Skip to main content Accessibility help
×
  • Cited by 25
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9781139030014

Book description

Over forty years of teaching experience are distilled into this text. The guiding principle is the wide use of the concept of intermediate asymptotics, which enables the natural introduction of the modeling of real bodies by continua. Beginning with a detailed explanation of the continuum approximation for the mathematical modeling of the motion and equilibrium of real bodies, the author continues with a general survey of the necessary methods and tools for analyzing models. Next, specific idealized approximations are presented, including ideal incompressible fluids, elastic bodies and Newtonian viscous fluids. The author not only presents general concepts but also devotes chapters to examining significant problems, including turbulence, wave-propagation, defects and cracks, fatigue and fracture. Each of these applications reveals essential information about the particular approximation. The author's tried and tested approach reveals insights that will be valued by every teacher and student of mechanics.

Reviews

‘The present book is a masterful exposition of fluid and solid mechanics, informed by the ideas of scaling and intermediate asymptotics, a methodology and point of view of which Professor Barenblatt is one of the originators … This is indeed a remarkable book.'

Alexandre J. Chorin - from the Foreword

'This book achieves clarity of exposition on fringe but important topics that no other book on the market achieves … the legendary author Barenblatt and his groundbreaking lifework are spectacularly immortalized in Flow, Deformation and Fracture.’

Colin R. Meyer Source: Pure and Applied Geophysics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. Springer-Verlag.
Batchelor, G. K. (2002). An Introduction to Fluid Dynamics. Cambridge University Press.
Bažant, Z. P. (2002). Scaling of Structural Strength. Hermes-Penton Science.
Bridgman, P. W. (1931). Dimensional Analysis. Yale University Press.
Broberg, K. B. (1999). Cracks and Fracture. Academic Press.
Carpinteri, A. (ed.) (1996). Size-Scale Effects in the Failure Mechanisms of Materials and Structures. E. & F. N. Spon.
Chernyi, G. G. (1961). Introduction to Hypersonic Flows. Academic Press.
Chorin, A. J. (1994). Vorticity and Turbulence. Springer-Verlag.
Chorin, A. J., and Marsden, J. E. (1992). A Mathematical Introduction to Fluid Mechanics, 3rd edn. Springer-Verlag.
Feynman, R. (2006). The Feynman Lectures on Physics, definitive edn. Addison-Wesley.
Friedrichs, K. O. (1966). Special Topics in Fluid Dynamics. Gordon and Breach.
Frisch, U. (1996). Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press.
Galilei, Galileo (1638). Discorsi e Dimonstrazioni Matematiche Intorno a Duo Nuove Scienze. Elsevier, Leida. Also: Dialogues Concerning Two New Sciences. Easton Press (1999).
Germain, P. (1986). Mécanique. École Polytechnique. Ellipses.
Goldenfeld, N. D. (1992). Lectures on Phase Transitions and the Renormalization Group. Perseus Publishing.
Hayes, W. D., and Probstein, R. F. (2004). Hypersonic Inviscid Flow. Dover Publications.
Lamb, H. (1932). Hydrodynamics, 6th edn. Cambridge University Press.
Landau, L. D., and Lifshitz, E. M. (1986). Theory of Elasticity, 3rd edn. Elsevier.
Landau, L. D., and Lifshitz, E. M. (1987). Fluid Mechanics, 2nd edn. Elsevier.
Lighthill, M. J. (1986). An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press.
Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity, 4th edn. MacMillan.
Mandelbrot, B. (1975). Les Objets Fractals: Forme, Hasard et Dimension. Flammarion, Paris.
Mandelbrot, B. (1977). Fractals, Form, Chance and Dimension. W. H. Freeman & Co.
Marsden, J. E., and Hughes, T. J. R. (1983). The Mathematical Foundations of Elasticity. Prentice Hall.
Monin, A. S., and Yaglom, A. M. (1975). Statistical Fluid Mechanics, Mechanics of Turbulence, Vol. II. MIT Press.
Monin, A. S., and Yaglom, A. M. (1971). Statistical Fluid Mechanics, Mechanics of Turbulence, Vol. I. MIT Press.
Muskhelishvili, N. I. (1963). Some Basic Problems of Mathematical Theory of Elasticity, 2nd English edn. P. Nordhoft.
Oswatisch, K. (1956). Gas Dynamics. Academic Press.
Prandtl, L., and Tietjens, O. (1931). Hydro und Aeromechanik, Vol. 2. Springer-Verlag.
Schlichting, H. (1968). Boundary Layer Theory, 6th edn. McGraw-Hill.
Suresh, S. (1998). Fatigue ofMaterials. Cambridge University Press.
Timoshenko, S. P. (1953). History of Strength of Materials. McGraw-Hill.
Timoshenko, S. P., and Goodier, J. N. (1970). Theory of Elasticity. McGraw-Hill.
Todhunter, I., and Pearson, K. (1886). A History of the Theory of Elasticity and of the Strength of Materials, Vol. I. Cambridge University Press.
Van Dyke, M. (1982). An Album of Fluid Motion, 10th edn. Parabolic Press.
Von Kármán, Th. (1957). Aerodynamics. Cornell University Press.
Whitham, G. B. (1974). Linear and Non-linear Waves. J. Wiley & Sons.
Zeldovich, Ya. B., and Raizer, Yu. P. (2002). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Dover Publications.
Adamsky, V. B. (1956). Integration of the system of self-similar equations in the problem of an impulsive load on a cold gas. Akust. Zh. 2, 3–9.
Atiyah, M. F., Bott, R., and Gårding, L. (1970). Lacunae for hyperbolic differential operators with constant co-efficients. Acta Math. 124, 109–189.
Barenblatt, G. I. (1956). On certain problems of the theory of elasticity arising in the study of the mechanism of the hydraulic fracture of oil-bearing strata. J. Appl. Math. Mech. (PMM) 20 (4), 475–486.
Barenblatt, G. I. (1959). On the equilibrium cracks formed in brittle fracture. J. Appl. Math. Mech. (PMM) 23 (3), 434–444; (4) 706-721; (5) 893-900.
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. In Advances in Applied Mechanics, H. L., Dryden and Th.von, Kármán (eds.), Vol. VII, pp. 55–129.
Barenblatt, G. I. (1964). On some general concepts of the mathematical theory of brittle fracture. J. Appl. Math. Mech. (PMM) 28 (4), 778–792.
Barenblatt, G. I. (1996). Scaling, Self-Similarity and Intermediate Asymptotics. Cambridge University Press.
Barenblatt, G. I. (2003). Scaling. Cambridge University Press.
Barenblatt, G. I. (2008). A mathematical model of turbulent drag reduction by high-molecular-weight polymeric additions in a shear flow. Phys. Fluids 20, 091 702.
Barenblatt, G. I., and Botvina, L. R. (1981). Incomplete similarity of fatigue in a linear range of crack growth. Fatigue Eng. Mater. Struct. 3, 193–212.
Barenblatt, G. I., and Chernyi, G. G. (1963). On the moment relations on the discontinuity surfaces in dissipative media. J. Appl. Math. Mech. (PMM) 27 (5), 1205–1218.
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M. (1997). Scaling laws in fully developed turbulent pipe flow. Appl. Mech. Rev. 50, 413–429.
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M. (2000). Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers. J. Fluid Mech. 410, 263–283.
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M. (2002). A model of turbulent boundary layer with non-zero pressure gradient. Proc. US Nat. Acad. Sci. 99, 5572–5576.
Barenblatt, G. I., Entov, V. M., and Salganik, R. L. (1966). Kinetics of crack extension. Eng. J. Mech. Solids 1 (5), 53-69; 1 (6), 49–51.
Barenblatt, G. I., and Goldenfeld, N. D. (1995). Does fully developed turbulence exist? Reynolds number independence versus asymptotic covariance. Phys. Fluids 7 (12), 3078–3082.
Barenblatt, G. I., and Monteiro, P. J. M. (2010). Scaling laws in nanomechanics. Physical Mesomech. 13 (5-6), 245–248.
Batchelor, G. K. (1947). Kolmogoroff's theory of locally isotropic turbulence. Proc. Camb. Phil. Soc. 43 (4), 533–559.
Batchelor, G. K. (1996). The Life and Legacy of G. I. Taylor. Cambridge University Press.
Bažant, Z. P. (2002). Scaling of Structural Strength. Hermes-Penton Science.
Benbow, J. J. (1960). Cone cracks in fused silica. Proc. Phys. Soc. B75, 697–699.
Blasius, H. (1908). Grenzschichten in Flüssigkeit mit kleiner Reibung. Z. Math. Phys. 56, 1–37.
Bok, B. J. (1972). The birth of stars. Scientific American 227 (2), 48–65.
Botvina, L. R. (1989). The Kinetics of Fracture of Structural Materials, Nauka.
Boussinesq, J. (1877). Essai sur la théorie des eaux courants. Mémoirs Présentés par Divers Savants a l'Académie des Sciences, Paris 23 (1), 1–680.
Carpinteri, A. E. (1996). Strength and toughness in disordered materials: complete and incomplete similarity. In Size Scale Effects in the Failure Mechanisms of Materials and Structures, A. E., Carpinteri (ed.), pp. 3–26. E. & F. N. Spon.
Castaing, B., Gagne, Y., and Hopfinger, E. (1990). Velocity probability dencity functions of high Reynolds number turbulence. Physica D 46, 177–220.
Cauchy, A. L. (1828). Sur les equations qui experiment les conditions d'equilibre ou les lois du movement des fluides. In Exercises de Mathématiques, Bure, Paris. Also in Oevres Complètes d'Augustin Cauchy, II Serie, Tom VIII, pp. 158–179. Gauthier-Villars (1890).
Chaplyguine, S. A. (1910). On the pressure of the plane-parallel flow on the blocking bodies (on the theory of aeroplanes). Mat. Sbornik 28, Moscow.
Chernyi, G. G. (1961). Introduction to Hypersonic Flows. Academic Press.
Chorin, A. J. (1977). Theories of turbulence. In Lecture Notes in Mathematics, Vol. 615, pp. 36–47. Springer-Verlag.
Chorin, A. J. (1994). Vorticity and Turbulence. Springer-Verlag.
Chorin, A. J. (1998). New perspectives in turbulence. Quart. J. Appl. Math. XIV(4), 767–785.
Cottrell, A. H. (1967). The nature of metals. Scientific American 217 (3), 90–100.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104.
Ekman, V. W. (1910). On the change from steady to turbulent motion of liquids. Ark. Mat. Astronom. Fys. 6 (12).
Erm, L. P., and Joubert, P. N. (1991). Low Reynolds-number turbulent boundary layers. J. Fluid Mech. 230, 1–44.
Fernholz, H. H., and Finley, P. J. (1996). The incompressible zero-pressure gradient turbulent boundary layer: an assessment of the data. Progr. Aero. Sci. 32, 245–311.
Gilman, J. J. (1967). The nature of ceramics. Scientific American 217 (3), 113–124.
Goldenfeld, N. D. (1992). Lectures on Phase Transitions and the Renormalization Group. Perseus Publishing.
Goodier, J. N. (1968). Mathematical theory of equilibrium cracks. In Fracture. An Advanced Treatise, Vol. II, H., Liebowitz (ed.), pp. 1–66.
Griffith, A. A. (1920). The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc. London A221, 163–198.
Griffith, A. A. (1924). The theory of rupture. In Proc. 1st Int. Congress on Applied Mathematics, Delft, pp. 55–63.
Harmon, L. D. (1973). Recognition of faces. Scientific American 229 (5), 70–82.
Hayden, H. W., Gibson, R. C., and Brophy, J. H. (1969). Superplastic steels. Scientific American 220 (3), 28–35.
Heisenberg, W. (1948). On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. London A195, 402–406.
Hooke, R. (1678). De Potentia Restitutiva. London.
Hunt, J. C. R., Phillips, O. M., and Williams, D. (eds.) (1991). Turbulence and stochastic processes: Kolmogorov's ideas 50 years on. Proc. Roy. Soc. London434.
Irwin, G. R. (1948). Fracture dynamics. In Fracturing of Metals, pp. 147–166. ASM, Cleveland, Ohio.
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing aplate. J. Appl. Mech. 24, 361–364.
Irwin, G. R. (1960). Plastic zone near a crack and fracture toughness. In Mechanical and Metallurgical Behaviour of Sheet Materials, Proc. Seventh Sagamore Conf.
Izakson, A. (1937). Formula for the velocity distribution near a wall. Zh. Exper. Teor. Fiz. 7 (7), 919–924.
Joseph, D., Funada, T., and Wang, J. (2008). Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press.
Joukovsky, N. E. (1906). On attached vortices. Proc. Section of the Physical Sciences XIII, no. 2. Typography of Moscow University.
Joukovsky, N. E. (1910). Ueber die Konturen der Tragflächen der Drachenfliege. Z. für Flugtechnik and Motorluftschiffahrt I (22), 281–284.
Kelly, A. (1967). The nature of composite materials. Scientific American 217 (3), 160–179.
Kline, S. J., Reynolds, W. C., Schraub, W. A., and Rundstadler, P. W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. 30 (1), 741–773.
Kolmogorov, A. N. (1941a). Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 299–303. Also in Selected Works of A. N. Kolmogorov, Vol. I, pp. 312-318. Kluwer (1991).
Kolmogorov, A. N. (1941b). Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 31 (1), 19–21. Also in Selected Works of A.N.Kolmogorov, Vol. I, pp. 324-327. Kluwer(1991).
Kolmogorov, A. M. (1942). The equations of turbulent motion of incompressible fluids. Izvestiya, Akad. Nauk SSSR, Ser. Fiz. 6 (1-2), 56–58. Also in Selected Works of A. N. Kolmogorov, Vol. I, pp. 328-330. Kluwer (1991).
Kolosov, G. V. (1909). On the application of complex functions theory to a plane problem of the mathematical theory of elasticity. Thesis, Yuriev (Dorpat) University.
Krogstad, P. A., and Antonia, P. A. (1999). Surface roughness effects in turbulent boundary layers. Exp. Fluids 27, 450–460.
Kudin, A. M., Barenblatt, G. I., Kalashnikov, V. N., Vlasov, S. A., and Belokon', V. S. (1973). Destruction of metallic obstacles by a jet of dilute polymer solution. Nature (London), Phys. Sci. 245, 95.
Kutta, W. M. (1902). Auftriebskrafte in strömenden Flüssigkeiten. In Illustrierte Aeronautische Mitteilungen, München, p. 133.
Kutta, W. M. (1910). Uber eine mit den Grundlagen des Flugproblems in Bezielung stellende zweidimensionale Strömung. Sitzungberichte der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-Physikalische Klasse 2, 1–58.
Lax, P. (1968). Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490.
Leonov, M. Ya., and Panasyuk, V. V. (1959). Development of the finest cracks in a solid. Prikladna Mech. 5, 391–401.
Lighthill, M. J. (1970). Turbulence. In Osborne Reynolds and Engineering Science Today, D. M., McDowell and J. D., Jackson (eds.), Manchester University Press. Also in Collected Papers of Sir James Lighthill, Vol. II, pp. 83-146. Oxford University Press (1997).
Mark, H. F. (1967). The nature of the polymeric materials. Scientific American, 217 (3), 149–156.
Maružić, I., and Perry, A. E. (1995). A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid. Mech. 298, 389–407.
Millikan, C. B. (1939). A critical discussion of turbulence in channels and circular pipes. In Proc. 5th Int. Congress in Applied Mechanics, Cambridge, MA, pp. 386–392.
Monin, A. S., and Yaglom, A. M. (1971). Statistical Fluid Mechanics, Mechanics of Turbulence, Vol. I. MIT Press.
Mott, Sir Nevill (1967). The solid state. Scientific American 217 (3), 80–89.
Navier, C. L. M. H. (1822). Mémoire sur les lois du mouvement des fluides. Meémoires de l'Acadeémie Royale des Sciences de l'Institut de France 6, 389–449.
Navier, C. L. M. H. (1827). Meéoire sur les lois de l'equilibre et du mouvement des corps solides élastiques. Mémoires de l'Académie Royale des Sciences de l'Institut de France 7, 375–393.
Nigmatulin, R. I. (1965). A plane strong explosion on a boundary of two ideal, calorically perfect gases. Bulletin MGU, Ser. Matem. Mech. 1, 83–87.
Nikuradze, J. (1932). Gesetzmässigkeiten der turbulenten Strömung in glatten Röhren. VDI Forschungsheft, no. 356.
Obukhov, A. M. (1941a). Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32 (1), 22–24.
Obukhov, A. M. (1941b). Spectral energy distribution in a turbulent flow. Izvestiya Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5 (4-5), 453–466.
Onsager, L. (1945). The distribution of energy in turbulence. Phys. Rev. 68 (11-12), 286.
Orowan, E. O. (1950). Fundamentals of brittle behavior of metals. In Fatigue and Fracture of Metals, W. M., Murray (ed.), pp. 139–167. Wiley.
Oswatisch, K. (1956). Gas Dynamics. Academic Press.
Panasyuk, V. V. (1968). Limiting Equilibrium of Brittle Bodies with Cracks. Naukova Dumka, Kiev.
Panton, R. I. (2002). Evaluation of the Barenblatt–Chorin–Prostokishin power law for boundary layers. Phys. Fluids 14 (5), 1806–1808.
Paris, P. C., and Erdogan, F. (1963). A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME, Ser. D 85, 528–534.
Perry, A. E., Hafer, S., and Chong, M. S. (2001). A possible reinterpretation of the Princeton superpipe data. J. Fluid Mech. 439, 395–401.
Petrovsky, I. G. (1966). Ordinary Differential Equations. Prentice Hall.
Petrovsky, I. G. (1967). Partial Differential Equations. W. G. Saunders.
Petrovsky, I. G. (1971). Lectures on the Theory of Integral Equations. Mir Publishers.
Poisson, S. D. (1829). Sur les équations général de l'equilibre et du mouvement des corps solides élastiques et des fluides. J. de l'École Royale Polytechnique 13, 1–174.
Prandtl, L. (1905). Uber Flüssigkeits Bewegung bei sehr kleiner Reibung. In Verhandlungen des III Int. Math. Kongress (Heidelberg, 1904), pp. 484–491. Teubner, Leipzig. Also in Ludwig Prandtl: Gesammelte Abhandlungen, W. Tollmien, H. Schlichting, and H. Görtler (eds.), pp. 575-584. Springer-Verlag.
Prandtl, L. (1932). Zur turbulenten Strömung in Röhren and längs Platten. Ergebn. Aerodyn. Versuchsanstalt, Göttingen B4, 18–29.
Prandtl, L. (1945). Uber ein neues Formalsystem für die ausgebildete Turbulenz. Nacht. Akad. Wiss. Göttingen, Math.-Phys. Klasse, 6–18.
Prandtl, L., and Tietjens, O. (1931). Hydro und Aeromechanik, Vol. 2. Springer-Verlag.
Praskovsky, A. S., and Oncley, S. (1994). Measurement of Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6 (9), 2886–2889.
Rayleigh, Lord J. W. (1877). On the irregular flight of a tennis ball. Messenger of Mathematics VII, 14–16. Also in Scientific Papers, Vol. 1, pp. 344-346. Cambridge University Press (1899).
Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in a parallel channel. Phil. Trans. Roy. Soc. London 174, 935–982.
Reynolds, O. (1894). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. London 186, 123–161.
Richardson, L. F. (1922). Weather Prediction by Numerical Process. Cambridge University Press.
Ritchie, R. O. (2005). Incomplete self-similarity and fatigue crack growth. Int. J. Fracture 132, 97–203.
Ritchie, R. O., and Knott, J. F. (1974). Micro cleavage cracking during fatigue crack propagation in low strength steel. Mat. Sci. Engng. 14, 7–14.
Roesler, F. (1956). Brittle fracture near equilibrium. Proc. Phys. Soc. B69, 981–992.
Russell, J. S. (1844). Report on Waves. In Reports of the XIV Meeting of the British Association for the Advancement of Science. J. Murray.
Saint-Venant, Barré de A. J. C. (1843). Note á joindre au memoire sur la dynamique des fluides presenté le 14 avril 1834. Comptes Rendus de l'Académie des Sciences 17 (22), 1240–1243.
Schiller, L. (1922). Untersuchungen über laminare und turbulente Strömung. Forschungarbeiten Ing.-Wesen H. 248; ZAMM 2, 96–106.
Schlichting, H. (1968). Boundary Layer Theory, 6th edn. McGraw-Hill.
Sedov, L. I. (1946). Propagation of strong shock waves. J. Appl. Math. Mech. (PMM) 10, 241–250. (Pergamon Translation no. 1223).
Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics. Academic Press.
Spurk, J. H., and Aksel, N. (2008). Fluid Mechanics. Springer-Verlag.
Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. VII (I), 287–319.
Taylor, G. I. (1941). The formation of a blast wave by a very intense explosion. Report RC-210, 27 June 1941, Civil Defense Research Committee.
Taylor, G. I. (1950). The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc. London A201, 175–186.
Teixeira, R. E., Babcock, H. P., Shaqfeh, E. S. G., and Chu, S. (2005). Shear thinning and tumbling dynamics of single polymers in the flow gradient plane. Macromolecules 38, 581.
Teixeira, R. E., Dambel, A. K., Richter, D. H., Shaqfeh, E. S. G., and Chu, S. (2007). The individualistic dynamics of entangled DNA in solution. Macro-molecules 40, 2461.
Töpfer, C. (1912). Anmerkungen zu dem Aufsatz von H. Blasius “Grenzschichten in Flüssigkeit mit kleiner Reibung”. Z. Math. Phys. 60, 397.
Trefil, J. (1999). Other Worlds. Images of the Cosmos from Earth and Space. National Geographic.
Van den Booghart, A. (1966). Crazing and characterization of brittle fracture in polymers. In Proc. Conf. Physical Basis of Yield and Fracture. Oxford University Press.
Vlasov, I. O., Derzhavina, A. I., and Ryzhov, O. S. (1974). On an explosion on the boundary of two media. Comput. Math. and Math. Phys. 14 (6), 1544–1552.
von Kármán, Th. (1930). Mechanische Ähnlichkeit und Turbulenz. In Proc. III Int. Congr. Applied Mechanics, C. W., Oseen and W., Weibull (eds.), Vol. 1, pp. 81–93. AB Sveriges Litografska Truckenier.
von Kármán, Th., and Howarth, L. (1938). On the statistical theory of isotropic turbulence. Proc. Roy. Soc. London A164 (917), 192–215.
von Koch, H. (1904). Sur une courbe continue sans tangente obtenue par une construction géometrique élémentaire. Arkiv Mat. Astron. Fys. 2, 681–704.
von Mises, R. (1941). Some remarks on the laws of turbulent motion in tubes. In Th. von Kaérmaén Anniversary Volume, pp. 317–327. California Institute of Technology Press.
von Neumann, J. (1941). The point source solution. National Defense Research Committee, Div. B, Report AM-9, 30 June 1941.
von Weizsäcker, C. F. (1948). Der Spektrum der Turbulenz bei grossen Reynolds'schen Zahlen. Z. Physik 124 (7-12), 614–627.
von Weizsäcker, C. F. (1954). Genäherte Darstellung starker instationäzer Stosswellen durch Homologie-Lösungen. Z. Naturforschung 9A, 269–275.
Willis, J. R. (1967). A comparison of the fracture criteria of Griffith and Barenblatt. J. Mech. Phys. Solid 15, 151–162.
Wu, X., and Moin, P. (2009). Direct numerical simulation of turbulence in a nominally zero-pressure gradient flat plate boundary layer. J. Fluid Mech. 630, 5–41.
Yaglom, A. M. (1993). Similarity laws for wall turbulent flows: their limitation and generalizations. In Conf. on New Approaches and Concepts in Turbulence, Monte, Verita, Th., Dracos and A., Tsinober (eds.), pp. 7–27. Birkhäuser-Verlag.
Yaglom, A. M. (2000). The century achievements and unsolved problems. In New Trends in Turbulence, M., Lesieur, A., Yaglom and F., David (eds.), pp. 3–52. Springer-Verlag.
Zagarola, M. V. (1996). Mean flow scaling in turbulent pipe flow. Ph.D. thesis, Princeton University.
Zagarola, M. V., Smits, A. J., Orszag, S. A., and Yakhot, V. (1996). Experiments in high Reynolds number turbulent pipe flow. AIAA paper 95-0654, Reno, NV.
Zeldovich, Ya. B. (1956). The motion of gas under the action of a short term pressure shock. Akust. Zh. 2 (1), 28–30. (Soviet Phys. Acoustics 2, 25–35.)
Zeldovich, Ya. B., and Raizer, Yu. P. (2002). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Dover Publications.
Zheltov, Yu. P., and Christianovich, S. A. (1955). On the hydraulic fracture of oil strata. Izvestiya, USSR Acad. Sci., Technical Sci. 5, 3–41.
Zhukov, A. I., and Kazhdan, Ia. M. (1956). Motion of a gas due to the effect of a brief impulse. Soviet Phys. Acoustics 2 (4), 375–381.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.