Skip to main content Accessibility help
×
  • Cited by 38
Publisher:
Cambridge University Press
Online publication date:
February 2013
Print publication year:
2012
Online ISBN:
9781139088428

Book description

Various modeling methodologies are available to aid planning and operational decision making: this book synthesises these, with an emphasis on methodologies applicable in data scarce regions, such as developing countries. Problems included in each chapter, and supported by links to available online data sets and modeling tools, engage the reader with practical applications of the models. Academic researchers in the fields of hydrology, climate change, and environmental science and hazards, and professionals and policy-makers working in hazard mitigation, remote sensing and hydrological engineering will find this an invaluable resource. This volume is the second in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Extreme Precipitation by Ramesh Teegavarapu, Floods in a Changing Climate: Inundation Modelling by Giuliano Di Baldassarre and Floods in a Changing Climate: Risk Management by Slodoban P. Simonović.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Abbott, M. B., Bathurst, J. C., Cunge, J. A., OConnell, P. E., and Rasmussen, J. (1986a). An introduction to the European Hydrologic System–Système Hydrologique Européen, SHE, 1: History and philosophy of a physically-based, distributed modeling system. J. Hydrol., 87, 45–59.
Abbott, M. B., Bathurst, J. C., Cunge, J. A., OConnell, P. E., and Rasmussen, J. (1986b). An introduction to the European Hydrologic System–Système Hydrologique Européen, SHE, 2: Structure of a physically-based, distributed modeling system. J. Hydrol., 87, 61–77.
Ackerman, C. T. (2002). HEC-GeoRAS 3.1. US Army Corps of Engineers, Institute for Water Resources. Hydrologic Engineering Centre, Davis, Calif.
Adler, R. F., and Negri, A. J. (1988). Satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol., 27, 30–51.
Allison, E. W., Brown, R. J., Press, H., and Gairns, J. (1989). Monitoring drought affected vegetation with AVHRR. In Quantitative Remote Sensing: An Economic Tool for the Nineties, Proceedings IGRASS’89, IEEE, 1961–1965.
American Society of Photogrammetry (1975). Manual of Remote Sensing, Falls Church, Va.
Anandhi, A. (2007). Impact assessment of climate change on hydrometeorology of Indian river basin for IPCC SRES scenarios. PhD thesis, Indian Institute of Science, India.
Anandhi, A., Srinivas, V. V., Nanjundiah, R. S., and Kumar, D. N. (2008). Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int. J. Climatol., 28, 401–420.
Anandhi, A., Srinivas, V. V., Kumar, D. N., and Nanjundiah, R. S. (2009). Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. Int. J. Climatol., 29, 583–603.
Anderson, M., and Kavvas, M. L. (2002). A global hydrology model. In Mathematical Models of Watershed Hydrology, V. P. Singh and D. K. Frevert, eds., Littleton, Colo.: Water Resources Publications.
Andrews, W. H., Riley, J. P., and Masteller, M. B. (1978). Mathematical Modeling of a Sociological and Hydrological System. ISSR Research Monograph, Utah Water Research Laboratory, Utah State University, Logan, Utah.
Arnell, N. W. (1992). Factors controlling the effects of climate change on river flow regimes in a humid temperate environment. J. Hydrol., 132, 321–342.
Arnell, N. W. (1999a). A simple water balance model for the simulation of streamflow over a large geographic domain. J. Hydrol., 217, 314–335.
Arnell, N. W. (1999b). Climate change and global water resources. Global Environ. Change, 9, S31–S49.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). Large area hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. Assoc., 34(1), 73–89.
Aron, G., and Lakatos, D. F., (1980). Penn State Urban Runoff Model: Users Manual. Institute for Research on Land and Water Resources, Pennsylvania State University, University Park, Pa.
Arora, V. K., and Boer, G. J. (2001). Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res., 106, 3335–3348.
ASCE (2000a). Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology, I: Preliminary concepts. J. Hydrol. Eng., 5, 115–123.
ASCE (2000b). Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology, II: Hydrologic applications. J. Hydrol. Eng., 5, 124–137.
Asokan, S. M., and Dutta D. (2008). Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions. Hydrol Process., 22, 3589–3603.
Baguis, P., Boukhris, O., Ntegeka, V., et al. (2008). Climate Change Impact on Hydrological Extremes Along Rivers and Urban Drainage Systems. I. Literature Review. Belgian Science Policy: SSD Research Programme, Technical report CCI-HYDR project by K. U. Leuven, Hydraulics Section and Royal Meteorological Institute of Belgium, May 2008.
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W. (2004). A new flashiness index: characteristics and applications to Midwestern rivers and streams. J. Am. Water Res. Assoc., 40(2), 503–522.
Balakrishnan, P. (1987). Issues in Water Resources Development and Management and the Role of Remote Sensing. Report ISRO-NNRMS-TR-07–86, Indian Space Research Organization, Bangalore, India.
Bardossy, A., and Disse, M. (1993). Fuzzy rule-based models for infiltration. Water Resour. Res., 29(2): 373–382.
Bardossy, A., and Plate, E. J. (1992). Space-time model for daily rainfall using atmospheric circulation patterns. Water Resour. Res., 28(5), 1247–1259.
Bardossy, A., Duckstein, L., and Bogardi, I. (1995). Fuzzy rule-based classification of atmospheric circulation patterns. Int. J. Climatol., 15(10), 1087–1097.
Barret, E. C., and Martin, D. W. (1981). The Use of Satellite Data in Rainfall Monitoring. New York: Academic Press.
Bastiaanssen, W. G. M. (1998). Remote Sensing in Water Resources Management: The State of the Art. Colombo, Sri Lanka: International Water Management Institute, 118.
Bathurst, J. C., Wicks, J. M., and O’Connell, P. E. (1995). The SHE/SHESED basin scale water flow and sediment transport modeling system. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications, 563–594.
Beasley, D. B., Monke, E. J., and Huggins, L. F. (1977). ANSWERS: A Model for Watershed Planning. Purdue Agricultural Experimental Station Paper No. 7038, Purdue University, West Lafayette, Ind.
Becker, A., and Pfutzner, B. (1987). EGMO-system approach and subroutines for river basin modeling. Acta Hydrophysica, 31, 125–141.
Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J. (2007). Use of a grid-based hydrological model and regional climate model outputs to assess changing flood risk. Int. J. Climatol., 27, 1657–1671.
Benestad, R. E. (2001). A comparison between two empirical downscaling strategies. Int. J. Climatol., 21, 1645–1668.
Bergstrom, S. (1976). Development and Application of a Conceptual Runoff Model for Scandinavian Countries. SMHI Report No. 7, Norrkoping, Sweden.
Bergstrom, S. (1992). The HBV Model: Its Structure and Applications. SMHI Report No. 4, Norrkoping, Sweden.
Bergstrom, S. (1995). The HBV model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Beven, K. J. (1995). TOPMODEL. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Beven, K. J., and Kirkby, M. J. (1976). Toward a Simple Physically Based Variable Contributing Area of Catchment Hydrology. Working Paper No. 154, School of Geography, University of Leeds, UK.
Beven, K. J., and Kirkby, M. J. (1979). A physically-based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24(1), 43–69.
Beven, K. J., Calver, A., and Morris, E. (1987). The Institute of Hydrology Distributed Model. Institute of Hydrology Report No. 98, Wallingford, UK.
Bhanumurthy, V., Manjusree, P., Srinivasa Rao, G. (2010). Flood Disaster Management. In Remote Sensing Applications, P. S. Roy, R. S. Dwivedi, and D. Vijayan, eds., Hyderabad, India: National Remote Sensing Center.
Bhatt, C. M., Rao, G. S., Manjushree, P., and Bhanumurthy, V. (2010). Space based disaster management of 2008 Kosi floods, North Bihar, India. J. Indian Soc. Remote Sensing, 38, 99–108.
Bicknell, B. R., Imhoff, J. L., Kittle, J. L., Donigian, A. S., and Johanson, R. C. (1993). Hydrologic Simulation Program – Fortran: Users Manual for Release 10. US EPA Environmental Research Laboratory, Athens, Ga.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York: Oxford University Press.
Blanchard, B. J. (1974). Third ERTS 1 Symposium, NASA SP 351, 1-B, 1089–1098.
Bo, Z., Islam, S., and Eltahir, E. A. B. (1994). Aggregation-disaggregation properties of a stochastic rainfall model. Water Resour. Res., 30, 3423–3435.
Bobba, A. G., Bukata, R. P., and Jerome, J. H. (1992). Digitally processed satellite data as a tool in detecting potential groundwater flow systems. J. Hydrol. 131, 25–62.
Booij, M. J. (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. J. Hydrol., 303, 176–198.
Bonnici, A. M. (2006). Teaching and learning resources for web GIS and related technologies. Web GIS Development, www.webGISdev.com (accessed April 15, 2012).
Borah, D. K., and Bera, M. (2000). Hydrologic Modeling of the Court Creek Watershed. Contract Report No. 2000–04, Illinois State Water Survey, Champaign, Ill.
Borah, D. K., Bera, M., Shaw, S., and Keefer, L. (1999). Dynamic Modeling and Monitoring of Water, Sediment, Nutrients and Pesticides in Agricultural Watersheds During Storm Events. Contract Report No. 655, Illinois State Water Survey, Champaign, Ill.
Boughton, M. E. (1966). A mathematical model for relating runoff to rainfall with daily data. Civ. Eng. Trans. Inst. Eng. Aust., CE8(1), 83–97.
Bouraoui, F., Braud, I., and Dillaha, T. A. (2002). ANSWERS: A nonpoint source pollution model for water, sediment and nutrient losses. In Mathematical Models of Small Watershed Hydrology and Applications, V. P. Singh and D. K. Frevert, eds., Littleton, Colo.: Water Resources Publications.
Boyd, M. J., Pilgrim, D. H., and Cordery, I. (1979). A Watershed Bounded Network Model for Flood Estimation: Computer Programs and User Guide. Water Research Laboratory Report No. 154, University of New South Wales, Sydney, Australia.
Boyd, M. J., Rigby, E. H., and van Drie, R. (1996). WBNM: a comprehensive flood model for natural and urban catchments. Proceedings 7th International Conference on Urban Drainage, Institution of Engineers, Sydney, Australia, 329–334.
Braun, J., and Sambridge, M. (1997). Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Res., 9, 27–52.
Buchanan, M. D. (1979). Effective utilisation of colour in multidimensional data presentation. Proc. Soc. Photo-Opt. Eng., 199, 9–19.
Burnash, R. J. C. (1975). The NWS river forecast systemcatchment modeling. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Burnash, R. J. C., Ferral, R. L., and McGuire, R. A. (1973). A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers. Report, US Department of Commerce, National Weather Service, Silver Springs, Md., and State of California, Department of Water Resources, Sacramento, Calif.
Burrough, P. A. (1986). Principles of Geographical Information Systems for Land Resources Assessment. Oxford, UK: Oxford University Press.
Bussieres, N., Louie P. Y. T., and Hogg, W. (1989). Implementation of an Algorithm to Estimate Regional Evapotranspiration Using Satellite Data. Canadian Climate Centre, Downsview.
Calver, A., and Wood, W. L. (1995). The Institute of Hydrology distributed model. In Computer Models of Watershed Hydrohydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Camorani, G., Castellarin, A., and Brath, A. (2005). Effects of land-use changes on the hydrologic response of reclamation system. Phys. Chem. Earth, 30, 561–574.
Campbell, J.‐B. (1996). Introduction to Remote Sensing. New York: The Guilford Press, 622.
Carlson, D. H., and Thurow, T. L. (1992). SPUR-91: Workbook and User Guide. Texas Agricultural Experimental Station MP-1743, College Station, Tex.
Carlson, D. H., Thurow, T. L., and Wight, J. R. (1995). SPUR-91: Simulation of production and utilization of rangelands. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Carroll, T., and Baglio, J. (1989). Techniques for near real-time snow cover mapping using AVHRR satellite data. Poster paper at 57th Western Snow Conference, NOAA/NWS, Minneapolis, Minn.
Chandra, S., Sharma, K. P., and Kashyap, O. (1984). Watershed studies using simulation models for Upper Yamuna catchment. In Application of Remote Sensing Methods to Hydrology, University of Roorkee, India.
Chang, A. T. C., Foster, J. L., Hall, D. K., Rango, A., and Hartline, B. K. (1982). Snow water equivalent estimation by microwave radiometry. Cold Regions Res Technol., 5, 259–267.
Charles, S. P., Bates, B. C., Whetton, P. H., and Hughes, J. P. (1999), Validation of downscaling models for changed climate conditions: case study of southwestern Australia. Climate Res., 12, 1–14.
Charles, S. P., Bates, B. C., Smith, I. N., and Hughes, J. P. (2004). Statistical downscaling of daily precipitation from observed and modelled atmospheric fields. Hydrol. Proc., 18, 1373–1394.
Chaudhry, M. H. (1987). Open-Channel Flow. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
Chaudhry M. H. (1993). Open-Channel Flow. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
Chen, D. M., and Stow, D. (2002). The effect of training strategies on supervised classification at different spatial resolutions. Photogramm. Eng. Remote Sensing, 68(11), 1155–1161.
Chen, S.-H., Lin, Y.-H., Chang, L.-C., and Chang, F.-J. (2006). The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol. Process. 20, 1525–1540.
Chiew, F. H. S., and McMahon, T. A. (1994). Application of the daily rainfall-runoff model MODHYDROLOG to twenty eight Australian catchments. J. Hydrol., 153, 383–416.
Chiew, F. H. S., Peel, M. C., and Western, A. W. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In Mathematical Models of Small Watershed Hydrology and Applications, V. P. Singh and D. K. Frevert, eds., Littleton, Colo.: Water Resources Publications.
Choi, J. Y., Engel, B. A., Pandey, S., and Harbor, J. (2001). Web-based decision support system for evaluation of hydrological impact of urban sprawl. Proceedings ASAE Annual Meeting, Paper No. 012026, American Society for Agricultural Engineers, St. Joseph, Mich.
Chow, V. T. (1959). Open Channel Hydraulics. New York: McGraw Hill.
Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied Hydrology. New York: McGraw Hill.
Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., and Palmer, R. N. (2004). The effects of climate change on the hydrology and water resources of the Colorado river basin. Climatic Change, 62, 337–363.
Chu, H.-J. (2009). The Muskingum flood routing model using a neuro-fuzzy approach. KSCE J. Civil Eng., 13(5), 371–376.
Claps, P., and Laio, F. (2003). Can continuous streamflow data support flood frequency analysis? An alternative to the partial duration series approach. Water Resour. Res., 39(8), 1216, doi:10.1029/2002WR001868.
Clarke, R. T. (2007). Hydrological prediction in a non-stationary world. Hydrol. Earth Syst. Sci., 11(1), 408–414.
Conway, D., and Jones, P. D. (1998). The use of weather types and air flow indices for GCM downscaling. J. Hydrol., 212–213, 348–361.
Conway, D., Wilby, R. L., and Jones, P. D. (1996). Precipitation and air flow indices over the British Isles. Clim. Res., 7(2), 169–183.
Cordery, I., Mehrotra, R., Sharma, A., and Nazemosadat, M. J. (2004). Hydrological models in a non stationary environment. In Hydrology: Science & Practice for the 21st Century, Vol. I, H. Wheater, and C. Kirby, eds., London: British Hydrological Society, 103–107.
Crane, R. G., and Hewitson, B. C. (1998). Doubled CO2 precipitation changes for the Susquehanna basin: Down-scaling from the genesis general circulation model. Int. J. Climatol., 18(1), 65–76.
Crawford, N. H., and Linsley, R. K. (1966). Digital Simulation in Hydrology: Stanford Watershed Model IV. Technical Report No. 39, Stanford University, Palo Alto, Calif.
Croley, T. E. (1982). Great Lake Basins Runoff Modeling. NOAA Technical Memo No. EER GLERL-39, National Technical Information Service, Springfield, Va.
Croley, T. E. (1983). Lake Ontario Basin Runoff Modeling. NOAA Technical Memo No. ERL GLERL-43, Great Lakes Environmental Research Laboratory, Ann Arbor, Mich.
Cunge, J. A., Holly, F. M. Jr., and Verwey, A. (1980). Practical Aspects of Computational River Hydraulics. London: Pitman.
Dankers, R., Christensen, O. B., Feyen, L., Kalas, M., and de Roo, A. (2007). Evaluation of very high-resolution climate model data for simulating flood hazards in the Upper Danube Basin. J. Hydrol., 347(3–4), 319–331.
Dawdy, D. R., and O'Donnell, T. (1965). Mathematical models of catchment behavior. J. Hydraul. Div., Am. Soc. Civ. Eng., 91(HY4), 123–127.
Dawdy, D. R., Litchy, R. W., and Bergmann, J. M. (1970). Rainfall–Runoff Simulation Model for Estimation of Flood Peaks for Small Drainage Basins. USGS Open File Report, Washington, D.C.
Dawdy, D. R., Schaake, J. C., and Alley, W. M. (1978). Users Guide for Distributed Routing Rainfall-Runoff Model. USGS Water Resources Investigation Report No. 78–90, Gulf Coast Hydroscience Center, NSTL, Miss.
Deepashree Raje (2009). Hydrologic impacts of climate change: quantification of uncertainties. PhD thesis, Indian Institute of Science, India.
Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Statist., 28, 325–339.
Dessai, S. X. R. (2005). Robust adaptation decisions amid climate change uncertainties. PhD thesis, Tyndall Centre, University of East Anglia, UK, 283.
Di Luzio, M., Srinivasan, R., Arnold, J. G., and Neitsch, S. L. (2002). Soil and Water Assessment Tool. ArcView GIS Interface Manual: Version 2000. GSWRL Report 02–03, BRC Report 02–07, Texas Water Resources Institute TR-193, College Station, Tex., 346.
Dibike, Y. B., and Coulibaly, P. (2005). Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145–163.
Doan, J. H. (2000). Geospatial Hydrologic Modelling Extension HECGeoHMS. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center, Davis, Calif.
Döll, P., Kaspar, F., and Lehner, B. (2003). A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol., 270, 105–134.
Donald, J. R., Seglenieks, F. R., Soulis, E. D., Kouwen, N., and Mullins, D. W. (1992). Mapping of partial snow cover during melt season using c-band SAR imagery. Proceedings of 15th Canadian Symposium on Remote Sensing, Toronto, Canada,170–175.
Donald, J. R., Soulis, E. D., Thompson, N., and Malla, S. B. (1990). Using GOES visible data to extend snow course in southern Ontario. In Application of Remote Sensing in Hydrology, G. W. Kite and A. Wankiewicz, eds., Proceedings Symposium No. 5, NHRI, Saskatoon, Canada, 69–78.
Donigian, A. S., Beyerlein, D. C., Davis, H. H., and Crawford, N. H. (1977). Agricultural Runoff Management (ARM) Model Version II: Refinement and Testing. Report No. EPA-600/3–77-098, US EPA Environmental Research Laboratory, Athens, Ga.
Doty, B., and Kinter, J. I. (1993). The Grid Analysis and Display System (GrADS): a desktop tool for earth science visualization. American Geophysical Union 1993 Fall Meeting, San Fransico, Calif., 6–10 December.
Dousset, B. (1989). AVHRR derived cloudiness and surface temperature patterns over the Los Angeles area and their relationship to land use. In Quantitative Remote Sensing: An Economic Tool for the Nineties, Proceedings IGRASS’89, IEEE, 2132–2137.
Dugdale, G., Hardy, S., and Milford, J. R. (1991). Daily catchment rainfall estimated from Meteosat. Hydrol. Process., 5, 261–270.
Dunn, S. M. (1998). Large scale hydrological modelling using small scale processes. In Hydrology in a Changing Environment, Vol. 1, C. Kirby and H. S. Wheater, eds., Chichester, UK: Wiley & Sons.
Ehlers, M., Greenlee, D., Smith, T., and Star, J. (1991). Integration of remote sensing and GIS: Data and data access. Photogramm. Eng. Remote Sensing, 57(6), 669–675.
English, P., Richardson, P., Glover, M., Cresswell, H., and Gallant, J. (2004). Interpreting Airborne Geophysics as an Adjunct to Hydrogeological Investigations for Salinity Management: Honeysuckle Creek Catchment, Victoria. 18/04, CSIRO Land and Water, Australia.
ESA (2002). SMOS Mission Objectives and Scientific Requirements. http://esamultimedia.esa.int/docs/SMOS_MRD_V5.pdf.
ESA (2004). Soil Moisture Retrieval by a Future Space-Borne Earth Observation Mission. Report 14662/00/NL, University of Reading, Reading, UK.
Everett, D. (2001). Global precipitation measurement, satellites, orbits, and coverage. In Proceedings of IEEE Geoscience and Remote Sensing Symposium, IGARSS ‘02.
Ewen, J., Parkin, G., and O’Connell, P. E. (2000). SHETRAN: Distributed river basin flow and transport modeling system. J. Hydrol. Eng., 5(3), 250–258.
Fairchild, J., and Leymarie, P. (1991). Drainage networks from grid digital elevation models. Water Resour. Res., 3, 709–717.
Feldman, A. D. (1981). HEC models for water resources system simulation: Theory and experience. Adv. Hydrosci., 12, 297–423.
Follansbee, W. A. (1973). Estimation of Average Daily Rainfall from Satellite Cloud Photographs. NOAA Technical Memo NESS 44, NOAA, Washington, D.C..
Fortin, J. P., Turcotte, R., Massicotte, S., et al. (2001a). A distributed watershed model compatible with remote sensing and GIS data. I: Description of model. J. Hydrol. Eng., 6(2), 91–99.
Fortin, J. P., Turcotte, R., Massicotte, S., et al. (2001b). A distributed watershed model compatible with remote sensing and GIS data. II: Application to Chaudiere watershed. J. Hydrol. Eng., 6(2), 100–108.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27(12), 1547–1578.
Freeman, J. A., and Skapura, D. M. (1991). Neural Networks: Algorithms, Applications and Programming Techniques. Reading, Mass.: Addison-Wesley Publishing Co.
Frei, C., Schär, C., Lüthi, D., and Davies, H. C. (1998). Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25(9), 1431–1434.
Frere, M. H., Onstad, C. A., and Holtan, H. N. (1975). ACTMO, an Agricultural Chemical Transport Model. Report No. ARS-H-3, USDA, Washington, D.C.
Gangopadhyay, S., Clark, M., and Rajagopalan, B. (2005). Statistical downscaling using K-nearest neighbors. Water Resour. Res., 41, W02024, doi:10.1029/2004WR003444.
Gao, H., Tang, Q., Shi, X., et al. (2010). Water budget record from variable infiltration capacity (VIC) model. In Algorithm Theoretical Basis Document for Terrestrial Water Cycle Data Records (in review). (Available at http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/References.shtml, accessed 17 December 2011.)
Gelfand, A. E., Zhu, L., and Carlin, B. P. (2000). On the change of support problem for spatio-temporal data. Biostatistics, 2(1), 31–45, doi:10.1093/biostatistics/2.1.31.
Georgakakos, K. P., Sperfslage, J. A., Tsintikidis, D., et al. (1999). Design and Tests of an integrated Hydrometeorological Forecast System for Operational Estimation and Prediction of Rainfall and Streamflow in the Mountainous Panama Canal Watershed. HRC Technical Report No. 2, Hydrologic Research Center, San Diego, Calif.
Ghosh, S., and Mujumdar, P. P. (2006). Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Curr. Sci., 90(3), 396–404.
Ghosh, S., and Mujumdar, P. P. (2007). Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment. Water Resour. Res., 43(7), W07405, doi:10.1029/2006WR005351.
Ghosh, S., and Mujumdar, P. P. (2008). Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv. Water Resour., 31, 132–146.
Ghosh, S., and Mujumdar, P. P. (2009). Climate change impact assessment: Uncertainty modeling with imprecise probability. J. Geophys. Res., 114, D18113, doi:10.1029/2008JD011648.
Gibson, P. J., and Power, C.H. (2000). Introductory Remote Sensing: Digital Image Processing and Applications. London: Routledge.
Giorgi, F., and Mearns, L. O. (2003). Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophys. Res. Lett., 30(12).
Goel, N. K., Kurothe, R. S., Mathur, B. S., and Vogel, R. M. (2000). A derived flood frequency distribution for correlated rainfall intensity and duration. J. Hydrol., 228, 56–67.
Goodess, C., and Palutikof, J. (1998). Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int. J. Climatol., 18(10), 1051–1083.
Gopakumar, R., and Mujumdar, P. P. (2009). A fuzzy dynamic flood routing model for natural channels. Hydrol. Process., 23, 1753–1767.
Gosain, A. K., Rao S., and Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Curr. Sci., 90(3), 346–354.
Grayson, R. B., Bloschl, G., and Moore, I. D. (1995). Distributed parameter hydrologic modeling using vector elevation data: THALES and TAPEC-C. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton Colo.: Water Resources Publications.
Griensven, A.V. (2005). AVSWAT-X SWAT-2005 Advanced Workshop. In SWAT 2005 3rd International Conference, Zurich, Switzerland.
Guo, S., and Wang, G. (1994). Water balance in the semi-arid regions: Yellow River, No. 12 (in Chinese).
Guthrie, J., Dartiguenave, C., and Ries, K. (2009). Web services in the US Geological Survey StreamStats Web Application. International Conference on Advanced Geographic Information Systems and Web Services, 60–63.
Haferman, J. L., Krajewski, W. F., Smith, T. F., and Sanchez, A. (1994). Three dimensional aspects of radiative transfer in remote sensing of precipitation: Application to the 1986-COHMEX storm. J. Appl. Meteorol., 33, 1609–1622.
Hall, D. K. (1996). Remote sensing applications to hydrology: Imaging radar. J. Hydrol. Sci., 41(4), 609–624.
Hallada, W. A. (1984). Mapping bathymetry with Landsat 4 thematic mapper, preliminary findings. In Proceedings of 9th Canadian Symposium on Remote Sensing, Ottawa, Canada, 277–285.
Hawk, K. L., and Eagleson, P. (1992). Climatology of Station Storm Rainfall in the Continental U.S.: Parameters of the Bartlett-Lewis and Poisson Rectangular Pulses Models. Technical Report 336, Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, Mass.
Hay, L. E., McCabe, G. J., Wolock, D. M., and Ayers, M. A. (1991). Simulation of precipitation by weather type analysis. Water Resour. Res., 27, 493–501.
Haykin, S. (1994). Neural Computing: A Comprehensive Foundation. New York: Macmillan.
HEC (Hydrologic Engineering Center) (1981). HEC-1 Flood Hydrograph Package: Users Manual. US Army Corps of Engineers, Davis, Calif.
HEC (Hydrologic Engineering Center) (2000). Hydrologic Modeling System HEC-HMS: Users Manual, Version 2. US Army Corps of Engineers, Davis, Calif.
Henderson, F. M. (1966). Open Channel Flow. New York: Macmillan.
Hingray B., and Haha, M. B. (2005). Statistical performances of various deterministic and stochastic models for rainfall series disaggregation. Atmos. Res., 77, 152–175.
Hjelmfelt, A. T. (1986). Estimating peak runoff from field-size watersheds. Bull. Am. Water Res. Assoc., 22(2), 267–274.
Holtan, H. N., and Lopez, N. C. (1971). USDAHL-70 Model of Watershed Hydrology. USDA-ARS Technical Bulletin No. 1435, Agricultural Research Station, Beltsville, Md.
Holtan, H. N., Stilner, G. J., Henson, W. H., and Lopez, N. C. (1974). USDAHL-74 Model of Watershed Hydrology. USDA-ARS Plant Physiology Research Report No. 4, Agricultural Research Station, Beltsville, Md.
Horton, R. E. (1939). Analysis of runoff-plot experiment with varying infiltration capacity. Trans. Am. Geophys. Union, 20, 693–711.
Hosking, J. R. M., and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29(3), 339–349. http://www.webgisdev.com/webpro/web1/wpro1_files/frame.htm
Huber, W. C. (1995). EPA storm water management model SWMM. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Huber, W. C., and Dickinson, R. E. (1988). Storm Water Management Model: Users Manual, Version 4. Report No. EPA/600/3–88/001a, US EPA, Environmental Research Laboratory, Athens, Ga.
Huete, A. R., Liu, H. Q., Batchily, K., and van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing Environ., 59, 440–451.
Huggins, L. F., and Monke, E. J. (1970). Mathematical Simulation of Hydrologic Events of Ungaged Watersheds. Technical Report No. 14, Water Resources Research Center, Purdue University, West Lafayette, Ind.
Hughes, J. P., and Guttorp, P. (1994). A class of stochastic-models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour. Res., 30(5), 1535–1546.
Hughes, J. P., Guttorp, P., and Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. J. R. Statist. Soc. C, 48, 15–30.
IPCC (2007). Climate Change 2007:The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., eds., Cambridge University Press, Cambridge, UK.
ISRO (Indian Space Research Organization) (2009). Megha-Tropiques Announcement of Opportunity, http://www.isro.org/news/pdf/MEGHA-TROPIQUES.pdf (accessed on 26/12/2011).
Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., and Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM 3B42 over Iran. Adv. Geosci., 25, 119–125.
Jeniffer, K., Su, Z., Woldai, T., and Maathuis, B. (2010). Estimation of spatial–temporal rainfall distribution using remote sensing techniques: A case study of Makanya catchment, Tanzania. Int. J. Appl. Earth Obs. Geoinform., 12S, S90–S99.
Jenson, S. K., and Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sensing., 54(11), 1593–1600.
Jetten, V., Govers, G., and Hessel, R. (2003). Erosion models: Quality of spatial predictions. Hydrol. Process., 17, 887–900.
Jiang, T., Chen, D. Y., Xu, Y. C., et al. (2007). Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol., 336, 316–333.
Johnson, F., and Sharma, A. (2009). Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments. J. Climate, 22, 4373–4382, doi:10.1175/2009JCLI2681.1.
Jones, N. L., Wright, S. G., and Maidment, D. R. (1990). Watershed delineation with triangle-based terrain models. J. Hydraul. Eng., 16(10), 1232– 1251.
Jones, P. D., Hulme, M., and Briffa, K. R. (1993). A comparison of Lamb circulation types with an objective classification scheme. Int. J. Climatol., 13(6), 655–63.
Julien, P. Y., and Saghafian, B. (1991). CASC2D Users Manual. Department of Civil Engineering Report, Colorado State University, Fort Collins, Colo.
Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437–471.
Kalyanaraman, S. (1999). Remote sensing data from IRS Satellites: Past, present and future. J. Indian Soc. Remote Sensing, 27(2), 59–70.
Kaur, R., and Rabindranathan, S. (1999) Ground validation of an algorithm for estimating surface suspended sediment concentrations from multi-spectral reflectance data. J. Indian Soc. Remote Sensing, 27(4), 235–251.
Kavvas, M. L., et al. (1998). A regional scale land surface parameterization based on areally-averaged hydrological conservation equation. Hydrol. Sci. J., 43(4), 611–631.
Kay, A. L., Davies, H. N., Bell, V. A., and Jones, R. G. (2009). Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change, 92(1–2), 41–63.
Khatibi, R., Ghorbani, M. A., Kashani, M. H., and Kisi, O. (2011). Comparison of three artificial intelligence techniques for discharge routing. J. Hydrol., 403, 201–212.
Kilsby, C. G., Jones, P. D., Burton, A., et al. (2007). A daily weather generator for use in climate change studies. Environ. Modell. Software, 22(12), 1705–1719.
Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Eng., 10(6), 362.
Kite, G. W. (1989). Using NOAA data for hydrological modelling. In Quantitative Remote Sensing: An Economic Tool for the Nineties, Proceedings IGRASS’89, IEEE. 553–558.
Kite, G. W. (1995). The SLURP model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Kite, G. W., and Kouwen, N. (1992). Watershed modelling using land classification Water Resour. Res., 28(12), 3193–3200.
Kite, G. W., and Pietroniro, A. (1996). Remote sensing applications in hydrological modelling. J. Hydrol. Sci., 41(4), 563–592.
Kite, G. W., Dalton, A., and Dion, K. (1994). Simulation of streamflow in a macroscale watershed using general circulation model data. Water Resour. Res., 30, 1547–1599.
Kleinen, T., and Petschel-Held, G. (2007). Integrated assessment of changes in flooding probabilities due to climate change. Climatic Change, 81, 283–312, doi:10.1007/s10584-006-9159-6.
Knisel, W. G., and Williams, J. R. (1995). Hydrology components of CREAMS and GLEAMS models. Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Knisel, W. G., Leonard, R. A., Davis, F. M., and Nicks, A. D. (1993). GLEAMS Version 2.10, Part III, Users Manual. Conservation Research Report, USDA, Washington, D.C.
Kohavi, R., and Provost, F. (1998). Glossary of terms. Machine Learning, 30(2/3), 271–274.
Kokkonen, T., Koivusalo, H., Karvonen, T., and Lepisto, A. (1999). A semidistributed approach to rainfall-runoff modeling-aggregating responses from hydrologically similar areas. In MODSIM99, L. Oxley and F. Scrimgeour, eds., The Modelling and Simulation Society of Australia and New Zealand, Hamilton, New Zealand, 75–80.
Kosko, B. (1996). Neural Networks and Fuzzy Systems. Prentice-Hall of India (original edition: Prentice-Hall Inc., Englewood Cliffs, N.J., 1992).
Kouwen, N. (2000). WATFLOOD/SPL: Hydrological Model and Flood Forecasting System. Department of Civil Engineering, University of Waterloo, Waterloo, Ont.
Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., and Harrington, R. (1993). Grouped response units for distributed hydrologic modeling. J. Water Resour. Plann. Manage., 119(3), 289–305.
Krishna Prasad, V., Yogesh Kant, and Badarinath, K. V. S. (1999). Vegetation discrimination using IRS-P3 WiFS temporal dataset: A case study from Rampa forests, Eastern Ghats, A.P. J. Indian Soc. Remote Sensing, 27(3), 149–154.
Kumar, V. S., Haefner, H., and Seidel, K. (1991). Satellite snow cover mapping and snowmelt runoff modelling in Beas basin. 20th General Assembly of the International Union of Geodesy and Geophysics, Vienna, Austria, August 11–24, 1991, 101–109.
Kumar, D. N., Lall, U., and Peterson, M. R. (2000). Multi-site disaggregation of monthly to daily streamflow. Water Resour. Res., 36(7), 1823–1833, doi:10.1029/2000WR900049.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.
Kundzwicz, Z. W. (2004). Searching for change in hydrologic data, Editorial. Hydrol. Sci. J., 49(1), 3–6.
Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings 18th International Conference on Machine Learning, C. E. Brodley and A. P. Danyluk, eds., San Francisco, Calif.: Morgan Kaufmann, 282–289.
Lahmer, W., Becker, A., Muller-Wohlfelt, D.-I., and Pfutzner, B. (1999). A GIS-based approach for regional hydrological modeling. In Regionalization in Hydrology, B. Diekkruger, M. J. Kirkby, and U. Schroder, eds., IAHS Publication No. 254, International Association of Hydrological Sciences, 33–43.
Lall, U., and Sharma, A. (1996). A nearest neighbour bootstrap for time series resampling. Water Resour. Res., 32(3), 679–693.
Lamb, H. H. (1972). British Isles Weather Types and a Register of Daily Sequence of Circulation Patterns, 1861 –1971. Geophysical Memoir, 116, HMSO, London, 85.
Lane, W. L. (1982). Corrected parameter estimates for disaggregation schemes. In Statistical Analysis of Rainfall and Runoff, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications, 505–530.
Lang, M., Ouarda, T. B. M. J., and Bobée, B. (1999). Towards operational guidelines for over-threshold modelling. J. Hydrol., 225, 103– 117.
Laurenson, E. M. (1964). A catchment storage model for runoff routing. J. Hydrol., 2, 141–163.
Laurenson, E. M., and Mein, R. G. (1993). RORB Version 4 Runoff Routing Program: Users Manual. Monash University, Department of Civil Engineering, Monash, Victoria, Australia.
Laurenson, E. M., and Mein, R. G. (1995). RORB: Hydrograph synthesis by runoff routing. Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Ledoux, E., Girard, G., de Marsily, G., and Deschenes, J. (1989). Spatially distributed modeling: Conceptual approach, coupling surface water and ground water. In Unsaturated Flow Hydrologic Modeling: Theory And Practice, H. J. Morel-Seytoux, ed., NATO ASI Series S 275, Boston: Kluwer Academic, 435–454.
Leonard J. A., Karmer, M., and Ungar, L. H. (1992). Using radial basis functions to approximate a function and its error bounds. IEEE Trans. Neural Networks, 3(4), 624–627.
Levizzani, V., and Amorati, R. (2002). A review of satellite-based rainfall estimation methods. A look back and a perspective. In Proceedings of the 2000 EUMETSAT Meteorological Satellite Data User's Conference, 29 May–2 June 2000, Bologna, Italy, 344–353.
Liang, X., and Xie, Z. (2001). A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv. Water Resour., 24(9–10), 1173–1193.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99(D7), 14415–14428.
Lillesand, T. M. and Kiefer, R. W. (2002). Remote Sensing and Image Interpretation. New York: John Wiley & Sons.
Loeve, M. (1955). Probability Theory. Princeton, N.J.: van Nostrand Company.
Ma, X., and Cheng, W. (1998). A modeling of hydrological processes in a large low plain area including lakes and ponds. J. Jpn. Soc. Hydrol. Water Resour., 9, 320–329.
Ma, X., Fukushima, Y., Hashimoto, T., Hiyama, T., and Nakashima, T. (1999). Application of a simple SVAT model in a mountain catchment model under temperate humid climate. J. Jpn. Soc. Hydrol. Water Resour., 12, 285–294.
Madsen, H., Rasmussen, P. F., and Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1. At-site modelling. Water Resour. Res., 33(4), 747–757.
Maidment, D. R. (1993). Handbook of Hydrology. New York: McGraw Hill.
Mamdani, E. H., and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud., 7: 1–13.
Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech., 62, 331–358.
Margulis, S. A., and Entekhabi, D. (2001). Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface. Hydrol. Earth System Sci., 5(1), 27–38.
Martz, L. W., and de Jong, E. (1988). CATCH: a FORTRAN program for measuring catchment area from digital elevation models. Comput. Geosci., 14, 5, 627–640.
MATLAB (1995). Fuzzy Logic Toolbox. The MathWorks Inc.
Maurer, E. P., and Duffy, P. B. (2005). Uncertainty in projections of streamflow changes due to climate change in California. Geophys. Res. Lett., 32(3), L03704.
Mays, L. W. (1996). Water Resources Handbook. New York: McGraw-Hill.
McCabe, G. J., and Wolock, D. M. (2002). A step increase in streamflow in the conterminous United States. Geophys. Res. Lett., 29(24), 38.1–38.4.
McCuen, R. H., and Snyder, W. M. (1986). Hydrologic Modelling: Statistical Methods and Applications. Upper Saddle River, N.J.: Prentice-Hall.
McKee, T. B., Doesken, N. J., and Kleist, J. (1993). The relationship of drought frequency and duration to time scale. In Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, 179–184.
Meenu, R., Rehana, S., and Mujumdar, P. P. (2012). Assessment of hydrologic impacts of climate change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrol. Process., accepted, DOI: 10.1002/hyp.9220.
Mehrotra, R., and Sharma, A. (2006). A nonparametric stochastic downscaling framework for daily rainfall at multiple locations. J. Geophys. Res., 111, D15101, doi:10.1029/2005JD006637.
Mehrotra, R., and Sharma, A. (2007). Preserving low-frequency variability in generated daily rainfall sequences. J. Hydrology, 345, 102–120.
Mehrotra, R., and Sharma, A. (2009). Evaluating spatio-temporal representations in daily rainfall sequences from three stochastic multi-site weather generation approaches. Adv. Water Resour., 32(6), 948–962.
Mehrotra, R., Srikanthan, R., and Sharma, A. (2006). A comparison of three stochastic multi-site precipitation occurrence generators. J. Hydrol., 331, 280–292.
Meijerink, A. M. J. (1996). Remote sensing applications to hydrology: groundwater. J. Hydrol. Sci., 41(4), 549–562.
Mejia, J. M., and Rousselle, J. (1976). Disaggregation models in hydrology revisited. Water Resour. Res., 12(2), 185–186.
Menabde, M., Seed, A., and Pegram, G. (1999). A simple scaling model for extreme rainfall. Water Resour. Res., 35(1), 335–339.
Metcalf and Eddy, Inc., University of Florida, and Water Resources Engineers, Inc. (1971). Storm Water Management Model, Vol. 1: Final Report. EPA Report No. 11024DOC07/71 (NITS PB-203289), EPA, Washington, D.C.
Mezghani, A., and Hingray, B. (2009). A combined downscaling-disaggregation weather generator for stochastic generation of multisite hourly weather variables over complex terrain: Development and multi-scale validation for the Upper Rhone River basin. J. Hydrol., 377 (3–4), 245–260.
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415, 514–517.
Milly, P. C. D., Betancourt, J., Falkenmark, M., et al. (2008). Stationarity is dead: Whither water management. Science, 319, 573–574.
Minville, M., Brissette, F., and Leconte, R. (2008). Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J. Hydrol., 358(1–2), 70–83.
Mishra, S. K., and Singh, V. P. (2003). Soil Conservation Service Curve Number (SCS-CN) Methodology. Water Science and Technology Library, Vol. 42, Dordrecht, the Netherlands: Kluwer Academic Publishers, 513.
Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, L. (2007). Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst., 629–641.
Moik, H. (1980). Digital Processing of Remotely Sensed Images. NASA SP no. 431, Washington, D.C.
Montgomery, D., and Dietrich, W. (1988). Where do channels begin? Nature, 336, 232–234.
Moore, I. D., Grayson, R. B., and Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrol. Process., 5, 3–30.
Moore, R. J. (1985). The probability distributed principle and run-off production at point and basin scales. Hydrol. Sci. J., 30(2), 273–295.
Morin, G., Paquet, P., and Sochanski, W. (1995). Le Modèle de Simulation de Quantité et de Qualité CEQUEAU, Manuel de Référence. INRS Eau Rapport de Recherche No. 433, Sainte-Foy, Que.
Morin, G., Sochanski, W., and Paquet, P. (1998). Le Modèle de Simulation de Quantité et de Qualité CEQUEAU-ONU, Manuel de Référence. Organisation des Nations-Unies et INRS Eau Rapport de Recherche No. 519, Sainte-Foy, Que.
Morisette, J. T., Privette, J. L., Justice, C. O. (2002). A framework for the validation of MODIS Land products. Remote Sensing Environ., 83, 77–96.
Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33, 161–174.
Mujumdar, P. P., and Ghosh, S. (2008). Modeling GCM and scenario uncertainty using a possibilistic approach: Application to the Mahanadi River, India. Water Resour. Res., 44, W06407.
Murty, B. S., Panday, S., and Huyakorn, P. S. (2003). Sub-timing in fluid flow and transport simulations. Adv. Water Resour., 26, 477–489.
Naden, P. S. (1992). Analysis and use of peaks-over-threshold data in flood estimation. In Floods and Flood Management, A. J. Saul, ed., Dordrecht: Kluwer Academic, 131–143.
Nagesh Kumar, D. (2003). Strengths and weakness of ANN and its potential application in hydrology. Proceedings Workshop of Artificial Neural Networks in Hydraulic Engineering, Indian Society for Hydraulics, Pune, 1–8.
NAS (National Academy of Sciences) (2006). Assessment of the Benefits of Extending the Tropical Rainfall Measuring Mission: A Perspective from the Research and Operations Communities. Interim Report, http://www.nap.edu/catalog/11195.html (accessed December 26, 2011).
NASDA (2001). TRMM Data Users Handbook. National Space Development Agency of Japan, http://www.eorc.jaxa.jp/TRMM/document/text/handbook_e.pdf (accessed December 26, 2011).
Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10, 282–290.
Natale, L., and Todini, E. (1976a). A stable estimator for large models. 1: Theoretical development and Monte Carlo experiments. Water Resour. Res., 12(4), 667–671.
Natale, L., and Todini, E. (1976b). A stable estimator for large models. 2: Real world hydrologic applications. Water Resour. Res., 12(4), 672– 675.
Natale, L., and Todini, E. (1977). A constrained parameter estimation technique for linear models in hydrology. In Mathematical Models of Surface Water Hydrology, T. A. Ciriani, U. Maione, and J. R. Wallis, eds., London: Wiley, 109–147.
Needs Assessment Report (2010). Bihar Kosi Flood – 2008. Prepared by Government of Bihar, World Bank, and Global Facility for Disaster Reduction and Recovery.
Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. (2000). Soil and Water Assessment Tool User's Manual Version 2000. Blackland Research Center, Texas Agricultural Experiment Station, Temple, TX.
Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. (2001). Soil and Water Assessment Tool: Theoretical Documentation. Blackland Research Center, Texas Agricultural Experiment Station, Temple, Tex.
Nijssen, B., Lettenmaier, D. P., Lohmann, D., and Wood, E. F. (2001). Predicting the discharge of global rivers. J. Climate, 14(15), 3307–3323.
Nohara, D., Kitoh, A., Hosaka, M., and Oki, T. (2006). Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeorol., 7, 1076–1089.
Noilhan, J., and Mahfouf, J. F. (1996). The ISBA land surface parameterization scheme, global planet. Climate Change, 13, 145–159.
O’Callaghan, J. F., and Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323–344.
Ogden, F. L. (1998). CASC2D Version 1.18 Reference Manual. Department of Civil and Environmental Engineering Report U-37, CT1665–1679, University of Connecticut, Storrs, Conn.
Oliver, C., and Quegan, S. (2004). Understanding Synthetic Aperture Radar Images. Raleigh, N.C.: SciTech Publishing.
O’Loughlin, E. M. (1986). Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour. Res. 22(5), 794–804.
Olsson, J. (1998). Evaluation of a cascade model for temporal rainfall disaggregation. Hydrol. Earth Syst. Sci., 2, 19–30.
Ormsbee, L. E. (1989). Rainfall disaggregation model for continuous hydrologic modelling. J. Hydraul. Eng., 115(4), 507– 525.
Ozga-Zielinska, M., and Brzezinski, J. (1994). Applied Hydrology. Warsaw, Poland: Wydawnictawa Naukowe, PWN (in Polish).
Pandey, S., Gunn, R., Lim, K. J., Engel, B., and Harbor, J. (2000). Developing a web-enabled tool to assess long-term hydrologic impacts of land-use change: information technology issues and a case study. URISA J. 12(4), 5–17.
Panigrahi, D. P., and Mujumdar, P. P. (2000). Reservoir operation modelling with fuzzy logic. Water Resour. Manage., 14, 89–109.
Papadakis, I., Napiorkowski, J., and Schultz, G. A. (1993). Monthly runoff generation by nonlinear model using multi spectral and multi temporal satellite imagery. Adv. Space Res., 13(5), 181–186.
Peck, E. L., McQuivey, R., Keefer, T. N., Johnson, E. R., and Erekson, J. (1981). Review of Hydrologic Models for Evaluating Use of Remote Sensing Capabilities. NASA CR 166674, Goddard Space Flight Center, Greenbelt, Md.
Perumal, M., Moramarco, T., Sahoo, B., and Barbetta, S. (2007). A methodology for discharge estimation and rating curve development at ungauged river sites. Water Resour. Res., 43, W02412, doi:10.1029/2005WR004609.
Perumal, M., Moramarco, T., Sahoo, B., and Barbetta, S. (2010). On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites. Water Resour. Res., 46, W03522, doi:10.1029/2009WR008103.
Petty, G. W., and Krajewski, W. F. (1996). Satellite estimation of precipitation over land. J. Hydrol. Sci., 41(4), 433–452.
Peuker, T., and Douglas, D. (1975). Detection of surface-specific points by local parallel processing of digital terrain elevation data. Computer Graphics and Image Processing, 4, 375–387.
Pietroniro, A., Soulis, E. D., Kouwen, N., Rotunno, O., and Mullins, D.W. (1993). Using wide swath C-band SAR imagery for basin soil moisture mapping. Canadian J. Remote Sensing, Special issue, January, 77–82.
Pietroniro, A., Wishart, W., and Solomon, S. I. (1989). Use of remote sensing data for investigating water resources in Africa. In Quantitative Remote Sensing: An Economic Tool for the Nineties, Proc. IGRASS’89, IEEE, 2169–2172.
Pilling, C., and Jones, J. A. A. (1999). High resolution equilibrium and transient climate change scenario implications for British runoff. Hydrol. Process., 13, 2877–2895.
Plate, E. J. (2009). Classification of hydrological models for flood management. Hydrol. Earth Syst. Sci., 13, 1939–1951.
Potter, J. W., and McMahon, T. A. (1976). The Monash Model: User Manual for Daily Program HYDROLOG. Resource Report 2/76, Department of Civil Engineering, Monash University, Monash, Victoria, Australia.
Price, J. C. (1980). The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour. Res., 16, 787–795.
Prudhomme, C., and Davies, H. (2009). Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate. Climatic Change, 93(1–2), 197–222.
Prudhomme, C., Reynard, N., and Crooks, S. (2002). Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol. Process., 16(6), 1137–1150.
Prudhomme, C., Jakob, D., and Svensson, C. (2003). Uncertainty and climate change impact on the flood regime of small UK catchments. J. Hydrol., 277, 1–23.
Quick, M. C. (1995). The UBC watershed model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Quick, M. C., and Pipes, A. (1977). UBC watershed model. Hydrol. Sci. Bull., XXI(1/3), 285–295.
Ragan, R. M., and Jackson, T.J. (1980). Runoff synthesis using Landsat and SCS model. J. Hydraulics Division, ASCE, 106(HY5), 667–678.
Rajagopalan, B., and Lall, U. (1999). A k-nearest-neighbor simulator for daily precipitation and other variables. Water Resour. Res., 35(10), 3089–3101.
Raje, D., and Mujumdar, P. P. (2009). A conditional random field based downscaling method for assessment of climate change impact on multisite daily precipitation in the Mahanadi basin. Water Resour. Res., 45(10), W10404, doi:10.1029 / 2008WR007487.
Raje, D., and Mujumdar, P. P. (2010a), Constraining uncertainty in regional hydrologic impacts of climate change: Nonstationarity in downscaling. Water Resour. Res., 46, W07543, doi:10.1029/2009WR008425.
Raje, D., and Mujumdar, P. P. (2010b). Hydrologic drought prediction under climate change: Uncertainty modeling with Dempster–Shafer and Bayesian approaches. Adv. Water Resour., 33(9), 1176–1186, doi: 10.1016 / j.advwatres.2010.08.001.
Raje, D., and Mujumdar, P. P. (2010c). Reservoir performance under uncertainty in hydrologic impacts of climate change. Adv. Water Resour., 33, 312–326.
Rango, A. (1995). The snowmelt runoff model (SRM). In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Rango, A. (1996). Space-borne remote sensing for snow hydrology applications. J. Hydrol. Sci., 41(4), 477–494.
Rao, P. G. (1993). Climatic changes and trends over a major river basin in India. Climate Res., 2, 215–223.
Rao, P. G. (1995). Effect of climate change on streamflows in the Mahanadi river basin, India. Water Int., 20, 205– 212.
Rao, P. G., and Kumar, K. K. (1992). Climatic shifts over Mahanadi river basin. Current Sci., 63, 192–196.
Rawls, W. J., and Brakensiek, D. L. (1983). A procedure to predict Green and Ampt infiltration parameters. Proceedings of the American Society of Agricultural Engineers Conference on Advances in Infiltration, ASAE, St. Joseph, MI, 102–112.
Rawls, W. J., Brakensiek, D. L., and Soni, B. (1983). Agricultural management effects on soil water process, Part I: Soil water retention and Green–Ampt infiltration parameters. Trans. ASAE, 1747–1752.
Refsgaard, J. C., and Storm, B. (1995). MIKE SHE. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Richardson, C. W., and Wright, D. A. (1984). WGEN: A Model for Generating Daily Weather Variables. ARS-8, US Department of Agriculture, Agricultural Research Service, Washington, D.C.
Rigby, E. H., Boyd, M. J., and vanDrie, R. (1999). Experiences in developing the hydrology model: WBNM2000. Proceedings 8th International Conference on Urban Drainage, Institution of Engineers, 3, 1374–1381.
Ritchie, J. C., and Schiebe, F. R. (1986). Monitoring suspended sediment with remote sensing techniques. In Hydrologic Application of Space Technology, IAHS, 160, 233–243.
Rockwood, D. M. (1982). Theory and practice of the SSARR model as related to analyzing and forecasting the response of hydrologic systems. In Applied Modeling in Catchment Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications, 87–106.
Rodriguez-Iturbe, I., Gupta, V. K., and Waymire, E. (1984). Scale considerations in the modelling of temporal rainfall. Water Resour. Res., 20, 1611–1619.
Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987). Some models for rainfall based on stochastic point processes. Proc. R. Soc. London A, 410, 269–288.
Ross, T. J. (1997). Fuzzy Logic with Engineering Applications. Electrical Engineering Series, New York: McGraw-Hill.
Roubens, M. (1982). Fuzzy clustering algorithms and their cluster validity. Eur. J. Oper. Res., 10, 294–301.
Sabbins, F. F. Jr. (1986). Remote Sensing: Principles and Interpretation. New York: W. H. Freeman & Co.
Salmonson, V. V. (1983). Water resources assessment. In Manual of Remote Sensing, J. Colwell, ed., Bethesda, Md.: American Society of Photogrametry and Remote Sensing, 1497–1570.
Salvucci, G., and Song, C. (2000). Derived distributions of storm depth and frequency conditioned on monthly total precipitation: Adding value to historical and satellite-derived estimates of monthly precipitation. J. Hydrometeorol., 1, 113–120.
Scaefer, M. G., and Barker, B. L., (1999). Stochastic Modeling of Extreme Floods for A. R. Bowman Dam. MGS Engineering Consultants Report, Olympia, Wash.
Schmidli, J., Frei, C., and Vidale, P. L. (2006). Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol., 26, 679–689.
Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., and Rango, A. (2002). Remote sensing in hydrology. Adv. Water Resour., 25(8–12), 1367–1385.
Schultz, G. A. (1988). Remote sensing in hydrology. J. Hydrol., 100, 239–265.
Schultz, G. A. (1996). Remote sensing applications to hydrology: Runoff. J. Hydrol. Sci., 41(4), 453–476.
Sellers, P. J., Meeson, B. W., Hall, F. G., et al. (1995). Remote sensing of the land surface for studies of global change: Models – algorithms – experiments. Remote Sensing Environ., 51(3), 3–26.
Sentz, K., and Ferson, S. (2002). Combination of Evidence in Dempster–Shafer Theory. Sandia National Laboratories, 2002–4015.
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, N.J.: Princeton University Press.
Short, N. M. (1999). Remote Sensing Tutorial: Online Handbook. NASA Goddard Space Flight Center, Greenbelt, Md.
Showalter, P. S. (2001). Remote sensing's use in disaster research: A review. Disaster Prevent. Manage., 10(1), 21–29, doi: 10.1108/09653560110381796.
Shu, C., and Ouarda, T. B. M. J. (2008). Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol., 349, 31–43.
Simonovic, S. P. (2012). Floods in a Changing Climate: Risk Management. Cambridge, UK: Cambridge University Press.
Simonovic, S. P., and Li, L. (2004). Sensitivity of the Red River basin flood protection system to climate variability and change. Water Resour. Manage., 18 (2), 89–110.
Simpson, J., Adler, R. F., and North, G. R. (1988). A proposed tropical rainfall measuring mission TRMM satellite. Bull. Am. Meteorol. Soc., 3(69), 278–295.
Singh, V. P. (1992). Elementary Hydrology. Upper Saddle River, N.J.: Prentice Hall.
Singh, V., and Woolhiser, D. (2002). Mathematical modeling of watershed hydrology. J. Hydrol. Eng., 7(4), 270–292.
Sittner, W. T., Scauss, C. E., and Munro, J. C. (1969). Continuous hydrograph synthesis with an API-type hydrologic model. Water Resour. Res., 5(5), 1007–1022.
Sivapalan, M. (2003). Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Process., 17, 3163–3170.
Sivapalan, M., Ruprecht, J. K., and Viney, N. R. (1996a). Water and salt balance modeling to predict the effects of land use changes in forested catchments: 1. Small catchment water balance model. Hydrol. Process., 10, 393–411.
Sivapalan, M., Viney, N. R., and Jeevaraj, C. G. (1996b). Water and salt balance modeling to predict the effects of land use changes in forested catchments: 3. The large catchment model. Hydrol. Process., 10, 429–4446.
Sivapalan, M., Viney, N. R., and Ruprecht, J. K. (1996c). Water and salt balance modeling to predict the effects of land use changes in forested catchments: 2. Coupled model of water and salt balances. Hydrol. Process., 10, 413–428.
Slingsby, A. (2003). An object-oriented approach to hydrological modelling using triangular irregular networks. Proceedings of GISRUK03, City University, London.
Slough, K., and Kite, G. W. (1992). Remote sensing estimates of snow water equivalent for hydrologic modelling. Candian Water Resour. J., 17(4), 323–330.
Smith, R. E., Goodrich, D. C., Woolhiser, D. A., and Unkrich, C. L. (1995). KINEROS – A kinematic runoff and erosion model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Soil Conservation Service (SCS) (1965). Computer Model for Project Formulation Hydrology. Technical Release No. 20, USDA, Washington, D.C.
Soil Conservation Service (SCS) (1969). Hydrology. In SCS National Engineering Handbook, USDA, Washington, D.C., Section-4.
Speers, D. D. (1995). SSARR model. Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Stephenson, D. (1989). A modular model for simulating continuous or event runoff. IAHS Publication, 181, 83–91.
Stephenson, D., and Randell, B. (1999). Streamflow Prediction Model for the Caledon Catchment. ESKOM Report No. RES/RR/00171, Cleveland, South Africa.
Stern, R. D., and Coe, R. (1984). A model-fitting analysis of daily rainfall data. J. R. Statist. Soc. A, 147(1), 1–34.
Strupczewski, W. G., Singh, V. P., and Feluch, W. (2001). Non-stationary approach to at-site flood frequency modelling. I: Maximum likelihood estimation. J. Hydrol., 248, 123–142.
Subimal Ghosh (2007). Hydrologic impacts of climate change: Uncertainty modeling. PhD thesis, Indian Institute of Science, India.
Sugawara, M. (1995). Tank model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Sugawara, M., et al. (1974). Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanga River and Nam Mune. Research Note, National Research Center for Disaster Prevention, No. 11, Kyoto, Japan, 1–64.
Swain, P. H., and Davis, S.M. (1978). Remote Sensing: The Quantitative Approach. New York: McGraw-Hil.
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res., 33 (2), 309–319.
Tarboton, D. G. (2002). Terrain Analysis Using Digital Elevation Models (TauDEM). Utah State University, Logan, Utah.
Tatli, H., Dalfes, H. N., and Mentes, S. (2005). Surface air temperature variability over Turkey and its connection to large-scale upper air circulation via multivariate techniques. Int. J. Climatol., 25, 161–180.
Tennessee Valley Authority (TVA) (1972). A Continuous Daily-Streamflow Model: Upper Bear Creek Experimental Project. Research Paper No. 8, Knoxville, Tenn.
Tisseuil, C., Vrac, M., Lek, S., and Wade, A. J. (2010). Statistical downscaling of river flows. J. Hydrol., 385, 279–291.
Todini, E. (1988a). Il modello afflussi deflussi del flume Arno. Relazione Generale dello studio per conto della Regione Toscana. Technical Report, University of Bologna, Italy (in Italian).
Todini, E. (1988b). Rainfall runoff modelling: Past, present and future. J. Hydrol., 100, 341–352.
Todini, E. (1995). New trends in modeling soil processes from hillslopes to GCM scales. In The Role of Water and Hydrological Cycle in Global Change, H. R. Oliver and S. A. Oliver, eds., NATO Advanced Study Institute, Series 1: Global, Dordrecht, the Netherlands: Kluwer Academic.
Todini, E. (1996). The ARNO rainfall-runoff model. J. Hydrol., 175, 339–382.
Trigo, R. M., and Palutikof, J. P. (1999). Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach. Climate Res., 13(1), 45–59.
Tripathi, S., Srinivas, V., and Nanjundiah, R. (2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. J. Hydrol., 330(3–4), 621–640.
Turcotte, R., Fortin, J.-P., Rousseau, A. N., Massicotte, S., and Villeneuve, J.-P. (2001). Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. J. Hydrol., 240, 225–242.
US Army Corps of Engineers (1987). SSARR Users Manual. North Pacific Division, Portland, Ore.
US Army Corps of Engineers (2002). HEC-RAS Users Manual. Hydrologic Engineering Center, Davis, Calif.
US Army Corps of Engineers (2008). HEC HMS User Manual, Version 3.2. Hydrologic Engineering Center, Davis, Calif.
US Department of Agriculture (1972). Soil Conservation Service, National Engineering Handbook, Section 4, Hydrology. Washington, D.C.: US Government Printing Office.
USDA (1980). CREAMS: A Field Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. W. G. Knisel, ed., Conservation Research Report No. 26, Washington, D.C.
Valencia, D. R., and Schaake, J. C. (1973). Disaggregation process in stochastic hydrology. Water Resour. Res., 9(3), 580–585.
Vandenberg, A. (1989). A physical model of vertical integration, drain discharge and surface runoff from layered soils. NHRI Paper No. 42. IWD Tech. Bull., 161, National Hydrologic Research Institute, Saskatoon, Sask.
Viessman, W. Jr., Lewis, G. L., and Knapp, J. W. (1989). Introduction to Hydrology. New York: Harper Collins.
Vörösmarty, C. J., Moore, B., Grace, A. L., et al. (1989). Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles., 3, 241–265.
Vörösmarty, C. J., Federer, C. A., and Schloss, A. (1998). Potential evaporation functions compared on US watersheds: Implications for global-scale water balance and terrestrial ecosystem modelling. J. Hydrol., 207, 147–169.
Vörösmarty, C. J., Gutowski, W. J., Person, M., Chen, T.-C., and Case, D. (1993). Linked atmosphere–hydrology models at the macroscale. In Macroscale Modeling of the Hydrosphere, W. B. Wilkinson, ed., IAHS Publication No. 214,. 3–27.
Walker, A. E., Gray, S. A., Goodison, B. E., and O’Neill, R. A. (1990). Analysis of MOS-1 microwave scanning radiometer data for Canadian Prairie snow cover. In Application of Remote Sensing in Hydrology. Proceedings Symposium No. 5, NHRI, Saskatoon, Canada, G. W. Kite and A. Wankiewicz, eds., 319–330.
Wang, Y., Leung, L. R., McGregor, J. L., et al. (2004). Regional climate modeling: Progress, challenges, and prospects. J. Meteorol. Soc. Japan, 82, 1599–1628.
Wankiewicz, A. (1989). Microwave satellite forecasting of snowmelt runoff. In Quantitative Remote Sensing: An Economic Tool for the Nineties, Proceedings IGRASS’89, IEEE, 1235–1238.
Wetherald, R. T. (2009). Changes of variability in response to increasing greenhouse gases. Part II: Hydrology. J. Climate, 22, 6089–6103.
Whiting, J. (1990). Determination of characteristics for hydrologic modeling using remote sensing. In Application of Remote Sensing in Hydrology. Proceedings Symposium No. 5, NHRI, Saskatoon, Canada, G. W. Kite and A. Wankiewicz, eds., 79–91.
Wight, J. R., and Skiles, J. W., eds. (1987). SPUR-Simulation of Production and Utilization of Rangelands: Documentation and User Guide. Report No. ARS-63, USDA, Washington, D.C.
Wigley, T. M. L., Jones, P. D., Briffa, K. R., and Smith, G. (1990). Obtaining sub-grid-scale information from coarse-resolution general-circulation model output. J. Geophys. Res. Atmos., 95(D2), 1943–1953.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P. (1994). A distributed hydrology–vegetation model for complex terrain. Water Resour. Res., 30(6), 1665–1679.
Wilby, R. L. (2005). Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Process., 19(16), 3201–3219.
Wilby, R. L., and Wigley, T. M. L. (2000). Precipitation predictors for downscaling: Observed and General Circulation Model relationships. Int. J. Climatol., 20(6), 641–661.
Wilby, R. L., Beven, K. J., and Reynard, N. S. (2008). Climate change and fluvial flood risk in the UK: More of the same? Hydrol. Process., 22, 2511–2523.
Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, 22(1), 67–84.
Wilks, D. S. (2010). Use of stochastic weather generators for precipitation downscaling. Climate Change, 1(6), 898–907.
Wilks, D. S., and Wilby, R. L. (1999). The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23(3), 329–357.
Williams, J. R. (1995a). The EPIC model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Williams, J. R., (1995b). SWRRB – A watershed scale model for soil and water resources management. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Williams, J. R., Jones, C. A., and Dyke, P. T. (1984). The EPIC model and its application. Proceedings ICRISAT-IBSNAT-SYSS Symposium on Minimum Data Sets for Agrotechnology Transfer, 111–121.
Williams, J. R., Nicks, A. D., and Arnold, J. G. (1985). Simulator for water resources in rural basins. J. Hydraul. Eng., 111(6), 970–986.
Willmott, C. J., Rowe, C. M., and Philpot, W. D. (1985). Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Am. Cartog., 12, 5–16.
WMO (World Meteorological Organization) (1988). Concept of the Global Energy and Water Experiments (GEWEX). Report WCRP 5, Geneva, Switzerland.
Woolhiser, D. A., Smith, R. E., and Goodrich, D. C. (1990). KINEROS – A Kinematic Runoff and Erosion Model: Documentation and User Manual. Report No. ARS-77, USDA, Washington, D.C.
Wu, C. L., and Chau, K.W. (2006). Evaluation of several algorithms in forecasting flood. IEA/AIE 2006, LNAI, 4031, 111 – 116.
Xu, C. Y. (1999a). Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resour. Manage., 13(5), 369–382.
Xu, C. Y. (1999b). Operational testing of a water balance model for predicting climate change impacts. Agric. Forest Meteorol., 98–99(1–4), 295–304.
Xu, C. Y. (2000). Modelling the effects of climate change on water resources in Central Sweden. Water Resour. Manage., 14, 177–189.
Xu, C. Y., Widén, E., Halldin, S. (2005). Modelling hydrological consequences of climate change: Progress and challenges. Adv. Atmos. Sci., 22, 789–797.
Yang, D., Herath, S., and Musiake, K. (1998). Development of a geomorphology-based hydrological model for large catchments. Ann. J. Hydraul. Eng., 42, 169–174.
Yates, D. N. (1997). Approaches to continental scale runoff for integrated assessment models. J. Hydrol., 291, 289–310.
Yates, D., Gangopadhyay, S., Rajagopalan, B., and Strzepek, K. (2003). A technique for generating regional climate scenarios using a nearest neighbor algorithm. Water Resour. Res., 39(7), 1199, doi:10.1029/2002WR001769.
Yoo, D. H. (2002). Numerical model of surface runoff, infiltration, river discharge and groundwater flow – SIRG. In Mathematical Models of Small Watershed Hydrology and Applications, V. P. Singh and D. K. Frevert, eds., Littleton, Colo.: Water Resources Publications.
Young, M. D. B., and Gowing, J. W. (1996). PARCHED-THIRST Model User Guide. Report, University of Newcastle upon Tyne.
Young, R. A., Onstad, C. A., and Bosch, D. D. (1995). AGNPS: An agricultural nonpoint source model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Young, R. A., Onstad, C. A., Bosch, D. D., and Anderson, W. P. (1989). AGNPS: A nonpoint source pollution model for evaluating agricultural watershed. J. Soil Water Conservat., 44, 168–173.
Yu, Z. (1996). Development of a physically-based distributed-parameter watershed (basin-scale hydrologic model) and its application to Big Darby Creek watershed. PhD dissertation, Ohio State University, Columbus, Ohio.
Yu, Z., and Schwartz, F. W. (1998). Application of integrated basinscale hydrologic model to simulate surface water and groundwater interactions in Big Darby Creek watershed, Ohio. J. Am. Water Resour. Assoc., 34, 409–425.
Yu, Z., Barron, E. J., Yarnal, B., et al. (1999). Simulating the river-basin response to atmospheric forcing by linking a mesoscale meteorological model and a hydrologic model system. J. Hydrol., 218, 72–91.
Yu, Z., Pollard, D., and Cheng, L. (2006). On continental-scale hydrologic simulations with a coupled hydrologic model. J. Hydrol., 331, 110–124.
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.
Zhao, R. J., and Liu, X. R. (1995). The Xinjiang model. In Computer Models of Watershed Hydrology, V. P. Singh, ed., Littleton, Colo.: Water Resources Publications.
Zhao, R. J., Zhuang, Y.-L., Fang, L. R., Liu, X. R., and Zhang, Q. S. (1980). The Xinanjiang model. In Proceedings Oxford Symposium on Hydrological Forecasting, IAHS Publication No. 129, International Association of Hydrological Sciences, Wallingford, UK, 351–356.
Zimmermann, H. J. (1996). Fuzzy Set Theory and Its Applications. New Delhi, India: Allied Publishers (original edition: Kluwer Academic Publishers, 1991).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.