Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- List of Abbreviations
- Introduction
- Part I Basics of Gauge Theories
- Part II The StandardModel
- Part III Weak Decays in the StandardModel
- 3 Weak Decays at Tree Level
- 4 Weak Decays at Tree Level
- 5 Short-Distance Structure ofWeak Decays
- 6 Effective Hamiltonians for FCNC Processes
- 7 Nonperturbative Methods in Weak Decays
- 8 Particle-Antiparticle Mixing and CP Violation in the Standard Model
- 9 Rare B and K Decays in the Standard Model
- 10 ε′/ε in the Standard Model
- 11 Charm Flavor Physics
- 12 Status of Flavor Physics within the Standard Model
- Part IV Weak Decays beyond the StandardModel
- Appendix A Dirac Algebra, Spinors, Pauli and Gell-Mann Matrices
- Appendix B Feynman Rules of the Standard Model
- Appendix C Massive Loop Integrals
- Appendix D Numerical Input
- Appendix E Analytic Solutions to SMEFT RG Equations
- References
- Index
12 - Status of Flavor Physics within the Standard Model
from Part III - Weak Decays in the StandardModel
Published online by Cambridge University Press: 11 June 2020
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- List of Abbreviations
- Introduction
- Part I Basics of Gauge Theories
- Part II The StandardModel
- Part III Weak Decays in the StandardModel
- 3 Weak Decays at Tree Level
- 4 Weak Decays at Tree Level
- 5 Short-Distance Structure ofWeak Decays
- 6 Effective Hamiltonians for FCNC Processes
- 7 Nonperturbative Methods in Weak Decays
- 8 Particle-Antiparticle Mixing and CP Violation in the Standard Model
- 9 Rare B and K Decays in the Standard Model
- 10 ε′/ε in the Standard Model
- 11 Charm Flavor Physics
- 12 Status of Flavor Physics within the Standard Model
- Part IV Weak Decays beyond the StandardModel
- Appendix A Dirac Algebra, Spinors, Pauli and Gell-Mann Matrices
- Appendix B Feynman Rules of the Standard Model
- Appendix C Massive Loop Integrals
- Appendix D Numerical Input
- Appendix E Analytic Solutions to SMEFT RG Equations
- References
- Index
Summary
We will next go beyond the SM. It will be strategically useful to present first the general structure of effective Hamiltonians beyond the SM and identify new operators that are absent in the SM. This chapter will deal with physics at the electroweak scale and below it as we already encountered in previous chapters but now particular emphasis will be put on new operatorsgenerated by some NP at much higher scale that at the electroweak scale, and below it they will contribute to various processes. What will be discussed here is the low-energy effective theory that carries the name LEFT to distinguish it from the effective theory discussed in the next chapter. Here the basic symmetries for finding possible operators is simply the product SU(3)*U(1), that are the symmetries of QCD and QED. Simply the color and electric charges have to be conserved.
Keywords
- Type
- Chapter
- Information
- Gauge Theory of Weak Decays , pp. 410 - 414Publisher: Cambridge University PressPrint publication year: 2020