoidal wave functions. Applied Mathematics and Mechanics, 5: 1151–1162, 1984 Google Scholar.
[264] F., Möglich. Beugungserscheinungen an Körpern von ellipsoidischer Gestalt. Annalen der Physik, 83: 609–734, 1927 Google Scholar.
[265] P., Moon and D. E., Spencer. Field Theory Handbook. Berlin: Springer-Verlag, 1961 Google Scholar.
[266] P.M., Morse and H., Feshbach. Methods of Theoretical Physics, Volume I. New York: McGraw-Hill, 1953 Google Scholar.
[267] P.M., Morse and H., Feshbach. Methods of Theoretical Physics, Volume II. New York: McGraw-Hill, 1953 Google Scholar.
[268] J-C., Nédélec. Acoustic and Electromagnetic Equations. New York: Springer-Verlag, 2001 Google Scholar.
[269] L., Nireberg and H. F., Walker. The null space of elliptic partial differential operators in ℝn. Journal of Mathematical Analysis and Applications, 42: 271–301, 1973 Google Scholar.
[270] W.D., Niven. On ellipsoidal harmonics. Philosophical Transactions of the Royal Society of London A., 182: 231–278, 1891 Google Scholar.
[271] P. L., Nunez and R., Srinivasan. Electric Fields of the Brain: The Neurophysics of EEG, 2nd edn. New York: Oxford University Press, 2006 Google Scholar.
[272] A., Oberbeck. Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der innerem Reibung. Journal für die Reine und Angewandte Mathematik, 62–80, 1876 Google Scholar.
[273] F.W. J., Olver, D.W., Lozier, R. F., Boisvert, and C.W., Clark. NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press, 2009 Google Scholar.
[274] B., O'Neill. Elementary Differential Geometry. New York: Academic Press, 1997 Google Scholar.
[275] J.A., Osborn. Demagnetizing factors of the general ellipsoid. Physical Review, 67: 351–357, 1945 Google Scholar.
[276] T. F., Pankratova. Eigenfunctions of the Laplace operator on the surface of a triaxial ellipsoid and in the region exterior to it. In L.O., Nauka, editor, Mathematical Problems in the Theory of Wave Propagation. Serial Zap. Nauchn. Sem. LOMI, pp. 192–211, 1968 Google Scholar.
[277] J.W., Perram and P. J., Stiles. On the application of ellipsoidal harmonics to potential problems in molecular electrostatics and magnetostatics. Proceedings of the Royal Society of London, A, 349: 125–139, 1976 Google Scholar.
[278] G., Perrusson, A., Charalambopoulos, B., Bourgeois, D., Lesselier, M., Lambert, and G., Dassios. The localized nonlinear approximation: a good recipe for low contrast ellipsoidal bodies. In 61st Conference of the European Association of Geoscientists and Engineers, pp. 2–10, 1999 Google Scholar.
[279] G., Perrusson, M., Lambert, D., Lesselier, A., Charalambopoulos, and G., Dassios. Electromagnetic scattering by a triaxial homogeneous penetrable ellipsoid: low-frequency derivation and testing of the localized nonlinear approximation. Radio Science, 35: 463–481, 2000 Google Scholar.
[280] G., Perrusson, D., Lesselier, M., Lambert, B., Bourgeois, A., Charalambopoulos, and G., Dassios. Conductive masses in a half-space Earth in the diffusive regime: fast hybrid modeling of a low-contrast ellipsoid. IEEE Transactions on Geoscience and Remote Sensing, 38: 1585–1599, 2000 Google Scholar.
[281] G., Perrusson, D., Lesselier, P., Vafeas, and G., Dassios. Low frequency models and characterization of an ellipsoidal body in the context of Earth's exploration. In Progress in Electromagnetics Research Symposium, pp. 337, 2002 Google Scholar.
[282] G., Perrusson, P., Vafeas, and D., Lesselier. Low-frequency dipolar excitation of a perfect ellipsoidal conductor. Quarterly of Applied Mathematics, 68: 513–536, 2010 Google Scholar.
[283] F. B., Pidduck. The energy and momentum of an ellipsoidal electron. Proceedings of the London Mathematical Society B, 7: 90–100, 1908 Google Scholar.
[284] R., Plonsey and D. B., Heppner. Considerations of quasi-stationarity in electrophysiological systems. Bulletin of Mathematical Biophysics, 29: 657–664, 1967 Google Scholar.
[285] G., Pólya. Approximations to the area of the ellipsoid. Publications of the Institute of Mathematical Rozario, 5: 209–219, 1943 Google Scholar.
[286] G., Pólya and G., Szegö. Isoperimetric Inequalities in Mathematical Physics. Princeton, NJ: Princeton University Press, 1951 Google Scholar.
[287] Lord, Rayleigh. On the incidence of aerial and electric waves upon small obstacles in the form of ellipsoids or elliptic cylinders and on the passage of electric waves through a circular aperture in a conducting screen. Philosophical Magazine, 44: 28–52, 1897 Google Scholar.
[288] Lord, Rayleigh. The ultimate shape of pebbles, natural and artificial. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 181: 107–118, 1942 Google Scholar.
[289] Lord, Rayleigh. The Theory of Sound I. Toronto: Dover, 1945 Google Scholar.
[290] Lord, Rayleigh. The Theory of Sound II. Toronto: Dover, 1945 Google Scholar.
[291] S., Ritter. The spectrum of the electrostatic integral operator for an ellipsoid. In R. E., Kleinman, R., Kress, and E., Martensen, editors, Inverse Scattering and Potential Problems in Mathematical Physics, pp. 157–167, 1993 Google Scholar.
[292] S., Ritter. A sum-property of the eigenvalues of the electrostatic integral operator. Journal of Mathematical Analysis and Applications, 196: 120–134, 1995 Google Scholar.
[293] S., Ritter. On the magnetostatic integral operator for ellipsoids. Journal of Mathematical Analysis and Applications, 207: 12–28, 1997 Google Scholar.
[294] S., Ritter. On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Journal of Applied Mathematics and Mechanics (ZAMM), 78: 66–72, 1998 Google Scholar.
[295] S., Ritter. The null field method for the ellipsoidal Stokes problem. Journal of Geodesy, 72: 101–106, 1998 Google Scholar.
[296] I., Rivin. Surface area and other measures of ellipsoids. Advances in Applied Mathematics, 39: 409–427, 2007 Google Scholar.
[297] P.H., Roberts. On the superpotential and supermatrix of a heterogeneous ellipsoid. The Astrophysical Journal, 136: 1108–1114, 1962 Google Scholar.
[298] T., Roose, S. J., Chapman, and P.K., Maini. Mathematical Models of Avascular Tumor Growth. SIAM Review, 49: 179–208, 2007 Google Scholar.
[299] G., Salmon. A Treatise on the Analytic Geometry of Three Dimensions, Volume I, 6th edn. London: Longmans, Green and Company, 1914 Google Scholar.
[300] G., Salmon. A Treatise on the Analytic Geometry of Three Dimensions, Volume II, 5th edn. London: Longmans, Green and Company, 1915 Google Scholar.
[301] J., Sarvas. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problems. Physics in Medicine and Biology, 32: 11–22, 1987 Google Scholar.
[302] D., Schmidt and G., Wolf. A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM Journal on Applied Mathematics, 10: 823–838, 1979 Google Scholar.
[303] J. B., Schneider and I. C., Peden. Differential cross-section of a dielectric ellipsoid by the T-Matrix extended boundary condition method. IEEE Transactions on Antennas and Propagation, 36: 1317–1321, 1988 Google Scholar.
[304] H., Schultheis and R., Schultheis. Electrostatic or gravitational interaction energy of coaxial ellipsoids. Journal of Mathematical Physics, 16: 905–909, 1975 Google Scholar.
[305] J. R. T., Seddon and T., Mullin. The motion of a prolate ellipsoid in a rotating Stokes flow. Journal of Fluid Mechanics, 583: 123–132, 2007 Google Scholar.
[306] T. B. A., Senior. Low-frequency scattering. Journal of the Acoustical Society of America, 53: 742–747, 1973 Google Scholar.
[307] H., Shahgholian. On the Newtonian potential of a heterogeneous ellipsoid. SIAM Journal of Mathematical Analysis, 22: 1246–1255, 1991 Google Scholar.
[308] R., Shail. Lamé polynomial solutions to some elliptic crack and punch problems. International Journal of Engineering Science, 16: 551–563, 1978 Google Scholar.
[309] R., Shail. An integral representation for Lamé and other special functions. SIAM Journal on Mathematical Analysis, 11: 702–723, 1980 Google Scholar.
[310] J. L., Sharma. On expansions in Lamé's functions and their applications to the evaluation of certain definite integrals. Bulletin of the Calcutta Mathematical Society, 24: 61–78, 1932 Google Scholar.
[311] J. L., Sharma. On Lamé's functions with complex parameters. Bulletin of the Calcutta Mathematical Society, 24: 143–158, 1932 Google Scholar.
[312] J. L., Sharma. An integral equation satisfied by the Lamé's functions. Journal de Mathématiques, 16: 199–204, 1937 Google Scholar.
[313] A.V., Shatilov. On the scattering of light by dielectric ellipsoids comparable with the wavelength. I. A general expression for the indicatrix of scattering of an ellipsoidal particle. Optics and Spectroscopy, 9: 44–47, 1960 Google Scholar.
[314] A.V., Shatilov. On the scattering of light by dielectric ellipsoids comparable with the wavelength. II. Dependence of the indicatrix of the scattering on the size, form, and orientation of the ellipsoid. The scattering coefficient. Optics and Spectroscopy, 9: 123–127, 1960 Google Scholar.
[315] N. T., Shawgfeh and A.D., Alawneh. The low-frequency acoustic scattering by a soft ellipsoid. Dirasat, Series B: Pure and Applied Sciences, 17: 38–50, 1990 Google Scholar.
[316] A.D., Shine and R. C., Armstrong. The rotation of a suspended axisymmetric ellipsoid in a magnetic field, Rheologica Acta, 26: 152–161, 1987 Google Scholar.
[317] B.D., Sleeman. The low-frequency scalar diffraction by an elliptic disc. Proceedings of the Cambridge Philosophical Society, 63: 1273–1280, 1967 Google Scholar.
[318] B.D., Sleeman. The low-frequency scalar Dirichlet scattering by a general ellipsoid. Journal of the Institute of Mathematics and its Applications, 3: 291–312, 1967 Google Scholar.
[319] B.D., Sleeman. The scalar scattering of a plane wave by an ellipsoid. Journal of the Institute of Mathematics and its Applications, 3: 4–15, 1967 Google Scholar.
[320] B.D., Sleeman. The low-frequency scalar Dirichlet scattering by a general ellipsoid. (Corrigendum). Journal of the Institute of Mathematics and its Applications, 5, 1969 Google Scholar.
[321] B.D., Sleeman. The low-frequency scalar diffraction by an elliptic disc. (Corrigendum). Proceedings of the Cambridge Philosophical Society, 68: 171–172, 1970 Google Scholar.
[322] W. R., Smythe. Static and Dynamic Electricity. New York: McGraw-Hill, 1939 Google Scholar.
[323] G., Sona. Numerical problems in the computation of ellipsoidal harmonics. Journal of Geodesy, 70: 117–126, 1995 Google Scholar.
[324] H. J., Sperling. The expansion of the potential of a homogeneous ellipsoid in a series of tesseral harmonics. Journal of Applied Mathematics and Physics (ZAMP), 18: 876–883, 1967 Google Scholar.
[325] J. C.-E., Sten. Ellipsoidal harmonics and their application in electrostatics. Journal of Electrostatics, 64: 647–654, 2006 Google Scholar.
[326] A. F., Stevenson. Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer)/wavelength. Journal of Applied Physics, 24: 1134–1142, 1953 Google Scholar.
[327] A. F., Stevenson. Electromagnetic scattering by an ellipsoid in the third approximation. Journal of Applied Physics, 24: 1143–1151, 1953 Google Scholar.
[328] T. J., Stieltjes. Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé. Acta Mathematica, 6: 321–326, 1885 Google Scholar.
[329] J.A., Stratton. Electromagnetic Theory. New York: McGraw-Hill, 1941 Google Scholar.
[330] D. J., Struik. Lectures on Classical Differential Geometry. Cambridge, MA: Addison-Wesley, 1950 Google Scholar.
[331] W. S., Synder, M. R., Ford, G.G., Warner, and H. L., Fisher Jr., Estimates of absorbed fractions for nonenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Journal of Nuclear Medicine, 10: Pamphlet No.5, 1969, Revised 1978 Google Scholar.
[332] M. B., Tabanov. A new trigonometric form of the ellipsoidal coordinates and the splitting of the eigenvalues of the Laplace operator in an ellipsoid with “inner boundaries.”Saint Petersburg Mathematical Journal, 7: 847–868, 1996 Google Scholar.
[333] M. B., Tabanov. New ellipsoidal confocal coordinates and geodesics on an ellipsoid. Journal of Mathematical Sciences, 82: 3851–3858, 1996 Google Scholar.
[334] M. B., Tabanov. Veidel assonance between geodesics on ellipsoid and billiard in its focal ellipse. Journal of Geometry and Physics, 19: 399–413, 1996 Google Scholar.
[335] M. B., Tabanov. Normal forms of equations of wave functions in new natural ellipsoidal coordinates. American Mathematical Society. Translations, 193: 225–238, 1999 Google Scholar.
[336] K., Tanaka. Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2: 199–200, 1972 Google Scholar.
[337] W., Thomson (Lord Kelvin). Extrait d'une lettre de M. William Thomson (reported by A.M. Liouville). Journal de Mathématiques Pures et Appliquées, 10: 364–367, 1845 Google Scholar.
[338] W., Thomson (Lord Kelvin). Extraits de deux lettres adressées à M. Liouville. Journal de Mathématiques Pures et Appliquées, 12: 256–264, 1847 Google Scholar.
[339] W., Thomson (Lord Kelvin). Reprint of Papers on Electrostatics and Magnetism, chapter XV. Determination of the distribution of electricity on a circular segment of plane or spherical conducting surface, under any given influence, pp. 178–191. London: MacMillan, 1872 Google Scholar.
[340] W., Thomson (Lord Kelvin) and P.G., Tait. Elements of Natural Philosophy. New York: American Home Library Company, 1879 Google Scholar.
[341] E. C., Titchmarsh. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Oxford: Oxford University Press, 1946 Google Scholar.
[342] E. C., Titchmarsh. Eigenfunction Expansions Associated with Second-Order Differential Equations. Part II. Oxford: Oxford University Press, 1958 Google Scholar.
[343] I., Todhunter. An Elementary Treatise on Laplace's Functions, Lamé's Functions, and Bessel's Functions. London: MacMillan, 1875 Google Scholar.
[344] F.G., Tricomi. Integral Equation. New York: John Wiley, 1957 Google Scholar.
[345] P., Vafeas and G., Dassios. Stokes flow in ellipsoidal geometry. Journal of Mathematical Physics, 47: 1–38, 2006 Google Scholar.
[346] H., Volkmer. Integral equations for Lamé functions. SIAM Journal on Mathematical Analysis, 13: 978–987, 1982 Google Scholar.
[347] H., Volkmer. Integral representations for products of Lamé functions by use of fundamental solutions. SIAM Journal on Mathematical Analysis, 15: 559–569, 1984 Google Scholar.
[348] H., Volkmer. External ellipsoidal harmonics for the Dunkl–Laplacian. Symmetry, Integrability and Geometry: Methods and Applications, 4: 091, 1–13, 2008 Google Scholar.
[349] Z.X., Wang and D. R., Guo. Special Functions. Singapore: World Scientific, 1989 Google Scholar.
[350] C. E., Weatherburn. Differential Geometry of Three Dimensions, Volume I. Cambridge: Cambridge University Press, 1927 Google Scholar.
[351] C. E., Weatherburn. Differential Geometry of Three Dimensions, Volume II. Cambridge: Cambridge University Press, 1930 Google Scholar.
[352] C. E., Weatherburn. Advanced Vector Analysis with Applications to Mathematical Physics, 7th edn. London: Bell and Sons, 1947 Google Scholar.
[353] C. E., Weatherburn. Elementary Vector Analysis with Applications to Geometry and Physics, 8th edn. London: Bell and Sons, 1948 Google Scholar.
[354] P., Weiss. On hydrodynamical images: arbitrary irrotational flow disturbed by a sphere. Proceedings of the Cambridge Philosophical Society, 40: 259–261, 1944 Google Scholar.
[355] P., Weiss. Applications of Kelvin's transformation in electricity, magnetism and hydrodynamics. Philosophical Magazine, 38: 200–214, 1947 Google Scholar.
[356] E. T., Whittaker. On the partial differential equations of mathematical physics. Mathematische Annalen, 57: 333–355, 1903 Google Scholar.
[357] E. T., Whittaker. On Lamé's differential equation and ellipsoidal harmonics. Proceedings of the London Mathematical Society, 14-Second Series: 260–268, 1914 Google Scholar.
[358] E. T., Whittaker. On an integral-equation whose solutions are the functions of Lamé. Proceedings of the Royal Society of Edinburgh, 35: 70–77, 1915 Google Scholar.
[359] E. T., Whittaker and G.N., Watson. A Course of Modern Analysis, 3rd edn. Cambridge: Cambridge University Press, 1920 Google Scholar.
[360] W. E., Williams. Some results for low-frequency Dirichlet scattering by arbitrary obstacles and their application to the particular case of the ellipsoid. Journal of the Institute of Mathematics and its Applications, 7: 111–118, 1971 Google Scholar.
[361] A., Zettl. Sturm–Liouville Theory, Volume 121 of Mathematical Surveys and Monographs. American Mathematical Society, 2005 Google Scholar.
[362] R.W., Zimmerman. Effective conductivity of a two-dimensional medium containing elliptical inhomogeneities. Proceedings of the Royal Society of London A, 452: 1713–1727, 1996 Google Scholar.
[363] R.D., Zucker. Interpretation of the singularities in Lamé products of the second kind. SIAM Journal of Applied Mathematics, 16: 882–887, 1968 Google Scholar.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.