Skip to main content Accessibility help
×
Publisher:
Cambridge University Press
Online publication date:
August 2021
Print publication year:
2021
Online ISBN:
9781108692458

Book description

Homological mirror symmetry has its origins in theoretical physics but is now of great interest in mathematics due to the deep connections it reveals between different areas of geometry and algebra. This book offers a self-contained and accessible introduction to the subject via the representation theory of algebras and quivers. It is suitable for graduate students and others without a great deal of background in homological algebra and modern geometry. Each part offers a different perspective on homological mirror symmetry. Part I introduces the A-infinity formalism and offers a glimpse of mirror symmetry using representations of quivers. Part II discusses various A- and B-models in mirror symmetry and their connections through toric and tropical geometry. Part III deals with mirror symmetry for Riemann surfaces. The main mathematical ideas are illustrated by means of simple examples coming mainly from the theory of surfaces, helping the reader connect theory with intuition.

Reviews

'Each chapter concludes with a few exercises, and great care has been taken to use notation and terminology in a consistent way. That must have taken considerable effort and it greatly increases the value of the book because there are many examples in mirror symmetry of different writers using the same words to mean different, often subtly different, things.'

G. K. Sankaran Source: MathSciNet

‘The book under review provides an introduction to homological mirror symmetry which is accessible to graduate students in mathematics. In particular, it includes a great amount of background material, and motivational sections. Among the reason it is so approachable is the style …’

Hulya Arguz Source: zbMATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.