Skip to main content Accessibility help
×
  • Cited by 30
Publisher:
Cambridge University Press
Online publication date:
February 2013
Print publication year:
2012
Online ISBN:
9781139088411

Book description

Flood inundation models enable us to make hazard predictions for floodplains, mitigating increasing flood fatalities and losses. This book provides an understanding of hydraulic modelling and floodplain dynamics, with a key focus on state-of-the-art remote sensing data, and methods to estimate and communicate uncertainty. Academic researchers in the fields of hydrology, climate change, environmental science and natural hazards, and professionals and policy-makers working in flood risk mitigation, hydraulic engineering and remote sensing will find this an invaluable resource. This volume is the third in a collection of four books on flood disaster management theory and practice within the context of anthropogenic climate change. The others are: Floods in a Changing Climate: Extreme Precipitation by Ramesh Teegavarapu, Floods in a Changing Climate: Hydrological Modeling by P. P. Mujumdar and D. Nagesh Kumar and Floods in a Changing Climate: Risk Management by Slodoban Simonović.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Abbott, M. B. (1979). Computational Hydraulics: Elements of the Theory of Free Surface Flows. London: Pitman. Google Scholar
Abbott, M. B., and Basco, D. R. (1989). Computational Fluid Dynamics: An Introduction for Engineers. Harlow, UK: Longman Scientific & Technical. Google Scholar
Abbott, M. B., and Ionescu, F. (1967). On the numerical computation of nearly horizontal flows. Journal of Hydraulic Research, 5, 97–117. CrossRef | Google Scholar
ACER Technical Memorandum No. 11 (1988). Downstream Hazard Classification Guidelines. Assistant Commissioner – Engineering and Research, Denver, Colorado, US Department of the Interior, Bureau of Reclamation. Google Scholar
Ackerman, C. (2002). HEC-GeoRAS: An Extension for Support of HEC-RAS Using ArcView GIS. US Army Corps of Engineers. Google Scholar
Alsdorf, D. E., Smith, L. C., and Melack, J. M. (2001). Amazon floodplain water level changes measured with interferometric SIR-C radar. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 423–431. CrossRef | Google Scholar
Alsdorf, D. E., Bates, P. D., Melack, J., Wilson, M. D., and Dunne, T. (2007). The spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters, 34, L08402. CrossRef | Google Scholar
Ambrosi, D. (1995). Approximation of shallow water equations by Roe's Riemann solver. Journal for Numerical Methods in Fluids, 20, 157–168. CrossRef | Google Scholar
Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H. (2009). Flood risk analyses: how detailed do we need to be?Natural Hazards, 49, 79–98. CrossRef | Google Scholar
Aplin, P., Atkinson, P. M., Tatnall, A. R., Cutler, M. E., and Sargent, I. (1999). SAR imagery for flood monitoring and assessment. Proceedings of the Remote Sensing Society, Earth Observation from Data to Information, Cardiff, UK, 557–563. Google Scholar
Aronica, G., Hankin, B. G., and Beven, K. J. (1998). Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources, 22(4), 349–365. CrossRef | Google Scholar
Aronica, G., Bates, P. D., and Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16(10), 2001–2016. CrossRef | Google Scholar
ARPA (2008). Annali Idrologici: Parte Seconda (in Italian). Agenzia Regionale Prevenzione e Ambiente, Regione Emilia Romagna, Servizio Idrometeorologico. Google Scholar
Ashworth, P. J., Bennett, S. J., Best, J. L., and McLelland, S. J. (1996). Coherent Flow Structures in Open Channels. Chichester, UK: John Wiley and Sons. Google Scholar
Audusse, E. (2005). A multilayer Saint-Venant model. Discrete and Continuous Dynamical Systems, Series B, 5(2), 189–214. CrossRef | Google Scholar
Audusse, E., and Bristeau, M. O. (2007). Finite volume solvers for a multilayer Saint Venant system. Journal of Applied Mathematical Computation, 17(3), 311–320. Google Scholar
Aureli, F., Mignosa, P., Ziveri, C., and Maranzoni, A. (2006). Fully-2D and quasi-2D modelling of flooding scenarios due to embankment failure. In River Flow 2006, London: Taylor & Francis Group. Google Scholar
Aureli, F., Maranzoni, A., Mignosa, P., and Ziveri, C. (2008). Dam-break flows: acquisition of experimental data through an imaging technique and 2D numerical modeling. Journal of Hydraulic Engineering, 134, 1089. CrossRef | Google Scholar
Autorità di Bacino del Reno (1998). Generazione di idrogrammi di piena nel bacino del fiume Reno chiuso a Casalecchio (in Italian). Published online at www.regione.emilia-romagna.it/bacinoreno, Bologna. Google Scholar
Autorità di Bacino del Reno (2002). Piano stralcio per l'assetto idrogeologico (in Italian). Published online at www.regione.emilia-romagna.it/bacinoreno, Bologna. Google Scholar
Barkau, R. L. (1997). UNET: One-dimensional Unsteady Flow Through a Full Network of Open Channels. User's Manual. Davis, CA: US Army Corps of Engineering, Hydrologic Engineering Center. Google Scholar
Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (2008). Climate Change and Water. Geneva: Intergovernmental Panel on Climate Change Secretariat, Technical Paper. Google Scholar
Bates, P. D. (2004a). Remote sensing and flood inundation modelling. Hydrological Processes, 18, 2593–2597. CrossRef | Google Scholar
Bates, P. D. (2004b). Computationally efficient modelling of flood inundation extent. In Brath, A., Montanari, A., and Toth, E. (eds.), Hydrological Risk,Cosenza, Italy: BIOS, 285–301. Google Scholar
Bates, P. D., and De Roo, A. P. J. (2000). A simple raster based model for flood inundation simulation. Journal of Hydrology, 236, 54–77. CrossRef | Google Scholar
Bates, P. D., and Horritt, M. S. (2005). Modelling wetting and drying processes in hydraulic models. In Bates, P. D., Lane, S. N., and Ferguson, R. I. (eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics, Chichester, UK: John Wiley and Sons. CrossRef | Google Scholar
Bates, P. D., Stewart, M. D., Siggers, G. B., et al. (1998). Internal and external validation of a two-dimensional finite element model for river flood simulation. Proceedings of the Institution of Civil Engineers, Water Maritime and Energy, 130, 127–141. CrossRef | Google Scholar
Bates, P. D., Stewart, M. D., Desitter, A., et al. (2000). Numerical simulation of floodplain hydrology. Water Resources Research, 36, 2517–2530. CrossRef | Google Scholar
Bates, P. D., Marks, K. J., and Horritt, M. S. (2003). Optimal use of high-resolution topographic data in flood inundation models. Hydrological Processes, 17(3), 537–557. CrossRef | Google Scholar
Bates, P. D., Horritt, M. S., Aronica, G., and Beven, K. (2004). Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrological Processes, 18, 3347–3370. CrossRef | Google Scholar
Bates, P. D., Horritt, M. S., Hunter, N. M., Mason, D., and Cobby, D. (2005). Numerical modelling of floodplain flow. In Bates, P. D., Lane, S. N., and Ferguson, R. I. (eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics, Chichester: John Wiley and Sons, 271–304. CrossRef | Google Scholar
Bates, P. D., Wilson, M. D., Horritt, M. S., et al. (2006). Reach scale floodplain inundation dynamics observed using airborne Synthetic Aperture Radar imagery: data analysis and modelling. Journal of Hydrology, 328, 306–318. CrossRef | Google Scholar
Bates, P. D., Horritt, M. S., and Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387, 33–45. CrossRef | Google Scholar
Begnudelli, L., Sanders, B. F., and Bradford, S. F. (2008). Adaptive Godunov-based model for flood simulation. Journal of Hydraulic Engineering, 134(6), 714–725. CrossRef | Google Scholar
Beven, K. J. (1989). Changing ideas in hydrology: the case of physically-based models. Journal of Hydrology, 105, 157–172. CrossRef | Google Scholar
Beven, K. J. (1995). Linking parameters across scales: subgrid parameterizations and scale-dependent hydrological models. Hydrological Processes, 9(5–6), 507–525. CrossRef | Google Scholar
Beven, K. J. (2000). Uniqueness of place and process representations in hydrological modeling. Hydrology and Earth System Sciences, 4(2), 203–213. CrossRef | Google Scholar
Beven, K. J. (2001). Rainfall Runoff Modelling: The Primer. Chichester, UK: John Wiley and Sons. Google Scholar
Beven, K. J. (2002). Towards a coherent philosophy for modelling the environment. Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 458 (2026), 2465–2484. CrossRef | Google Scholar
Beven, K. J. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1–2), 18–36. CrossRef | Google Scholar
Beven, K. J. (2008). On doing better hydrological science. Hydrological Processes, 22, 3549–3553. CrossRef | Google Scholar
Beven, K. J., and Binley, A. M. (1992). The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6, 279–298. CrossRef | Google Scholar
Beven, K. J., and Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems. Journal of Hydrology, 249, 11–29. CrossRef | Google Scholar
Bloeschl, G. (2006). Hydrologic synthesis: across processes, places, and scales. Water Resources Research, 42, W03S02. Google Scholar
Blöschl, G., and Montanari, A. (2010). Climate change impacts –throwing the dice?Hydrological Processes, 24, 374–381. CrossRef | Google Scholar
Blyth, K. (1997). FLOODNET: a telenetwork for acquisition, processing, and dissemination of Earth Observation data for monitoring and emergency management of floods. Hydrological Processes, 11, 1359–1375. CrossRef | Google Scholar
Box, G. E. P., and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. San Francisco, USA: Holden Day Press. Google Scholar
Brakenridge, G. R., Tracy, B. T., and Knox, J. C. (1998). Orbital SAR remote sensing of a river flood wave. International Journal of Remote Sensing, 19(7), 1439–1445. CrossRef | Google Scholar
Brandimarte, L., Brath, A., Castellarin, A., and Di Baldassarre, G. (2009). Isla Hispaniola: a trans-boundary flood risk mitigation plan. Physics and Chemistry of the Earth, 34, 209–218. CrossRef | Google Scholar
Braschi, G., Gallati, M., and Natale, L. (1989). Simulation of a road network flooding. 20th Annual Pittsburgh Conference on Modeling and Simulation, Pittsburgh, USA, 4, 1625–1632. Google Scholar
Brath, A., and Di Baldassarre, G. (2006). Modelli matematici per l'analisi della sicurezza idraulica del territorio (in Italian). L’Acqua, 6, 39–48. Google Scholar
Bridge, J. S., and Gabel, S. L. (1992). Flow and sediment dynamics in a low sinuosity, braided river: Calamus River, Nebraska sandhills. Sedimentology, 39(1), 125–142. CrossRef | Google Scholar
BRISK (2011). Bristol Environmental Risk Research Centre (www.bristol.ac.uk/brisk/research). Google Scholar
Brookes, A. N., and Hughes, T. J. R. (1982). Streamline Upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32, 199–259. CrossRef | Google Scholar
Burnham, K. P., and Anderson, D. R. (2002). Model Selection and Multimodel Inference, 2nd edition. New York: Springer. Google Scholar
Burnham, M. W., and Davis, D. W. (1990). Effects of data errors in computed steady-flow profiles. Journal of Hydraulic Engineering, 116, 914–928. CrossRef | Google Scholar
Burrough, P. A. (1998). Dynamic modelling and geocomputation. In Longley, P. A., Brooks, S. M., McDonnell, R. M., and Macmillan, B. (eds.), Geocomputation, Chichester: Wiley, 165–191. Google Scholar
Burton, C., and Cutter, S. L. (2008). Levee failures and social vulnerability in the Sacramento–San Joaquin Delta area, California. Natural Hazards Review, 9(3), 136–149. CrossRef | Google Scholar
Cameron, D. S., Beven, K. J., Tawn, J., Blazkova, S., and Naden, P. (1999). Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). Journal of Hydrology, 219(3–4), 169–187. CrossRef | Google Scholar
Camorani, G., Castellarin, A., and Brath, A. (2006). Effects of land-use changes on the hydrologic response of reclamation systems. Physics and Chemistry of the Earth, 30, 561–574. CrossRef | Google Scholar
Castellarin, A., Di Baldassarre, G., Bates, P. D., and Brath, A. (2009). Optimal cross-section spacing in Preissmann scheme 1D hydrodynamic models. ASCE Journal of Hydraulic Engineering, 135(2), 96–105. CrossRef | Google Scholar
Castellarin, A., Di Baldassarre, G., and Brath, A. (2011). Floodplain management strategies for flood attenuation in the River Po. River Research and Applications, 27, 1037–1047. CrossRef | Google Scholar
Casulli, V. (1990). Semi-implicit finite difference methods for the two-dimensional shallow water equations. Journal of Computational Physics, 86, 56–74. CrossRef | Google Scholar
Casulli, V., and Zanolli, P. (2002). Semi-implicit numerical modeling of non-hydrostatic free-surface flows for environmental problems. Mathematical and Computer Modelling, 36,1131–1149. CrossRef | Google Scholar
Chow, V. T. (1959). Open Channel Hydraulics. New York: McGraw-Hill. Google Scholar
Chow, V. T., Maidment, D. R., and Mays, L.W. (1998). Applied Hydrology. New York: McGraw-Hill. Google Scholar
Church, J. A., andWhite, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32, 585–602. CrossRef | Google Scholar
Clarke, D. (2005). Managing Flood Risk: Dealing with Flooding. Technical Report GEHO0605BJDB-E-E, Environment Agency. Google Scholar
Clarke, R. T. (1999). Uncertainty in the estimation of mean annual flood due to rating-curve indefinition. Journal of Hydrology, 222, 185–190. CrossRef | Google Scholar
Cloke, H. L., and Hannah, D. M. (2011). Large-scale hydrology: advances in understanding processes, dynamics and models from beyond river basin to global scale. Hydrological Processes, 25, 991–995. CrossRef | Google Scholar
Cobby, D. M., Mason, D. C., and Davenport, I. J. (2001). Image processing of airborne scanning laser altimetry data for improved river flood modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 56(2), 121–138. CrossRef | Google Scholar
Cobby, D. M., Mason, D. C., Horritt, M. S., and Bates, P. D. (2003). Two-dimensional hydraulic flood modelling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrological Processes, 17(10), 1979–2000. CrossRef | Google Scholar
Coratza, L. (2005). Aggiornamento del Catasto delle Arginature Maestre di Po (in Italian). Parma, Italy: Po River Basin Authority. Google Scholar
Costanza, R., d’Arge, R., de Groot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–260. CrossRef | Google Scholar
Cunge, J. A. (1969). On the subject of flood propagation computation method (Muskingum method). Journal of Hydraulic Research, 7(2), 205–230. CrossRef | Google Scholar
Cunge, J. A. (2003). Of data and models. Journal of Hydroinformatics, 5, 75–98. CrossRef | Google Scholar
Cunge, J. A., Holly, F. M., and Verwey, A. (1980). Practical Aspects of Computational River Hydraulics. London: Pitman. Google Scholar
Dartmouth Flood Observatory (2010). Global Archive of Large Flood Events. Available at www.dartmouth.edu/∼floods. Google Scholar
Day, A.-L. (2005). Carlisle Storms and Associated Flooding: Multi-Agency Debrief Report. Technical Report, UK Resilience. Google Scholar
De Bruijn, K. M., and Klijn, F. (2001). Resilient flood risk management strategies. In Guifen, L., and Wenxue, L. (eds.), Proceedings of the IAHR Congress, Beijing, China: Tsinghua University Press, 450–457. Google Scholar
Defina, A. (2000). Two-dimensional shallow flow equations for partially dry areas. Water Resources Research, 36(11), 3251–3264. CrossRef | Google Scholar
Di Baldassarre, G., and Claps, P. (2011). A hydraulic study on the applicability of flood rating curves. Hydrology Research, 42(1), 10–19. CrossRef | Google Scholar
Di Baldassarre, G., and Montanari, A. (2009). Uncertainty in river discharge observations: a quantitative analysis. Hydrology and Earth System Sciences, 13, 913–921. CrossRef | Google Scholar
Di Baldassarre, G., and Uhlenbrook, S. (2011). Is the current flood of data enough? A treatise on research needs to improve flood modelling. Hydrological Processes, doi: 10.1002/hyp.8226. Google Scholar
Di Baldassarre, G., Schumann, G., and Bates, P. D. (2009a). Near real time satellite imagery to support and verify timely flood modelling. Hydrological Processes, 23, 799–803. CrossRef | Google Scholar
Di Baldassarre, G., Schumann, G., and Bates, P. D. (2009b). A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent. Journal of Hydrology, 367, 276–282. CrossRef | Google Scholar
Di Baldassarre, G., Castellarin, A., Montanari, A., and Brath, A. (2009c). Probability weighted hazard maps for comparing different flood risk management strategies: a case study. Natural Hazards, 50(3), 479–496. CrossRef | Google Scholar
Di Baldassarre, G., Laio, F., and Montanari, A. (2009d). Design flood estimation using model selection criteria. Physics and Chemistry of the Earth, 34(10–12), 606–611. CrossRef | Google Scholar
Di Baldassarre, G., Castellarin, A., and Brath, A. (2009e). Analysis on the effects of levee heightening on flood propagation: some thoughts on the River Po. Hydrological Sciences Journal, 54(6), 1007–1017. CrossRef | Google Scholar
Di Baldassarre, G., Schumann, G., Bates, P., Freer, J., and Beven, K. (2010a). Floodplain mapping: a critical discussion on deterministic and probabilistic approaches. Hydrological Sciences Journal, 55(3), 364–376. CrossRef | Google Scholar
Di Baldassarre, G., Montanari, A., Lins, H., et al. (2010b). Flood fatalities in Africa: from diagnosis to mitigation. Geophysical Research Letters, 37, L22402, doi:10.1029/2010GL045467. CrossRef | Google Scholar
Di Baldassarre, G., Schumann, G., Brandimarte, L., and Bates, P. D. (2011a). Timely low resolution SAR imagery to support floodplain modelling: a case study review. Surveys in Geophysics, 32(3), 255–269. CrossRef | Google Scholar
Di Baldassarre, G., Elshamy, M., van Griensven, A., et al. (2011b). Future hydrology and climate in the River Nile basin: a review. Hydrological Sciences Journal, 56(2), 199–211. CrossRef | Google Scholar
Dottori, F., and Todini, E. (2011). Developments of a flood inundation model based on the cellular automata approach: testing different methods to improve model performance. Physics and Chemistry of the Earth, 36, 266–280. CrossRef | Google Scholar
Dottori, F., Martina, M. L. V., and Todini, E. (2009). A dynamic rating curve approach to indirect discharge measurement. Hydrology and Earth System Sciences, 6, 859–896. Google Scholar
Eilertsen, R. S., and Hansen, L. (2008). Morphology of river bed scours on a delta plain revealed by interferometric sonar. Geomorphology, 94(1–2), 58–68. CrossRef | Google Scholar
EM-DAT (Emergency Events Database) (2010). OFDA/CRED International Disaster Database, Universite Catholique de Louvain, Brussels, www.cred.be/emdat. Google Scholar
Environment Agency (2003). River Dee Catchment Flood Management Plan, Hydrological and Hydraulic Modelling Report, Final Report. Environment Agency Wales, Buckley, Flintshire, UK. Google Scholar
Ervine, D. A., and Baird, J. I. (1982). Rating curves for rivers with overbank flow. Proceedings of the Institution of Civil Engineers Part 2: Research and Theory, 73, 465–472. CrossRef | Google Scholar
European ISO EN Rule 748 (1997). Measurement of Liquid Flow in Open Channels: Velocity–Area Methods. Reference number ISO 748:1997 (E), International Standard. Google Scholar
European Parliament (2007). Directive 2007/60/EC of the European Parliament and the Council of October 2007 on the Assessment and Management of Flood Risks. European Floods Directive, L 288/27, Official Journal of the European Union, Brussels, available at http://ec.europa.eu/environment/water/flood_risk/index.htm. Google Scholar
Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L. (2008). Understanding catchment behavior through stepwise model concept improvement. Water Resources Research, 44, W01402, 1–13. CrossRef | Google Scholar
Fewtrell, T. J., Bates, P. D., Horritt, M., and Hunter, N. M. (2008). Evaluating the effect of scale in flood inundation modelling in urban environments. Hydrological Processes, 22(26), 5107–5118. CrossRef | Google Scholar
Fisher, K., and Dawson, H. (2003). Reducing Uncertainty in River Flood Conveyance: Roughness Review. UK DEFRA and Environment Agency Report, W5A-057, Environment Agency, Bristol, UK. Google Scholar
Franchini, M., Lamberti, P., and Di Giammarco, P. (1999). Rating curve estimation using local stages, upstream discharge data and a simplified hydraulic model, Hydrology and Earth System Sciences, 3, 541–548. CrossRef | Google Scholar
Freer, J., and Beven, K. (2005). Model structural error and the curse of the errors in variables problem. EGU General Assembly, Vienna, Austria. Google Scholar
Freer, J., Beven, K. J., and Ambroise, B. (1996). Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resources Research, 32, 2163–2173. CrossRef | Google Scholar
Galland, J. C., Goutal, N., and Hervouet, J. M. (1991). TELEMAC: A new numerical model for solving shallow water equations. Advances in Water Resources, 14(3), 38–148. CrossRef | Google Scholar
Galloni, E. (1881). Cenni monografici sui singoli servizi dipendenti dal Ministero dei Lavori Pubblici per gli anni 1878–1879–1880 compilati in occasione dell’Esposizione Nazionale di Milano dell'anno 1881 (Catalogue of the activities of the Ministry of Public Works in the period 1878–1880, reported during the 1881 National Exposition in Milan, in Italian). Rome, Italy: Eredi Botta. Google Scholar
Gerbeau, J.-F., and Perthame, B. (2001). Derivation of viscous Saint-Venant system for laminar shallow water, numerical validation. Discrete and Continuous Dynamical Systems, Series B, 1(1), 89–102. CrossRef | Google Scholar
Götzinger, J., and Bardossy, A. (2008). Generic error model for calibration and uncertainty estimation of hydrological models. Water Resources Research, 44, W00B07, doi:10.1029/2007WR006691. CrossRef | Google Scholar
Govi, M., and Turitto, O. (2000). Casistica storica sui processi d'iterazione delle correnti di piena del Po con arginature e con elementi morfotopografici del territorio adiacente (Historical documentation about the processes of dam breaks in the River Po, in Italian). Istituto Lombardo Accademia di Scienza e Lettere. Google Scholar
Gupta, H. V., Beven, K. J., and Wagener, T. (2005). Model calibration and uncertainty estimation. In Encyclopedia of Hydrological Sciences, Anderson, M. G. (ed.), New York: John Wiley, 2015–2031. Google Scholar
Gupta, R. P., and Banerji, S. (1985). Monitoring of reservoir volume using LANDSAT data. Journal of Hydrology, 77, 159–170. CrossRef | Google Scholar
Hall, J., and Beven, K. (2011). Applied Uncertainty Analysis for Flood Risk Management. London: Imperial College Press. Google Scholar
Hall, J. W., Sayers, P. B., and Dawson, R. J. (2005a). National-scale assessment of current and future flood risk in England and Wales. Natural Hazards, 36, 147–164. CrossRef | Google Scholar
Hall, J. W., Tarantolo, S., Bates, P., and Horritt, M. S. (2005b). Distributed sensitivity analysis of flood inundation model calibration. Journal of Hydraulic Engineering, 131(2), 117–126. CrossRef | Google Scholar
Hankin, B. G., Hardy, R., Kettle, H., and Beven, K. J. (2001). Using CFD in a GLUE framework to model the flow and dispersion characteristics of a natural fluvial dead zone. Earth Surface Processes and Landforms, 26(6), 667–687. CrossRef | Google Scholar
Hardy, R. J., Bates, P. D., and Anderson, M. G. (1999). The importance of spatial resolution in hydraulic models for floodplain environments. Journal of Hydrology, 216(1–2), 124–136. CrossRef | Google Scholar
Hereher, M. E. (2010). Vulnerability of the Nile Delta to sea level rise: an assessment using remote sensing. Geomatics, Natural Hazards and Risk, 1(4), 315–321. CrossRef | Google Scholar
Herschy, R. W. (1978). Accuracy in Hydrometry. New York: Wiley. Google Scholar
Hervouet, J.-M., and Van Haren, L. (1996). Recent advances in numerical methods for fluid flows. In Anderson, M. G., Walling, D. E., and Bates, P. D. (eds.), Floodplain Processes, Chichester, UK: John Wiley and Sons, 183–214. Google Scholar
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–24. CrossRef | Google Scholar
Horritt, M. S. (2000). Development of physically based meshes for two-dimensional models of meandering channel flow. International Journal for Numerical Methods in Engineering, 47, 2019–2037. CrossRef | Google Scholar
Horritt, M. S. (2005). Parameterisation, validation and uncertainty analysis of CFD models of fluvial and flood hydraulics in the natural environment. In Bates, P. D., Lane, S. N., and Ferguson, R. I. (eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics. Chichester, UK: John Wiley and Sons, 193–214. CrossRef | Google Scholar
Horritt, M. S. (2006). A methodology for the validation of uncertain flood inundation models. Journal of Hydrology, 326, 153–165. CrossRef | Google Scholar
Horritt, M. S., and Bates, P. D. (2001). Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology, 253, 239–249. CrossRef | Google Scholar
Horritt, M. S., and Bates, P. D. (2002). Evaluation of 1-D and 2-D models for predicting river flood inundation. Journal of Hydrology, 268, 87–99. CrossRef | Google Scholar
Horritt, M. S., Mason, D., and Luckman, A. J. (2001). Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. International Journal of Remote Sensing, 22, 2489–2507. CrossRef | Google Scholar
Horritt, M. S., Mason, D. C., Cobby, D. M., Davenport, I. J., and Bates, P. D. (2003). Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sensing of Environment, 85(3), 271–281. CrossRef | Google Scholar
Horritt, M. S., Bates, P. D., and Mattinson, M. J. (2006). Effects of mesh resolution and topographic representation in 2D finite volume models of shallow water fluvial flow. Journal of Hydrology, 329(1–2), 306–314. CrossRef | Google Scholar
Horritt, M. S., Di Baldassarre, G., Bates, P. D., and Brath, A. (2007). Comparing the performance of 2-D finite element and finite volume models of floodplain inundation using airborne SAR imagery. Hydrological Processes, 21, 2745–2759. CrossRef | Google Scholar
Horritt, M. S., Bates, P., Fewtrell, T., Mason, D., and Wilson, M. (2010). Modelling the hydraulics of the Carlisle 2005 flood event. Proceedings of the Institution of Civil Engineers: Water Management, 163, 273–281. Google Scholar
Hostache, R., Matgen, P., Schumann, G., et al. (2009). Water level estimation and reduction of hydraulic model calibration uncertainties using satellite SAR images of floods. IEEE Transactions on Geoscience and Remote Sensing, 47, 431–441. CrossRef | Google Scholar
Hughes, D., Greenwood, P., Coulson, G., and Blair, G. (2007). GridStix: supporting flood prediction using embedded hardware and next generation grid middleware. Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks, IEEE Computer Society. Google Scholar
Hunter, N. M., Bates, P. D., Horritt, M. S., et al. (2005a). Utility of different data types for calibrating flood inundation models within a GLUE framework. Hydrology and Earth System Sciences, 9(4), 412–430. CrossRef | Google Scholar
Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., and Werner, M. G. F. (2005b). An adaptive time step solution for raster-based storage cell modelling of floodplain inundation. Advances in Water Resources, 28(9), 975–991. CrossRef | Google Scholar
Hunter, N. M., Bates, P. D., Horritt, M. S., et al. (2007). Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology, 90, 208–225. CrossRef | Google Scholar
Hunter, N. M., Bates, P. D., Neelz, S., et al. (2008). Benchmarking 2D hydraulic models for urban flooding. Proceedings of the Institution of Civil Engineers: Water Management, 161, 13–30. Google Scholar
Hydrologic Engineering Center (2001). Hydraulic Reference Manual. Davis, CA: US Army Corps of Engineers. Google Scholar
Institute of Hydrology (1999). Flood Estimation Handbook. Wallingford, UK: Institute of Hydrology. Google Scholar
Irons, J. R., and Petersen, G. W. (1981). Texture transforms of remote sensing data. Remote Sensing of Environment, 11, 359–370. CrossRef | Google Scholar
Janssen, J. P. F. M., and Jorissen, R. E. (1997). Flood management in the Netherlands: recent developments and research needs. In Casale, R., Havno, K., and Samuels, P. (eds.), Ribamod, River Basin Modelling, Management and Flood Mitigation, Concerted Action, London: Taylor & Francis Group, 89–104. Google Scholar
Jarret, R. D. (1987). Errors in slope–area computations of peak discharges in mountain streams. Journal of Hydrology, 96, 53–67. CrossRef | Google Scholar
Jones, B. E. (1916). A method of correcting river discharge for a changing stage. US Geological Survey Water Supply Paper, 375-E, 117–130. Google Scholar
Kirby, W. H. (1987). Linear error analysis of slope–area discharge determinations. Journal of Hydrology, 96, 125–138. CrossRef | Google Scholar
Knight, D. W., and Shiono, K. (1996). River channel and floodplain hydraulics. In Anderson, M. G., Walling, D. E., and Bates, P. D. (eds.), Floodplain Processes, Chichester, UK: John Wiley and Sons, 139–182. Google Scholar
Kohane, R., and Welz, R. (1994). Combined use of FE models for prevention of ecological deterioration of areas next to a river hydropower complex. In Peter, A., Wittum, G., Meissner, U., et al. (eds.), Computational Methods in Water Resources, Volume 1, Dordrecht, the Netherlands: Kluwer, 59–66. CrossRef | Google Scholar
Komma, J., and Blöschl, G. (2008). Potential of non-structural flood mitigation measures. Geophysical Research Abstracts, EGU General Assembly 2008, 10, EGU2008-A-08341. Google Scholar
Kussul, N., Shelestov, A., and Skakun, S. (2008). Grid system for flood extent extraction from satellite images. Earth Science Informatics, 1(3), 105–117. CrossRef | Google Scholar
Laio, F. (2004). Cramer–von Mises and Anderson–Darling goodness of fit tests for extreme value distributions with unknown parameters. Water Resources Research, 40, W09308, doi:10.1029/2004WR003204. CrossRef | Google Scholar
Laio, F., Di Baldassarre, G., and Montanari, A. (2009). Model selection techniques for the frequency analysis of hydrological extremes. Water Resources Research, 45, W07416. CrossRef | Google Scholar
Lamb, R., Crossley, A., and Waller, S. (2009). A fast 2D floodplain inundation model. Proceedings of the Institution of Civil Engineers: Water Management, 162(6), 363–370. Google Scholar
Landis, W. G. (ed.) (2005). Regional Scale Ecological Risk Assessment Using the Relative Risk Model. Boca Raton, FL, USA: CRC Press. Google Scholar
Lane, S. N. (2005). Roughness: time for a re-evaluation? Earth Surface Processes and Landforms, 30(2), 251–253. CrossRef | Google Scholar
Lane, S. N., and Hardy, R. J. (2002). Porous rivers: a new way of conceptualising and modelling river and floodplain flows. In Ingham, D. B., and Pop, I. (eds.), Transport Phenomena in Porous Media II, Oxford, UK: Pergamon Press, 425–449. CrossRef | Google Scholar
Lane, S. N., James, T. D., Pritchard, H., and Saunders, M. (2003). Photogrammetric and laser altimetric reconstruction of water levels for extreme flood event analysis. Photogrammetric Record, 18(104), 293–307. CrossRef | Google Scholar
LeFavour, G., and Alsdorf, D. (2005). Water slope and discharge in the Amazon river estimated using the shuttle radar topography mission digital elevation model. Geophysical Research Letters, 32, L17404. CrossRef | Google Scholar
Léonard, J., Mietton, M., Najib, H., and Gourbesville, P. (2000). Rating curve modelling with Manning's equation to manage instability and improve extrapolation. Hydrological Sciences Journal, 45(5), 739–750. CrossRef | Google Scholar
LeVeque, R. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge, UK: Cambridge University Press. CrossRef | Google Scholar
Liang, D., Lin, B., and Falconer, R. A. (2007). Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme. International Journal for Numerical Methods in Fluids, 53(5), 811–826. CrossRef | Google Scholar
Lighthill, M. G., and Whitham, G. B. (1955). On kinematic waves. II: A theory of traffic flow on long crowded roads. Proceedings of the Royal Society, 229, 317–345. Google Scholar
Lincoln, T. (2007). Hydrology: flood of data. Nature, 447, 393. CrossRef | Google Scholar | PubMed
Lintrup, M. (1989). A new expression for the uncertainty of a current meter discharge measurement. Nordic Hydrology, 20(3), 191–200. CrossRef | Google Scholar
Lynch, D. R., and Gray, W. G. (1980). Finite element simulation of flow deforming regions. Journal of Computational Physics, 36, 135–153. CrossRef | Google Scholar
Maione, U., Mignosa, P., and Tomirotti, M. (2003). Regional estimation model of synthetic design hydrographs. International Journal of River Basin Management, 12, 151–163. CrossRef | Google Scholar
Mantovan, P., and Todini, E. (2006). Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. Journal of Hydrology, 330, 368–381. CrossRef | Google Scholar
Marchuk, G. (1975). Methods of Numerical Mathematics. New York: Springer-Verlag. Google Scholar
Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S. B., and Djordjevic, S. (2004). Potential and limitations of 1d modelling of urban flooding. Journal of Hydrology, 299(3–4), 284–299. CrossRef | Google Scholar
Marks, K., and Bates, P. D. (2000). Integration of high-resolution topographic data with floodplain flow models. Hydrological Processes, 14(11–12), 2109–2122. CrossRef | Google Scholar
Mason, D. C., Davenport, I. J., Flather, R. A., et al. (2001). A sensitivity analysis of the waterline method of constructing a digital elevation model for intertidal areas in ERS SAR scene of Eastern England. Estuarine, Coastal and Shelf Science, 53, 759–778. CrossRef | Google Scholar
Mason, D. C., Cobby, D. M., Horritt, M. S., and Bates, P. D. (2003). Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrological Processes, 17, 1711–1732. CrossRef | Google Scholar
Mason, D. C., Horritt, M. S., Bates, P. D., and Hunter, N. (2007). Use of fused airborne scanning laser altimetry and digital map data for urban flood modelling. Hydrological Processes, 21(11), 1436–1447. CrossRef | Google Scholar
Mason, D. C., Bates, P. D., and Dall’Amico, J. T. (2009). Calibration of uncertain flood inundation models using remotely sensed water levels. Journal of Hydrology, 368, 224–236. CrossRef | Google Scholar
Mason, D. C., Speck, R., Devereux, B., et al. (2010). Flood detection in urban areas using TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 882–894. CrossRef | Google Scholar
Matgen, P., Schumann, G., Henry, J. B., Hoffmann, L., and Pfister, L. (2007). Integration of SAR-derived inundation areas, high precision topographic data and a river flow model toward real-time flood management. International Journal of Applied Earth Observation and Geoinformation, 9(3), 247–263. CrossRef | Google Scholar
McMillan, H. K., and Brasington, J. (2007). Porosity techniques and flooding in Cambridge. Geomorphology, 90, 226–243. CrossRef | Google Scholar
Merwade, V., Olivera, F., Arabi, M., and Edleman, S. (2008). Uncertainty in flood inundation mapping: current issues and future directions. Journal of Hydrologic Engineering, 13(7), 608–620. CrossRef | Google Scholar
Merz, B., Thieken, A. H., and Gocht, M. (2007). Flood risk mapping at the local scale: concepts and challenges. In Begum, S., Stive, M. J. F., and Hall, J. W. (eds.), Flood Risk Management in Europe: Innovation in Policy and Practice, Dordrecht, the Netherlands: Springer, 231–251. CrossRef | Google Scholar
Mignot, E., Paquier, A., and Haider, S. (2006). Modeling floods in a dense urban area using 2D shallow water equations. Journal of Hydrology, 327(1–2), 186–199. CrossRef | Google Scholar
Mitkova, V., Pekarova, P., Miklanek, P., and Pekar, J. (2005). Analysis of flood propagation changes in the Kienstock–Bratislava reach of the Danube River. Hydrological Sciences Journal, 50(4), 655–668. CrossRef | Google Scholar
Mitosek, H. T., Strupczewski, W. G., and Singh, V. P. (2006). Three procedures for selection of annual flood peak distribution. Journal of Hydrology, 323, 57–73. CrossRef | Google Scholar
Montanari, A. (2005). Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 41(8), WR08406. CrossRef | Google Scholar
Montanari, A. (2007). What do we mean by uncertainty? The need for a consistent wording about uncertainty assessment in hydrology. Hydrological Processes, 21, 841–845, doi:10.1002/hyp.6623. CrossRef | Google Scholar
Mujumdar, P., and Kumar, D. N. (2012). Floods in a Changing Climate: Hydrological Modeling. International Hydrology Series, Cambridge, UK: Cambridge University Press. CrossRef | Google Scholar
Nardi, F., Vivoni, E. R., and Grimaldi, S. (2006). Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research, 42, W09409. CrossRef | Google Scholar
Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology, 10(3), 282–290. CrossRef | Google Scholar
Natale, L., Savi, F., and Ubertini, L. (2002). Flood wave propagation: effect of the river geometry modification. In Proceedings IASTED International Conference on Applied Simulation and Modelling, 25–28 June 2002, Crete, Greece, 519–523. Google Scholar
Neal, J., Bates, P., Fewtrell, T., et al. (2009a). Hydrodynamic modelling of the Carlisle 2005 urban flood event and comparison with validation data. Journal of Hydrology, 375, 589–600. CrossRef | Google Scholar
Neal, J., Fewtrell, T., and Trigg, M. (2009b). Parallelisation of storage cell flood models using OpenMP. Environmental Modelling and Software, 24, 872–877. CrossRef | Google Scholar
Neal, J. C., Bates, P. D., Fewtrell, T. J., et al. (2009c). Distributed whole city water level measurements from the Carlisle 2005 urban flood event and comparison with hydraulic model simulations. Journal of Hydrology, 368, 42–55. CrossRef | Google Scholar
Neal, J., Fewtrell, T., Bates, P. D., and Wright, N. (2010). A comparison of three parallelisation methods for 2D flood inundation models. Environmental Modelling and Software, 25, 398–411. CrossRef | Google Scholar
Neal, J., Schumann, G., Fewtrell, T. J., et al. (2011). Evaluating a new LISFLOOD-FP formulation with the summer 2007 floods in Tewkesbury UK. Journal of Flood Risk Management, 4, 88–95. CrossRef | Google Scholar
Néelz, S., and Pender, G. (2006). The influence of errors in Digital Terrain Models on flood flow routes. In River Flow 2006, Lisbon, Portugal: IAHR, 1955–1962. Google Scholar
Nelson, P. A., Smith, J. A., and Miller, A. J. (2009). Evolution of channel morphology and hydrologic response in an urbanizing drainage basin. Earth Surface Processes and Landforms, 31, 1063–1079. CrossRef | Google Scholar
NERC (Natural Environment Research Council) (1975). Flood Studies Report. London. Google Scholar
Oberstadler, R., Hönsch, H., and Huth, D. (1997). Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany. Hydrological Processes, 10, 1415–1425. CrossRef | Google Scholar
Ohl, C., and Tapsell, S. (2000). Flooding and human health: the dangers posed are not always obvious. British Medical Journal, 321(7270), 1167–1168. CrossRef | Google Scholar
Opperman, J. J., Galloway, G. E., Fargione, J., et al. (2009). Sustainable floodplains through large-scale reconnection to rivers. Science, 326, 1487–1488. CrossRef | Google Scholar | PubMed
Oreskes, N., Shraderfrechette, K., and Belitz, K. (1994). Verification, validation, and confirmation of numerical-models in the earth-sciences. Science, 263(5147), 641–646. CrossRef | Google Scholar | PubMed
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66. CrossRef | Google Scholar
Padi, P., Di Baldassarre, G., and Castellarin, A. (2011). Floodplain management in Africa: large scale analysis of flood data. Physics and Chemistry of the Earth, 36(7–8), 292–298. CrossRef | Google Scholar
Pappenberger, F., and Beven, K. J. (2006). Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resources Research, 42, W05302, doi:10.1029/2005WR004820. CrossRef | Google Scholar
Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of Hydrology, 302, 46–69. CrossRef | Google Scholar
Pappenberger, F., Matgen, P., Beven, K. J., et al. (2006). Influence of uncertain boundary conditions and model structure on flood inundation predictions. Advances in Water Resources, 29, 1430–1449. CrossRef | Google Scholar
Pappenberger, F., Beven, K. J., Frodsham, K., Romanovicz, R., and Matgen, P. (2007). Grasping the unavoidable subjectivity in calibration of flood inundation models: a vulnerability weighted approach. Journal of Hydrology, 333(2–4), 275–287. CrossRef | Google Scholar
Pelletier, M. P. (1987). Uncertainties in the determination of river discharge: a literature review. Canadian Journal of Civil Engineering, 15, 834–850. CrossRef | Google Scholar
Pender, G. (2006). Briefing: Introducing the Flood Risk Management Research Consortium. Proceedings of the Institution of Civil Engineers: Water Management, 159, 1–6. Google Scholar
Pender, G., and Faulkner, H. (2010). Flood Risk Science and Management. Oxford, UK: Wiley-Blackwell. CrossRef | Google Scholar
Petersen-Øverleir, A. (2004). Accounting for heteroscedasticity in rating curve estimates. Journal of Hydrology, 292, 173–181. CrossRef | Google Scholar
Pinder, G. E., and Sauer, S. P. (1971). Numerical simulation of flood wave modification due to bank storage effects. Water Resources Research, 7, 63–70. CrossRef | Google Scholar
Ponce, V. M., and Simons, D. B. (1977). Shallow wave propagation in open channel flow. Journal of the Hydraulic Division, Proceedings American Society of Civil Engineers, 103(12), 1461–1475. CrossRef | Google Scholar
Poole, G. C., Stanford, J. A., Frissell, C. A., and Running, S. W. (2002). Three-dimensional mapping of geomorphic controls on flood-plain hydrology and connectivity from aerial photos. Geomorphology, 48(4), 329–347. CrossRef | Google Scholar
Preissmann, A. (1961). Propagation of translatory waves in channels and rivers. In Proceedings of the 1st Congress de l’Association Francaise de Calcul, Grenoble, France, 433–442. Google Scholar
Price, R. K. (1975). Flood routing studies. In Flood Studies Report 3, Natural Environment Research Council, London. Google Scholar
Raclot, D. (2006). Remote sensing of water levels on floodplains: a spatial approach guided by hydraulic functioning. International Journal of Remote Sensing, 27(12), 2553–2574. CrossRef | Google Scholar
Rantz, S. E., et al. (1982). Measurement and Computation of Streamflow. US Geological Survey Water Supply Paper 2175, available at http://water.usgs.gov/pubs/wsp/wsp2175/. Google Scholar
Refsgaard, J. C. (2001). Towards a formal approach to calibration and validation of models using spatial data. In Grayson, R. B., and Blöschl, G. (eds.), Spatial Patterns in Catchment Hydrology: Observations and Modelling, Cambridge, UK: Cambridge University Press, 329–354. Google Scholar
Roca, M., and Davison, M. (2009). Two dimensional model analysis of flash-flood processes: application to the Boscastle event. Journal of Flood Risk Management, 3(1), 63–71. CrossRef | Google Scholar
Romanowicz, R., and Beven, K. (1996). Bayesian calibration of flood inundation models. In Anderson, M. G., Walling, D. E., and Bates, P. D. (eds.), Floodplain Processes, Chichester, UK: John Wiley and Sons, 297–318. Google Scholar
Romanowicz, R., and Beven, K. (1998). Dynamic real-time prediction of flood inundation probabilities. Hydrological Sciences Journal, 43(2), 181–196. CrossRef | Google Scholar
Romanowicz, R., and Beven, K. (2003). Estimation of flood inundation probabilities as conditioned on event inundation maps. Water Resources Research, 39(3), 1073–1085. CrossRef | Google Scholar
Romanowicz, R., Beven, K. J., and Tawn, J. (1996). Bayesian calibration of flood inundation models. In Anderson, M. G., Walling, D. E., and Bates, P. D. (eds.), Floodplain Processes, Chichester, UK: John Wiley and Sons, 333–360. Google Scholar
Sagris, V., Petrov, L., and Lavalle, C. (2005). Towards an Integrated Assessment of Climate Change-Induced Sea-Level Rise in the Baltic Sea: An Example for the City of Pärnu (Estonia). EC-Joint Research Centre, Ispra, Italy. Google Scholar
Samuels, P. G. (1990). Cross section location in one-dimensional models. In White, W. R. (ed.), International Conference on River Flood Hydraulics, Chichester, UK: John Wiley and Sons, 339–350. Google Scholar
Sanderson, E. W., Jaiteh, M., Levy, M. A., et al. (2002). The human footprint and the last of the wild. BioScience, 52, 891–904. CrossRef | Google Scholar
Savant, G., Berger, C., McAlpin, T. O., and Tate, J. N. (2010). An implicit finite element hydrodynamic model for dam and levee breach. Journal of Hydraulic Engineering, doi:10.1061/(ASCE)HY.1943–7900.0000372. Google Scholar
Sayers, P. B., Hall, J. W., and Meadowcroft, I. C. (2002). Towards risk-based flood hazard management in the UK. Proceedings of the Institution of Civil Engineers, Paper 12803, 150, 36–42. Google Scholar
Schumann, G., and Di Baldassarre, G. (2010). The direct use of radar satellites for event-specific flood risk mapping. Remote Sensing Letters, 1(2), 75–84. CrossRef | Google Scholar
Schumann, G., Matgen, P., Hoffmann, L., et al. (2007a). Deriving distributed roughness values from satellite radar data for flood inundation modelling. Journal of Hydrology, 344(1–2), 96–111. CrossRef | Google Scholar
Schumann, G., Hostache, R., Puech, C., et al. (2007b). High-resolution 3D flood information from radar imagery for flood hazard management. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1715–1725. CrossRef | Google Scholar
Schumann, G., Matgen, P., Cutler, M. E. J., et al. (2008). Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. Journal of Photogrammetry and Remote Sensing, 63, 283–296. CrossRef | Google Scholar
Schumann, G., Di Baldassarre, G., and Bates, P. D. (2009a). The utility of space-borne radar to render flood inundation maps based on multi-algorithm ensembles. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2801–2807. CrossRef | Google Scholar
Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., and Pappenberger, F. (2009b). Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Reviews of Geophysics, 47, RG4001, doi:10.1029/2008RG000274. CrossRef | Google Scholar
Schumann, G., Di Baldassarre, G., Alsdorf, D. E., and Bates, P. D. (2010). Near real-time flood wave approximation on large rivers from space: application to the River Po, Northern Italy. Water Resources Research, 46, W05601. CrossRef | Google Scholar
Sellin, R. H. J. (1964). A laboratory investigation into the interaction between the flow in the channel of a river and that over its floodplain. La Houille Blanche, 7, 793–801. CrossRef | Google Scholar
Sellin, R. H. J., and Willetts, B. B. (1996). Three-dimensional structures, memory and energy dissipation in meandering compound channel flow. In Anderson, M. G., Walling, D. E., and Bates, P. D. (eds.), Floodplain Processes, Chichester, UK: John Wiley and Sons, 255–298. Google Scholar
Simonovic, S. (2012). Floods in a Changing Climate: Risk Management. International Hydrology Series, Cambridge, UK: Cambridge University Press. CrossRef | Google Scholar
Smith, D. M. (1996). Speckle reduction and segmentation of synthetic aperture radar images. International Journal of Remote Sensing, 17, 2043–2057. CrossRef | Google Scholar
Smith, K. (1996). Environmental Hazards: Assessing Risk and Reducing Disaster, 2nd edition. London: Routledge. Google Scholar
Solomatine, D. P., and Shrestha, D. L. (2008). A novel method to estimate model uncertainty using machine learning techniques. Water Resources Research, 45, W00B11. Google Scholar
Sorooshian, S., Gupta, V. K., and Fulton, J. L. (1983). Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: influence of calibration data variability and length on model credibility. Water Resources Research, 19(1), 251–259, doi:10.1029/WR019i001p00251. CrossRef | Google Scholar
Staatscourant (1998). Regeling oogstschade 1998. The Hague, the Netherlands: Ministerie van Algemene Zaken, 16–17. Google Scholar
Stelling, G. S., and Duynmeijer, S. P. A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. International Journal for Numerical Methods in Fluids, 43, 1329–1354. CrossRef | Google Scholar
Strelkof, T., and Katapodes, N. D. (1977). Border irrigation hydraulics with zero inertia. Journal of Irrigation and Drainage Engineering, 103, 325–342. Google Scholar
Swanson, K. M., Watson, E., Aalto, R., et al. (2008). Sediment load and floodplain deposition rates: comparison of the Fly and Strickland rivers, Papua New Guinea. Journal of Geophysical Research, 113, F01S03, doi:10.1029/2006JF000623. CrossRef | Google Scholar
Szöllösi-Nagy, A. (2009). Learn from your errors – if you can! Reflections on the value of hydrological forecasting models. Inaugural address, UNESCO-IHE, Delft, the Netherlands. Google Scholar
Szöllösi-Nagy, A., and Mekis, E. (1988). Comparative analysis of three recursive real-time river flow forecasting models: deterministic, stochastic, and coupled deterministic-stochastic. Stochastic Hydrology and Hydraulics, 2, 17–33. CrossRef | Google Scholar
Teegavarapu, R. (2012). Floods in a Changing Climate: Extreme Precipitation. International Hydrology Series, Cambridge, UK: Cambridge University Press. CrossRef | Google Scholar
Todini, E., and Bossi, A. (1986). PAB (Parabolic and Backwater) an unconditionally stable flood routing scheme particularly suited for real time forecasting and control. Journal of Hydraulic Research, 24(5), 405–424. CrossRef | Google Scholar
Toro, E. (1997). Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin, Germany: Springer. CrossRef | Google Scholar
Uhlenbrook, S., Di Baldassarre, G., Bhattacharya, B., et al. (2011). Flood management in a changing world: why and how do we have to change our approach in education?5th International Conference on Flood Management (ICFM5), 27–29 September 2011, Tsukuba-Japan. Google Scholar
UNEP/GRID (2000). Potential impact of sea level rise: Nile Delta. In UNEP/GRID-Arendal Maps and Graphics Library. Retrieved from http://maps.grida.no/go/graphic/potential-impact-of-sea-level-rise-nile-delta. Last accessed November 1, 2011. Google Scholar
UN-ISDR (2004). Terminology: Basic Terms of Disaster Risk Reduction. UN International Strategy for Disaster Reduction, www.unisdr.org/eng/library/lib-terminology-eng%20home.htm. Google Scholar
UN-ISDR (2009). Reducing Disaster Risks Through Science: Issues and Actions. Full report of the ISDR Scientific and Technical Committee. Google Scholar
van Leer, B. (1979). Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. Journal of Computational Physics, 32, 101–136. CrossRef | Google Scholar
Van Manen, S. E., and Brinkhuis, M. (2005). Quantitative flood risk assessment for polders. Reliability Engineering and System Safety, 90, 229–237. CrossRef | Google Scholar
Viglione, A., Laio, F., and Claps, P. (2007). A comparison of homogeneity tests for regional frequency analysis. Water Resources Research, 43, W03428, doi:10.1029/2006WR005095. CrossRef | Google Scholar
Villanueva, I., and Wright, N. G. (2006). Linking Riemann and storage cell models for flood prediction. Proceedings of the Institution of Civil Engineers: Water Management, 159, 27–33. Google Scholar
Vis, M., Klijn, F., De Bruijn, K. M., and Van Buuren, M. (2003). Resilience strategies for flood risk management in the Netherlands. International Journal of River Basin Management, 1(1), 33–40. CrossRef | Google Scholar
Vrisou van Eck, N., and Kok, M. (2001). Standaardmethode Schade en Slachtoffers als gevolg van overstromingen. Dienst Weg- en Waterbouwkunde, Ministerie van Rijkswaterstaat, the Netherlands, Publication W-DWW-2001–028. Google Scholar
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A. (2009). Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment, 23(7), 1011–1026. CrossRef | Google Scholar
Wagener, T., Sivapalan, M., Troch, P. A., et al. (2010). The future of hydrology: an evolving science for a changing world. Water Resources Research, 46, W05301. CrossRef | Google Scholar
Wagenmakers, E. J. (2003). How many parameters does it take to fit an elephant? Journal of Mathematical Psychology, 47, 580–586. CrossRef | Google Scholar
Ward, R. C. (1978). Floods: A Geographical Perspective. London: Macmillan. CrossRef | Google Scholar
Whitham, G. (1974). Linear and Nonlinear Waves. New York: John Wiley and Sons. Google Scholar
Wilby, R. L., Beven, K. J., and Reynard, N. S. (2008). Climate change and fluvial flood risk: more of the same?Hydrological Processes, 22, 2511–2523, doi: 10.1002/hyp.6847. CrossRef | Google Scholar
Wilson, C. A. M. E., Stoesser, T., and Bates, P. D. (2005). Modelling of open channel flow through vegetation. In Bates, P. D., Lane, S. N., and Ferguson, R. I. (eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics, Chichester, UK: John Wiley and Sons. Google Scholar
Woodhead, S., Asselman, N., Zech, Y., et al. (2009). Evaluation of Inundation Models. FP6 Integrated Project FLOODsite, Public Report, www.floodsite.net, HR Wallingford, UK. Google Scholar
World Meteorological Organisation (1994). Guide to Hydrological Practice, WMO Publication No. 168. Google Scholar
Wright, N. G., Asce, M., Villanueva, I., et al. (2008). Case study of the use of remotely sensed data for modeling flood inundation on the River Severn, UK. Journal of Hydraulic Engineering, 134(5), 533–540. CrossRef | Google Scholar
Yamazaki, D., Kanae, S., Kim, H., and Oki, T. (2011). A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research, 47, W04501. CrossRef | Google Scholar
Yu, D., and Lane, S. N. (2006). Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 1: Mesh resolution effects. Hydrological Processes, 20, 1541–1565. CrossRef | Google Scholar
Zwenzner, H., and Voigt, S. (2009). Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrology and Earth System Sciences, 13, 567–576. CrossRef | Google Scholar

Metrics

Usage data cannot currently be displayed.