[1] M., Aschbacher, On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469–514.
[2] M., Aschbacher, Finite Group Theory. Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000.
[3] H. B., Azad, M., Barry, G. M., Seitz, On the structure of parabolic subgroups. Comm. Algebra 18 (1990), 551–562.
[4] A., Borel, Linear Algebraic Groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.
[5] A., Borel, J., de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23 (1949), 200–221.
[6] A., Borel, J., Tits, Groupes, réductifs. Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150.
[7] A., Borel, J., Tits, Eléments unipotents et sous-groupes paraboliques de groupes réductifs. I. Invent. Math. 12 (1971), 95–104.
[8] A. V., Borovik, The structure of finite subgroups of simple algebraic groups. (Russian)Algebra i Logika 28 (1989), 249–279, 366; translation in Algebra and Logic28 (1989), 163–182 (1990).
[9] N., Bourbaki, Groupes et Algèbres de Lie. IV, V, VI, Hermann, Paris, 1968.
[10] M., Broué, G., Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis. Math. Ann. 292 (1992), 241–262.
[11] J., Brundan, Double coset density in classical algebraic groups. Trans. Amer. Math. Soc. 352 (2000), 1405–1436.
[12] M., Cabanes, Unicité du sous-groupe abélien distingué maximal dans certains sous-groupes de Sylow. C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 889–894.
[13] R. W., Carter, Simple Groups of Lie Type. John Wiley & Sons, London, 1972.
[14] R. W., Carter, Finite Groups of Lie Type—Conjugacy Classes and Complex Characters. John Wiley & Sons, New York, 1985.
[15] C., Chevalley, Classification des Groupes Algébriques Semi-simples. Collected Works. Vol. 3. Springer-Verlag, Berlin, 2005.
[16] E., Cline, B., Parshall, L., Scott, On the tensor product theorem for algebraic groups. J. Algebra 63 (1980), 264–267.
[17] A. M., Cohen, M. W., Liebeck, J., Saxl, G. M., Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic. Proc. London Math. Soc.(3) 64 (1992), 21–48.
[18] B. N., Cooperstein, Maximal subgroups of G2(2n). J. Algebra 70 (1981), 23–36.
[19] C. W., Curtis, I., Reiner, Representation Theory of Finite Groups and Associative Algebras. John Wiley & Sons, New York, 1962.
[20] D. I., Deriziotis, Centralizers of semisimple elements in a Chevalley group. Comm. Algebra 9 (1981), 1997–2014.
[21] J. A., Dieudonné, La Géométrie des Groupes Classiques. Third edition. Springer-Verlag, Berlin, 1971.
[22] F., Digne, J., Michel, Fonctions L des Variétés de Deligne–Lusztig et Descente de Shintani. Mém. Soc. Math. France (N.S.) 20 (1985).
[23] E. B., Dynkin, Semisimple subalgebras of semisimple Lie algebras. Amer. Math. Soc., Transl., II. Ser. 6 (1957), 111–243.
[24] E. B., Dynkin, Maximal subgroups of the classical groups. Amer. Math. Soc., Transl., II. Ser. 6 (1957), 245–378.
[25] A., Fröhlich, M. J., Taylor, Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, 27. Cambridge University Press, Cambridge, 1993.
[26] M., Geck, An Introduction to Algebraic Geometry and Algebraic Groups. Oxford Graduate Texts in Mathematics, 10. Oxford University Press, Oxford, 2003.
[27] R., Goodman, N., Wallach, Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and its Applications, 68. Cambridge University Press, Cambridge, 1998.
[28] D., Gorenstein, Finite Groups. Chelsea Publishing Company, New York, 1980.
[29] D., Gorenstein, R., Lyons, R., Solomon, The Classification of Finite Simple Groups, Number 3. Mathematical Surveys and Monographs, 40. American Mathematical Society, Providence, RI, 1998.
[30] L., Grove, Classical Groups and Geometric Algebra. Graduate Studies in Mathematics, 39. American Mathematical Society, Providence, RI, 2002.
[31] G., Hiss, Die adjungierten Darstellungen der Chevalley-Gruppen. Arch. Math. (Basel) 42 (1984), 408–416.
[32] J., Humphreys, Linear Algebraic Groups. Graduate Texts in Mathematics, 21. Springer-Verlag, New York, 1975.
[33] J., Humphreys, Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, 9. Springer-Verlag, New York, Second printing, 1980.
[34] J., Humphreys, Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge, 1992.
[35] J., Humphreys, Conjugacy Classes in Semisimple Algebraic Groups. Mathematical Surveys and Monographs, 43. American Mathematical Society, Providence, RI, 1995.
[36] J., Humphreys, Modular Representations of Finite Groups of Lie Type. LMS Lecture Notes Series, 326. Cambridge University Press, Cambridge, 2006.
[37] B., Huppert, Endliche Gruppen. I. Grundlehren der Mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, 1967.
[38] B., Huppert, N., Blackburn, Finite Groups. II. Grundlehren der Mathematis-chen Wissenschaften, 242. Springer-Verlag, Berlin, 1982.
[39] I. M., Isaacs, Character Theory of Finite Groups. Dover, New York, 1994.
[40] J.C., Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen. Bonner math. Schr. 67 (1973).
[41] J.C., Jantzen, Representations of Algebraic Groups. Second edition. Mathematical Surveys and Monographs, 107. American Mathematical Society, Providence, RI, 2003.
[42] P., Kleidman, The maximal subgroups of the Steinberg triality groups 3D4(q) and of their automorphism groups. J. Algebra 115 (1988), 182–199.
[43] P., Kleidman, The maximal subgroups of the Chevalley groups G2(q)with q odd, the Ree groups 2G2(q), and their automorphism groups. J. Algebra 117 (1988), 30–71.
[44] P., Kleidman, M. W., Liebeck, The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.
[45] V., Landazuri, G. M., Seitz, On the minimal degrees of projective representations of the finite Chevalley groups. J. Algebra 32 (1974), 418–443.
[46] R., Lawther, Sublattices generated by root differences, preprint.
[47] G. I., Lehrer, D.E., Taylor, Unitary Reflection Groups. Australian Mathematical Society Lecture Series, 20. Cambridge University Press, Cambridge, 2009.
[48] M. W., Liebeck, G. M., Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic. Geom. Dedicata 35 (1990), 353–387.
[49] M. W., Liebeck, G. M., Seitz, Reductive Subgroups of Exceptional Algebraic Groups. Memoirs Amer. Math. Soc., 121 (1996).
[50] M. W., Liebeck, G. M., Seitz, On the subgroup structure of classical groups. Invent. Math. 134 (1998), 427–453.
[51] M. W., Liebeck, G. M., Seitz, On the subgroup structure of exceptional groups of Lie type. Trans. Amer. Math. Soc. 350 (1998), 3409–3482.
[52] M. W., Liebeck, G.M., Seitz, A survey of maximal subgroups of exceptional groups of Lie type. Groups, Combinatorics & Geometry (Durham, 2001), World Sci. Publ., River Edge, NJ, 2003, pp. 139–146.
[53] M.W., Liebeck, G.M., Seitz, The Maximal Subgroups of Positive Dimension in Exceptional Algebraic Groups. Memoirs Amer. Math. Soc., 802 (2004).
[54] F., Lübeck, Small degree representations of finite Chevalley groups in defining characteristic. LMS J. Comput. Math. 4 (2001), 135–169.
[55] G., Malle, The maximal subgroups of 2F4(q2). J. Algebra 139 (1991), 52–69.
[56] G., Malle, Height 0 characters of finite groups of Lie type. Represent. Theory 11 (2007), 192–220.
[57] R., Ree, A family of simple groups associated with the simple Lie algebra of type (F4). Amer.J.Math. 83 (1961) 401–420.
[58] R., Ree, A family of simple groups associated with the simple Lie algebra of type (G2). Amer.J.Math. 83 (1961), 432–462.
[59] R. W., Richardson, Finiteness theorems for orbits of algebraic groups. Nederl. Akad. Wetensch. Indag. Math. 47 (1985), 337–344.
[60] G. M., Seitz, The Maximal Subgroups of Classical Algebraic Groups. Memoirs Amer. Math. Soc., 67 (1987).
[61] G. M., Seitz, Maximal Subgroups of Exceptional Algebraic Groups. Memoirs Amer. Math. Soc., 90 (1991).
[62] G. M., Seitz, D. M., Testerman, Extending morphisms from.nite to algebraic groups. J. Algebra 131 (1990), 559–574.
[63] S. D., Smith, Irreducible modules and parabolic subgroups. J. Algebra 75 (1982), 286–289.
[64] N., Spaltenstein, Classes Unipotentes et Sous-Groupes de Borel. Lecture Notes in Mathematics, 946. Springer-Verlag, Berlin, 1982.
[65] T. A., Springer, Regular elements of.nite re.ection groups. Invent. Math. 25 (1974), 159–198.
[66] T. A., Springer, Linear Algebraic Groups. Second edition. Progress in Mathematics, 9. Birkhäuser, Boston, 1998.
[67] T. A., Springer, R., Steinberg, Conjugacy classes. In: Seminar on Algebraic Groups and Related Finite Groups. Lecture Notes in Mathematics, 131. Springer-Verlag, Berlin, 1970, pp. 167–266.
[68] R., Steinberg, Variations on a theme of Chevalley. Paci.c J. Math. 9 (1959), 875–891.
[69] R., Steinberg, Automorphisms of classical Lie algebras. Paci.c J. Math. 11 (1961), 1119–1129.
[70] R., Steinberg, Representations of algebraic groups. Nagoya Math. J. 22 (1963), 33–56.
[71] R., Steinberg, Regular elements of semisimple algebraic groups. Inst. Hautes ´ Etudes Sci. Publ. Math. 25 (1965), 49–80.
[72] R., Steinberg, Endomorphisms of Linear Algebraic Groups. Memoirs Amer. Math. Soc., 80 (1968).
[73] R., Steinberg, Lectures on Chevalley Groups. Notes prepared by J., Faulkner and R., Wilson. Yale University, New Haven, Conn., 1968.
[74] R., Steinberg, Torsion in reductive groups. Advances in Math. 15 (1975), 63–92.
[75] R., Steinberg, Conjugacy Classes in Algebraic Groups. Lecture Notes in Mathematics, Vol. 366. Springer-Verlag, Berlin, 1974.
[76] R., Steinberg, On theorems of Lie–Kolchin, Borel, and Lang. In: Contributions to Algebra (Collection of Papers Dedicated to Ellis Kolchin). Academic Press, New York, 1977, pp. 349–354.
[77] I., Suprunenko, Conditions on the irreducibility of restrictions of irreducible representations of the group SL(n, K) to connected algebraic subgroups. Preprint #13, (222), Ins. Mat. Akad.Nauk BSSR (1985) (in Russian).
[78] M., Suzuki, On a class of doubly transitive groups. Ann. of Math. (2) 75 (1962), 105–145.
[79] D. E., Taylor, The Geometry of the Classical Groups. Heldermann Verlag, Berlin, 1992.
[80] D., Testerman, Irreducible Subgroups of Exceptional Algebraic Groups. Memoirs Amer. Math. Soc., 75 (1988).
[81] D., Testerman, A construction of certain maximal subgroups of the algebraic groups E 6 and F 4. J. Algebra 122 (1989), 299–322.
[82] J., Tits, Algebraic and abstract simple groups. Ann. of Math. (2) 80 (1964), 313–329.