[1] Abbe, E. (1895). Berechnung des wahrscheinlichen Fehlers bei der Bestimmung von Mittelwerthen durch Abzählen. In: Hensen, V.
Methodik der Untersuchungen bei der Plankton-Expedition der Humboldt-Stiftung.
Verlag von Lipsius & Tischer, Kiel, pp. 166–169.
[2] Adler, R. and Taylor J., E. (2007). Random Fields and Geometry.
Springer, New York.
[3] Aldous, D. (1988). Probability Approximations via the Poisson Clumping Heuristic.
Springer, New York.
[4] Baccelli, F. and Błaszczyszyn, B. (2009). Stochastic Geometry andWireless Networks, Volume I - Theory.
NoW Publishers, Boston.
[5] Baccelli, F. and Błaszczyszyn, B. (2009). Stochastic Geometry andWireless Networks, Volume II - Applications. NoW Publishers, Boston.
[6] Baccelli, F. and Brémaud, P. (2000). Elements of Queueing Theory.
Springer, Berlin.
[7] Baddeley, A. (1980). A limit theorem for statistics of spatial data. Adv. in Appl. Probab.
12, 461–.
[8] Baddeley, A., Rubak, E. and Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R.
Chapman & Hall and CRC Press, London.
[9] Bateman, H. (1910). Note on the probability distribution of α-particles. Philos. Mag.
20 (6), 704–707.
[10] Bertoin, J. (1996). Lévy Processes.
Cambridge University Press, Cambridge.
[11] Bhabha, H.J. (1950). On the stochastic theory of continuous parametric systems and its application to electron cascades. Proc. R. Soc. London Ser. A 202, 301–322.
[12] Billingsley, P. (1968). Convergence of Probability Measures.
Wiley, New York.
[13] Billingsley, P. (1995). Probability and Measure.
3rd edn. Wiley, New York.
[14] Błaszczyszyn, B. (1995). Factorial moment expansion for stochastic systems. Stoch. Proc. Appl.
56, 335–.
[15] Błaszczyszyn, B., Merzbach, E. and Schmidt, V. (1997). A note on expansion for functionals of spatial marked point processes. Statist. Probab. Lett.
36, 306–.
[16] Bogachev, V.I. (2007). Measure Theory.
Springer, Berlin.
[17] Bortkiewicz, L. von (1898). Das Gesetz der kleinen Zahlen.
BG Teubner, Leipzig.
[18] Brémaud, P. (1981). Point Processes and Queues.
Springer, New York.
[19] Campbell, N. (1909). The study of discontinuous phenomena. Proc. Cambridge Philos. Soc.
15, 136–.
[20] Chatterjee, S. (2008). A new method of normal approximation. Ann. Probab.
36, 1610–.
[21] Chatterjee, S. (2009). Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Related Fields
143, 40–.
[22] Chen, L. (1985). Poincaré-type inequalities via stochastic integrals. Z. Wahrsch. verw. Gebiete
69, 277–.
[23] Chiu, S.N., Stoyan, D., Kendall,W.S. and Mecke, J. (2013). Stochastic Geometry and its Applications.
3rd edn. Wiley, Chichester.
[24] Copeland, A.H. and Regan, F. (1936). A postulational treatment of the Poisson law. Ann. of Math.
37, 362–.
[25] Cox, D.R. (1955). Some statistical methods connected with series of events. J. R. Statist. Soc. Ser. B
17, 164–.
[26] Cramér, H. (1969). Historical review of Filip Lundberg's works on risk theory. Scand. Actuar. J. (suppl. 3), 6–12.
[27] Daley, D.J. and Vere-Jones, D. (2003/2008). An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods, Volume II: General Theory and Structure.
2nd edn. Springer, New York.
[28] Davy, P. (1976). Projected thick sections through multi-dimensional particle aggregates. J. Appl. Probab.
13, 722–. Correction: J. Appl. Probab. 15 (1978), 456.
[29] Doob, J.L. (1953). Stochastic Processes.
Wiley, New York.
[30] Dudley, R.M. (2002). Real Analysis and Probability.
Cambridge University Press, Cambridge.
[31] Dwass, M. (1964). Extremal processes. Ann. Math. Statist.
35, 1725–.
[32] Ellis, R.L. (1844). On a question in the theory of probabilities. Cambridge Math. J. 4, 127–133. [Reprinted in W. Walton (ed.) (1863). The Mathematical and Other Writings of Robert Leslie Ellis.
Deighton Bell, Cambridge, pp. 173–179.]
[33] Erlang, A.K. (1909). The theory of probabilities and telephone conversations. Nyt. Tidsskr. f. Mat. B
20, 39–.
[34] Esary, J.D. and Proschan, F. (1963). Coherent structures of non-identical components. Technometrics
5, 209–.
[35] Federer, H. (1969). Geometric Measure Theory.
Springer, New York.
[36] Feller, W. (1940). On the time distribution of so-called random events. Phys. Rev.
57, 908–.
[37] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist.
1, 230–.
[38] Fichtner, K.H. (1975). Charakterisierung Poissonscher zufälliger Punktfolgen und infinitesemale Verdünnungsschemata. Math. Nachr.
68, 104–.
[39] Finetti, B. de (1929). Sulle funzioni a incremento aleatorio. Rend. Acc. Naz. Lincei
10, 168–.
[40] Franceschetti, M., Penrose, M.D. and Rosoman, T. (2011). Strict inequalities of critical values in continuum percolation. J. Stat. Phys.
142, 486–.
[41] Gale, D. and Shapley, L.S. (1962). College admissions and the stability of marriage. Amer. Math. Monthly
69, 14–.
[42] Gilbert, E.N. (1961). Random plane networks. J. Soc. Indust. Appl. Math.
9, 543–.
[43] Grandell, J. (1976). Doubly Stochastic Poisson Processes. Lect. Notes in Math. 529, Springer, Berlin.
[44] Guttorp, P. and Thorarinsdottir, T.L. (2012). What happened to discrete chaos, the Quenouille process, and the sharp Markov property? Some history of stochastic point processes. Int. Stat. Rev.
80, 268–.
[45] Hall, P. (1988). Introduction to the Theory of Coverage Processes.
Wiley, New York.
[46] Harris, T.E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc.
56, 20–.
[47] Heinrich, L. and Molchanov, I. (1999). Central limit theorem for a class of random measures associated with germ–grain models. Adv. in Appl. Probab.
31, 314–.
[48] Hoffman, C., Holroyd, A.E. and Peres, Y. (2006). A stable marriage of Poisson and Lebesgue. Ann. Probab.
34, 1272–.
[49] Holroyd, A.E. and Peres, Y. (2005). Extra heads and invariant allocations. Ann. Probab.
33, 52–.
[50] Houdré, C. and Privault, N. (2002). Concentration and deviation inequalities in infinite dimensions via covariance representations. Bernoulli
8, 720–.
[51] Hough, J.B., Krishnapur, M., Peres, Y. and Viág, B. (2006). Determinantal processes and independence. Probab. Surv.
3, 229–.
[52] Hug, D., Last, G. and Schulte, M. (2016). Second order properties and central limit theorems for geometric functionals of Boolean models. Ann. Appl. Probab.
26, 135–.
[53] Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns.
Wiley, Chichester.
[54] Itô, K. (1941). On stochastic processes (I). Jpn. J. Math.
18, 301–.
[55] Itô, K. (1951). Multiple Wiener integral. J. Math. Soc. Japan
3, 169–.
[56] Itô, K. (1956). Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc.
81, 263–.
[57] Ito, Y. (1988). Generalized Poisson functionals. Probab. Theory Related Fields
77, 28–.
[58] Janossy, L. (1950). On the absorption of a nucleon cascade. Proc. R. Irish Acad. Sci. Sec. A
53, 188–.
[59] Jörgens, K. (1982). Linear Integral Operators.
Pitman, Boston.
[60] Kabanov, Y.M. (1975). On extended stochastic integrals. Theory Probab. Appl.
20, 722–.
[61] Kallenberg, O. (1973). Characterization and convergence of random measures and point processes. Z. Wahrsch. verw. Gebiete
27, 21–.
[62] Kallenberg, O. (1986). Random Measures. 4th edn. Akademie-Verlag and Academic Press, Berlin and London.
[63] Kallenberg, O. (2002). Foundations of Modern Probability. 2nd edn. Springer, New York.
[64] Kallenberg, O. (2011). Invariant Palm and related disintegrations via skew factorization. Probab. Theory Related Fields
149, 301–.
[65] Kallenberg, O. (2017). Random Measures, Theory and Applications.
Springer, Cham.
[66] Kallenberg, O. and Szulga, J. (1989). Multiple integration with respect to Poisson and Lévy processes. Probab. Theory Related Fields
83, 134–.
[67] Keane, M.S. (1991). Ergodic theory and subshifts of finite type. In: Bedford, T., Keane M. and Series, C. (eds.) Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces.
Oxford University Press, Oxford.
[68] Kerstan, J., and Matthes, K. (1964). Stationäre zufällige Punktfolgen II. Jahresber. Deutsch. Math. Ver.
66, 118–.
[69] Kerstan, J., Matthes, K. and Mecke, J. (1974). Unbegrenzt Teilbare Punktprozesse.
Akademie-Verlag, Berlin.
[70] Khinchin, A.Y. (1933). Asymptotische Gesetze der Wahrscheinlichkeitsrechnung.
Springer, Berlin.
[71] Khinchin, A.Y. (1937). A new derivation of one formula by P. Lévy. Bull. Moscow State Univ.
1, 5–.
[72] Khinchin, A.Y. (1955). Mathematical Methods in the Theory of Queuing (in Russian). Trudy Mat. Inst. Steklov 49. English transl. (1960): Griffin, London.
[73] Khinchin, A.Y. (1956). Sequences of chance events without after-effects. Theory Probab. Appl.
1, 15–.
[74] Kingman, J.F.C. (1967). Completely random measures. Pacific J. Math.
21, 59–78.
[75] Kingman, J.F.C. (1993). Poisson Processes.
Oxford University Press, Oxford.
[76] Kingman, J.F.C. (2006). Poisson processes revisited. Probab. Math. Statist.
26, 95–.
[77] Kolmogorov, A.N. (1932). Sulla forma generale di un processo stocastico omogeneo. Atti Accad. Naz. Lincei
15, 808–.
[78] Krantz, S. and Parks, H.R. (2002). A Primer of Real Analytic Functions.
Birkhäuser, Boston.
[79] Krickeberg, K. (1972). The Cox process. Sympos. Math.
9, 167–.
[80] Krickeberg, K. (1974). Moments of point processes. In: Harding, E.F. and Kendall, D.G. (eds.) Stochastic Geometry.
Wiley, London, pp. 89–113.
[81] Krickeberg, K. (1982). Processus ponctuels en statistique. In: Hennequin, P. (ed.) École d'été de probabilités de Saint-Flour X - 1980. Lect. Notes in Math. 929, Springer, Berlin, pp. 205–313.
[82] Krickeberg, K. (2014). Point Processes: A Random Radon Measure Approach.
Walter Warmuth Verlag, Berlin. (Augmented with several Scholia by Hans Zessin.)
[83] Kyprianou, A. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications.
Springer, Berlin.
[84] Last, G. (2006). Stationary partitions and Palm probabilities. Adv. in Appl. Probab.
37, 620–.
[85] Last, G. (2010). Modern random measures: Palm theory and related models. In: Kendall, W. and Molchanov, I. (eds.) New Perspectives in Stochastic Geometry.
Oxford University Press, Oxford, pp. 77-110.
[86] Last, G. (2014). Perturbation analysis of Poisson processes. Bernoulli
20, 486–513.
[87] Last, G. (2016). Stochastic analysis for Poisson processes. In: Peccati, G. and Reitzner, M. (eds.) Stochastic Analysis for Poisson Point Processes.
Springer, Milan, pp. 1–36.
[88] Last, G. and Brandt, A. (1995). Marked Point Processes on the Real Line: The Dynamic Approach.
Springer, New York.
[89] Last, G., Peccati, G. and Schulte, M. (2016). Normal approximation on Poisson spaces: Mehler's formula, second order Poincaré inequalities and stabilization. Probab. Theory Related Fields
165, 723–.
[90] Last, G. and Penrose, M.D. (2011). Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields
150, 690–.
[91] Last, G. and Penrose, M.D. (2011). Martingale representation for Poisson processes with applications to minimal variance hedging. Stoch. Proc. Appl.
121, 1606–.
[92] Last, G., Penrose, M.D., Schulte, M. and Thäle, C. (2014). Moments and central limit theorems for some multivariate Poisson functionals. Adv. in Appl. Probab.
46, 364–.
[93] Last, G. and Thorisson, H. (2009). Invariant transports of stationary random measures and mass-stationarity. Ann. Probab.
37, 813–.
[94] Lee, P.M. (1967). Infinitely divisible stochastic processes. Z. Wahrsch. verw. Gebiete
7, 160–.
[95] Lévy, P. (1934). Sur les intégrales dont les éléments sont des variables aléatoires indépendantes. Ann. Scuola Norm. Sup. Pisa (Ser. II)
3, 366–
[96] Liggett, T.M. (2002). Tagged particle distributions or how to choose a head at random. In: Sidoravicious, V. (ed.) In and Out of Equlibrium.
Birkhäuser, Boston, pp. 133-162.
[97] Lundberg, F. (1903). I. Approximerad Framställning av Sannolikhetsfunktionen. II. Återförsäkring av Kollektivrisker.
Akad. Afhandling, Almqvist & Wiksell, Uppsala.
[98] Macchi, O. (1971). Distribution statistique des instants d'émission des photo- électrons d'une lumi`ere thermique. C.R. Acad. Sci. Paris Ser. A
272, 440–.
[99] Macchi, O. (1975). The coincidence approach to stochastic point processes. Adv. in Appl. Probab.
7, 122–.
[100] Margulis, G. (1974). Probabilistic characteristics of graphs with large connectivity. Problemy Peredachi Informatsii
10, 108–.
[101] Matheron, G. (1975). Random Sets and Integral Geometry.
Wiley, New York.
[102] Matthes, K. (1964). Stationäre zufällige Punktfolgen I. Jahresber. Dtsch. Math.- Ver.
66, 79–.
[103] Matthes, K., Kerstan, J. and Mecke, J. (1978). Infinitely Divisible Point Processes.
Wiley, Chichester (English edn. of [69]).
[104] McCullagh, P. and Møller, J. (2006). The permanental process. Adv. in Appl. Probab.
38, 888–.
[105] Mecke, J. (1967). Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrsch. verw. Geb.
9, 58–.
[106] Mecke, J. (2011). Random Measures: Classical Lectures.
Walter Warmuth Verlag.
[107] Meester, R. and Roy, R. (1996). Continuum Percolation.
Cambridge University Press, Cambridge.
[108] Miles, R.E. (1976). Estimating aggregate and overall characteristics from thick sections by transmission microscopy. J. Microsc.
107, 233–.
[109] Møller, J. (2003). Shot noise Cox processes. Adv. in Appl. Probab.
35, 640–.
[110] Mönch, G. (1971). Verallgemeinerung eines Satzes von A. Rényi. Studia Sci. Math. Hung.
6, 90–.
[111] Moivre, A. de (1711). On the measurement of chance, or, on the probability of events in games depending upon fortuitous chance. Phil. Trans. 329 (Jan.-Mar.) English transl. (1984): Int. Stat. Rev.
52, 262–.
[112] Molchanov, I. (1995). Statistics of the Boolean model: from the estimation of means to the estimation of distributions. Adv. in Appl. Probab.
27, 86–.
[113] Molchanov, I. (2005). Theory of Random Sets.
Springer, London.
[114] Molchanov, I. and Zuyev, S. (2000). Variational analysis of functionals of Poisson processes. Math. Operat. Res.
25, 508–.
[115] Moran, P.A.P. (1952). A characteristic property of the Poisson distribution. Proc. Cambridge Philos. Soc.
48, 207–.
[116] Moyal, J.E. (1962). The general theory of stochastic population processes. Acta Math.
108, 31–.
[117] Nehring, B. (2014). A characterization of the Poisson process revisited. Electron. Commun. Probab.
19, 5–.
[118] Newcomb, S. (1860). Notes on the theory of probabilities. The Mathematical Monthly
2, 140–.
[119] Nguyen, X.X. and Zessin, H. (1979). Ergodic theorems for spatial processes. Z. Wahrsch. verw. Geb.
48, 158–.
[120] Nieuwenhuis, G. (1994). Bridging the gap between a stationary point process and its Palm distribution. Stat. Neerl.
48, 62–.
[121] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein's Method to Universality. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge.
[122] Palm, C. (1943). Intensity variations in telephone traffic. Ericsson Technics
44, 189–. English transl. (1988): North-Holland, Amsterdam.
[123] Peccati, G. and Reitzner, M. (eds.) (2016). Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener–Itô Chaos Expansions and Stochastic Geometry.
Bocconi & Springer Series 7. Springer.
[124] Peccati, G., Solé, J.L., Taqqu, M.S. and Utzet, F. (2010). Stein's method and normal approximation of Poisson functionals. Ann. Probab.
38, 478–.
[125] Peccati, G. and Taqqu, M. (2011). Wiener Chaos: Moments, Cumulants and Diagrams: A Survey with Computer Implementation.
Springer, Milan.
[126] Penrose, M. (2003). Random Geometric Graphs. Oxford University Press, Oxford.
[127] Penrose, M.D. (2001). A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab.
29, 1546–.
[128] Penrose, M.D. (2007). Gaussian limits for random geometric measures. Electron. J. Probab.
12 (35), 989–1035.
[129] Penrose, M.D. and Wade, A.R. (2008). Multivariate normal approximation in geometric probability. J. Stat. Theory Pract.
2, 326–.
[130] Penrose, M.D. and Yukich, J.E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab.
11, 1041–.
[131] Penrose, M.D. and Yukich, J.E. (2005). Normal approximation in geometric probability. In: Barbour, A.D. and Chen, L.H.Y. (eds.) Stein's Method and Applications.
World Scientific, Singapore, pp. 37–58.
[132] Poisson, S.D. (1837). Recherches sur la Probabilité des Judgements en Mati`ere Criminelle et en Mati`ere Civile, Précédées des R`egles Générales du Calcul des Probabilités.
Bachelier, Paris.
[133] Prékopa, A. (1958). On secondary processes generated by a random point distribution of Poisson type. Annales Univ. Sci. Budapest de Eotvos Nom. Sectio Math.
1, 170–.
[134] Reiss, R.-D. (1993). A Course on Point Processes.
Springer, New York.
[135] Reitzner, M. and Schulte, M. (2012). Central limit theorems for U-statistics of Poisson point processes. Ann. Probab.
41, 3909–.
[136] Rényi, A. (1956). A characterization of Poisson processes. Magyar Tud. Akad. Mat. Kutató Int. Közl
1, 527–.
[137] Rényi, A. (1962). Théorie des éléments saillants d'une suite d'observations. Annales scientifiques de l'Université de Clermont 2, tome 8, Mathématiques
2, 7–13.
[138] Rényi, A. (1967). Remarks on the Poisson process. Studia Sci. Math. Hung.
2, 123–.
[139] Resnick, S.I. (1987). Extreme Values, Regular Variation and Point Processes.
Springer, New York.
[140] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion.
Springer, Berlin.
[141] Roy, R. (1990). The Russo–Seymour–Welsh theorem and the equality of critical densities and the “dual” critical densities for continuum percolation on R2. Ann. Probab.
18, 1575–.
[142] Russo, L. (1981). On the critical percolation probabilities. Z. Wahrsch. verw. Geb.
56, 237–.
[143] Ryll-Nardzewski, C. (1953). On the non-homogeneous Poisson process (I). Studia Math.
14, 128–.
[144] Ryll-Nardzewski, C. (1954). Remarks on the Poisson stochastic process (III). (On a property of the homogeneous Poisson process.) Studia Math.
14, 314–318.
[145] Ryll-Nardzewski, C. (1961). Remarks on processes of calls. Proc. 4th Berkeley Symp. on Math. Statist. Probab.
2, 465–.
[146] Schneider, R. (2013). Convex Bodies: The Brunn–Minkowski Theory. 2nd (expanded) edn. Cambridge University Press, Cambridge.
[147] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry.
Springer, Berlin.
[148] Seneta, E. (1983). Modern probabilistic concepts in the work of E. Abbe and A. de Moivre. Math. Sci.
8, 80–.
[149] Serfozo, R. (1999). Introduction to Stochastic Networks.
Springer, New York.
[150] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. J. Funct. Anal.
205, 463–.
[151] Slivnyak, I.M. (1962). Some properties of stationary flows of homogeneous random events. Theory Probab. Appl.
7, 341–.
[152] Srinivasan, S.K. (1969). Stochastic Theory and Cascade Processes.
American Elsevier, New York.
[153] Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Le Cam, L.
Neyman, J. and Scott, E.L. (eds.) Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2: Probability Theory.
University of Berkeley Press, Berkeley, pp. 583–602.
[154] Surgailis, D. (1984). On multiple Poisson stochastic integrals and associated Markov semigroups. Probab. Math. Statist.
3, 239–.
[155] Teichmann, J., Ballani, F. and Boogaart, K.G. van den (2013). Generalizations of Matérn's hard-core point processes. Spat. Stat.
9, 53–.
[156] Thorisson, H. (1996). Transforming random elements and shifting random fields. Ann. Probab.
24, 2064–.
[157] Thorisson, H. (2000). Coupling, Stationarity, and Regeneration.
Springer, New York.
[158] Vere-Jones, D. (1997). Alpha permanents and their applications to multivariate Gamma, negative binomial and ordinary binomial distributions. New Zealand J. Math.
26, 149–.
[159] Wiener, N. (1938). The homogeneous chaos. Amer. J. Math.
60, 936–.
[160] Wiener, N. and Wintner, A. (1943). The discrete chaos. Amer. J. Math.
65, 279–298.
[161] Wu, L. (2000). A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields
118, 438–.
[162] Zessin, H. (1983). The method of moments for random measures. Z. Wahrsch. verw. Geb.
83, 409–.
[163] Zuyev, S.A. (1992). Russo's formula for Poisson point fields and its applications. Diskretnaya Matematika 4, 149–160 (in Russian). English transl. (1993): Discrete Math. Appl.
3, 73–.