Skip to main content Accessibility help
×
  • Cited by 37
Publisher:
Cambridge University Press
Online publication date:
August 2014
Print publication year:
2014
Online ISBN:
9781107517288

Book description

Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize 'spaces' in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line. Hence, equipped with a quantale V (replacing the reals) and a monad T (replacing the ultrafilter monad) laxly extended from set maps to V-valued relations, the book develops a categorical theory of (T,V)-algebras that is inspired simultaneously by its metric and topological roots. The book highlights in particular the distinguished role of equationally defined structures within the given lax-algebraic context and presents numerous new results ranging from topology and approach theory to domain theory. All the necessary pre-requisites in order and category theory are presented in the book.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Abramsky, S. and A., Jung. Domain theory. In S., Abramsky, D.M., Gabbay, and T.S.E., Maibaurn, eds., Handbook of Logic in Computer Science. Oxford University Press, Oxford, 1994 Google Scholar, pp. 1-168.
Adámek, J., H., Herrlich, and G.E., Strecker. Abstract and Concrete Categories: The Joy of Cats. Wiley, New York, 1990. Republished as Repr. Theory Appl. Categ., 17 (2006 Google Scholar).
Adámek, J., F.W., Lawvere, and J., Rosicky. Continuous categories revisited. Theory Appl. Categ., 11:252-282, 2003 Google Scholar.
Adámek, J., J., Rosický, and E.M., Vitale. Algebraic Theories: A Categorical Introduction to General Algebra. Cambridge University Press, Cambridge, 2011 Google Scholar. With a foreword by F.W. Lawvere.
Akhvlediani, A.Hausdorff and Gromov distances in quantale-enriched categories. MA thesis, York University, Toronto, 2008 Google Scholar.
Akhvlediani, A., M. M., Clementino, and W., Tholen. On the categorical meaning of Hausdorff and Gromov distances, I. Topology Appl., 157(8):1275-1295, 2010 Google Scholar.
Awodey, S.Category Theory. Clarendon, New York, 2006 Google Scholar.
Banaschewski, B.Essential extensions of T0-spaces. Gen. Topol. Appl., 7:233-246, 1977 Google Scholar.
Banaschewski, B. and G., Bruns. Categorical characterization of the MacNeille completion. Arch. Math. (Basel), 18:369-377, 1967 Google Scholar.
Banaschewski, B., R., Lowen, and C. Van, Olmen. Sober approach spaces. Topol. Appl., 153:3059-3070, 2006 Google Scholar.
Barr, M.Relational algebras. Lect. Notes Math., 137:39-55, 1970 Google Scholar.
Barr, M. and C., Wells. Toposes, Triples and Theories. Springer, New York, 1985 Google Scholar. Republished as Repr. Theory Appl. Categ., 12 (2005).
Beck, J.Distributive laws. Lect. Notes Math., 80:119-140, 1969 Google Scholar. Republished as Repr. Theory Appl. Categ., 18 (2008).
Bénabou, J.Catégories avec multiplication. C.R., Acad. Sci. Paris, 256:1887-1890, 1963 Google Scholar.
Bénabou, J.Fibrations petites et localement petites. C.R., Acad. Sci. Paris Sér. A, 281:897-900, 1975 Google Scholar.
Bénabou, J.Fiberedcategories and the foundations of naive category theory. J. Symb. Log., 50:10-37, 1985 Google Scholar.
Bénabou, J.Distributors at work. http://www.mathematik.tu-darmstadt.de/~streicher/, 2000 Google Scholar. Lecture notes by T. Streicher.
Bentley, H.L., H., Herrlich, and R., Lowen. Improving constructions in topology. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work.Heldermann, Berlin, 1991 Google Scholar, pp. 3-20.
Betti, R., A., Carboni, R., Street, and R., Walters. Variation through enrichment. J. Pure Appl. Algebra, 29:109-127, 1983 Google Scholar.
Birkedal, L., K., Støvring, and J., Thamsborg. The category-theoretic solution of recursive metric-space equations. Theoret. Comput. Sci., 411:4102-4122, 2010 Google Scholar.
Birkhoff, G.A new definition of limit. Bull. Amer. Math. Soc., 41:636, 1935 Google Scholar.
Birkhoff, G.Moore-Smith convergence in general topology. Ann. of Math. (2), 38:39-56, 1937 Google Scholar.
Birkhoff, G.Lattice Theory, 3rd edn. American Mathematical Society, Providence, RI, 1979 Google Scholar.
Bonsangue, M.M., F. van, Breugel, and J.J.M.M., Rutten. Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding. Theoret. Comput. Sci., 193:1-51, 1998 Google Scholar.
Borceux, F.Handbook of Categorical Algebra 1. Basic Category Theory. Cambridge University Press, Cambridge, 1994 Google Scholara.
Borceux, F.Handbook of Categorical Algebra 2. Categories and Structures. Cambridge University Press, Cambridge, 1994 Google Scholarb.
Borceux, F.Handbook of Categorical Algebra 3. Categories of Sheaves. Cambridge University Press, Cambridge, 1994 Google Scholarc.
Börger, R.Coproducts and ultrafilters. J. Pure Appl. Algebra, 46:35-47, 1987 Google Scholara.
Börger, R.Disjoint and universal coproducts, I, II. Seminarberichte, Fern Universität, Hagen, 1987 Google Scholarb.
Börger, R.Disjointness and related properties of coproducts. Acta Univ. Carolin. Math. Phys., 35:43-63, 1994 Google Scholar.
Börger, R. and W., Tholen. Cantors Diagonalprinzip für Kategorien. Math. Z., 160:135-138, 1978 Google Scholar.
Bourbaki, N.Elements de Mathématique. Les Structures Fondamentales de l'Analyse, III: Topologie Générale, III. Groupes Topologiques (Théorie Elémentaire) IV. Nombres Réels. Hermann, Paris, 1942 Google Scholar.
Bourbaki, N.General Topology, Chapters 1-4. Springer, Berlin, 1989 Google Scholar.
Brock, P. and D.C., Kent. Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Structures, 5:99-110, 1997 Google Scholar.
Brock, P. and D.C., Kent. On convergence approach spaces. Appl. Categ. Structures, 6:117-125, 1998 Google Scholar.
Bunge, M.Coherent extensions and relational algebras. Trans. Amer. Math. Soc., 197:355-390, 1974 Google Scholar.
Burroni, A.T-catégories (catégories dans un triple). Cahiers Topol. Géom. Différent., 12: 215-321, 1971 Google Scholar.
Carboni, A., G.M., Kelly, and R.J., Wood. A 2-categorical approach to change of base and geometric morphisms I. Cahiers Topologie Géom. Différentielle, 32: 47-95, 1991 Google Scholar.
Carboni, A., S., Lack, and R., Walters. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84:145-158, 1993 Google Scholar.
Cartan, H.Filtres et ultrafiltres. C. R. Acad. Sci. Paris, 205:777-779, 1937 Google Scholara.
Cartan, H.Théorie des filtres. C. R. Acad. Sci. Paris, 205:595-598, 1937 Google Scholarb.
Čech, E.On bicompact spaces. Ann. of Math. (2), 38:823-844, 1937 Google Scholar.
Chai, Y.-M.A note on the probabilistic quasi-metric spaces. J. Sichuan Univ. (Natur. Sci. Ed.), 46:543-547, 2009 Google Scholar.
Choquet, G.Convergences. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.), 23:57-112, 1948 Google Scholar.
Clementino, M.M., E., Giuli, and W., Tholen. Topology in a category: compactness. Portugal. Math., 53:397-433, 1996 Google Scholar.
Clementino, M.M., E., Giuli, and W., Tholen. A functional approach to general topology. In M.-C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004 Google Scholara, pp. 103-164.
Clementino, M.M. and D., Hofmann. Triquotient maps via ultrafilter convergence. Proc. Amer. Math. Soc., 130:3423-3431, 2002 Google Scholar.
Clementino, M.M. and D., Hofmann. Topological features of lax algebras. Appl. Categ. Structures, 11:267-286, 2003 Google Scholar.
Clementino, M.M. and D., Hofmann. Effective descent morphisms in categories of lax algebras. Appl. Categ. Structures, 12:413-425, 2004 Google Scholara.
Clementino, M.M. and D., Hofmann. On extensions of lax monads. Theory Appl. Categ., 13:41-60, 2004 Google Scholarb.
Clementino, M.M. and D., Hofmann. Exponentiation in V-categories. Topology Appl., 153:3113-3128, 2006 Google Scholar.
Clementino, M.M. and D., Hofmann. On some special classes of continuous maps. In E., Pearl, ed., Open Problems in Topology, II.Elsevier, Amsterdam, 2007 Google Scholar, pp. 367-376.
Clementino, M.M. and D., Hofmann. Relative injectivity as cocompleteness for a class of distributors. Theory Appl. Categ., 21:210-230, 2008 Google Scholar.
Clementino, M.M. and D., Hofmann. Lawvere completeness in topology. Appl. Categ. Structures, 17:175-210, 2009 Google Scholar.
Clementino, M.M. and D., Hofmann. Descent morphisms and a van Kampen theorem in categories of lax algebras. Topology Appl., 159:2310-2319, 2012 Google Scholar.
Clementino, M.M., D., Hofmann, and G., Janelidze. Local homeomorphisms via ultrafilter convergence. Proc. Amer. Math. Soc., 133:917-922, 2005 Google Scholar.
Clementino, M.M., D., Hofmann, and A., Montoli. Covering morphisms in categories of relational algebras. Appl. Categ. Structures, 2013 Google Scholar, in press; DOI: 10.1007/s10485- 013-9349-0.
Clementino, M.M., D., Hofmann, and W., Tholen. The convergence approach to exponen- tiable maps. Math. Portugal., 60:139-160, 2003 Google Scholara.
Clementino, M.M., D., Hofmann, and W., Tholen. Exponentiability in categories of lax algebras. Theory Appl. Categ., 11:337-352, 2003 Google Scholarb.
Clementino, M.M., D., Hofmann, and W., Tholen. One setting for all: metric, topology, uniformity, approach structure. Appl. Categ. Structures, 12:127-154, 2004 Google Scholarb.
Clementino, M.M. and W., Tholen. Tychonoff's theorem in a category. Proc. Amer. Math. Soc., 124:3311-3314, 1996 Google Scholar.
Clementino, M.M. and W., Tholen. Metric, topology and multicategory - a common approach. J. Pure Appl. Algebra, 179:13-47, 2003 Google Scholar.
Clementino, M.M. and W., Tholen. Proper maps for lax algebras and the Kuratowski- Mrówka theorem. Theory Appl. Categ., 27:327-346, 2013 Google Scholar.
Colebunders, E. and R., Lowen. A quasitopos containing CONV and MET as full subcategories. Internat. J. Math. Math. Sci., 11:417-438, 1988 Google Scholar.
Colebunders, E. and R., Lowen. Topological quasitopos hulls of categories containing topological and metric objects. Cah. Topol. Géom. Différ. Catég., 30:213-227, 1989 Google Scholar.
Colebunders, E. and R., Lowen. Metrically generated theories. Proc. Amer. Math. Soc., 133:1547-1556, 2005 Google Scholar.
Colebunders, E., R., Lowen, and W., Rosiers. Lax algebras via initial monad morphisms: APP, TOP, MET and ORD. Topology Appl., 158:882-903, 2011 Google Scholar.
Colebunders, E., R., Lowen, and P., Wuyts. A Kuratowski-Mrówka theorem in approach theory. Topology Appl., 153:756-766, 2005 Google Scholar.
Colebunders, E. and G., Richter. An elementary approach to exponential spaces. Appl. Categ. Structures, 9:303-310, 2001 Google Scholar.
Cook, C.H. and H.R., Fischer. Regularconvergence spaces. Math. Ann., 174:1-7, 1967 Google Scholar.
Cruttwell, G.S.H.Normed Spaces and the Change of Base for Enriched Categories. Ph.D. thesis, Dalhousie University, Halifax, 2008 Google Scholar.
Cruttwell, G.S.H. and M.A., Shulman. A unified framework for generalized multicategories. Theory Appl. Categ., 24:580-655, 2010 Google Scholar.
Davey, B.A. and H. A., Priestley. Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990 Google Scholar.
Day, A.Filtermonads, continuous lattices and closure systems. Canad. J. Math., 27:50-59, 1975 Google Scholar.
Day, B.J. and G.M., Kelly. On topologically quotient maps preserved by pullbacks or products. Proc. Cambridge Philos. Soc., 67:553-558, 1970 Google Scholar.
de Groot, J.An isomorphism principle in general topology. Bull. Amer. Math. Soc., 73:465-467, 1967 Google Scholar.
de Groot, J., G.E., Strecker, and E., Wattel. The compactness operator in general topology. In General Topology and its Relations to Modern Analysis and Algebra, II.Academia, Prague, 1967 Google Scholar, pp. 161-163.
Dikranjan, D. and E., Giuli. Closure operators I. Topology Appl., 27:129-143, 1987 Google Scholar.
Dikranjan, D. and E., Giuli. Compactness, minimality and closedness with respect to a closure operator. In J., Adámek and S., MacLane, eds., Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, World Scientific Publishing, Teaneck, 1989 Google Scholar, pp. 284-296.
Dikranjan, D. and W., Tholen. Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics. Kluwer, Dordrecht, 1995 Google Scholar.
Duskin, J.Variations on Beck's tripleability criterion. Lect. Notes Math., 106:74-129, 1969 Google Scholar.
Dyckhoff, R.Total reflections, partial products, and hereditary factorizations. Topology Appl., 17:101-113, 1984 Google Scholar.
Dyckhoff, R. and W., Tholen. Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra, 49:103-116, 1987 Google Scholar.
Eilenberg, S. and G.M., Kelly. Closed categories. In Proc. Conf. Categorical Algebra. Springer, New York, 1966 Google Scholar, pp. 421-562.
Eilenberg, S. and J.C., Moore. Adjoint functors and triples. Illinois J. Math., 9:381-398, 1965 Google Scholar.
Engelking, R.General Topology, 2nd edn. Heldermann, Berlin, 1989 Google Scholar.
Erné, M.Vollständig Distributive Topologien und Idempotente Relationen. Deutsche Mathematiker-Vereinigung, Dortmund, 1980 Google Scholar.
Erné, M.Scott convergence and Scott topology in partially ordered sets, II. In B., Bemaschewski and R.-E., Hoffmann, eds., Continuous Lattices, Lecture Notes in Mathematics, 871. Springer, Berlin, 1981 Google Scholar, pp. 61-96.
Erné, M.The ABC of order and topology. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work. Heldermann, Berlin, 1991 Google Scholar, pp. 57-83.
Erné, M.Z-continuous posets and their topological manifestation. Appl. Categ. Structures, 7:31-70, 1999 Google Scholar.
Erné, M. and G., Wilke. Standard completions for quasiordered sets. Semigroup Forum, 27:351-376, 1983 Google Scholar.
Ershov, Y.L.Theory of domains and nearby. In D., Bjørner, M., Broy, and I.V., Pottosin, eds., Formal Methods in Programming and their Applications. Lecture Notes in Computer Science 735. Springer, Berlin, 1993 Google Scholar, pp. 1-7.
Escardó, M.H.Properly injective spaces and function spaces. Topology Appl., 89:75-120, 1998 Google Scholar.
Fawcett, B. and R., Wood. Constructive complete distributivity I.Math. Proc. Camb. Phil. Soc., 107:81-89, 1990 Google Scholar.
Feferman, S.Set-theoretical foundations of category theory. In Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106. Springer, Berlin, 1969 Google Scholar, pp. 106-201.
Feferman, S.Categorical foundations and foundations of category theory. In R.E., Butts and J., Hintikka, eds., Logic, Foundations of Mathematics, and Computability Theory, Proc. 5th Int. Congr., London, Ontario, 1975 Google Scholar, Part1, 1977, pp. 149-169. Philos. Sci., 9:149-169, 1977.
Flagg, R.C.Completeness in continuity spaces. In R.A.G., Seely, ed., Category Theory 1991. AMS, Providence, RI, 1992 Google Scholar, pp. 183-200.
Flagg, R.C.Quantales and continuity spaces. Algebra Universalis, 37:257-276, 1997 Google Scholar.
Flagg, R.C. and R., Kopperman. Continuity spaces: reconciling domains and metric spaces. Theoret. Comput. Sci., 177:111-138, 1997 Google Scholar.
Flagg, R.C., P., Sünderhauf, and K., Wagner. A logical approach to quantitative domain theory. Topology Atlas, Preprint 23, http://at.yorku.ca/e/a/p/p/23.htm, 1996 Google Scholar.
Fréchet, M.Généralisation d'un théorème de Weierstrass. C.R. Acad. Sci. Paris, 139:848-850, 1905 Google Scholar.
Fréchet, M.Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22:1-74, 1906 Google Scholar.
Fréchet, M.Surdivers modes deconvergenced'unesuite de fonctions d'unevariable. Bull. Calcutta Math. Soc., 11:187-206, 1921 Google Scholar.
Freyd, P.J. and A., Scedrov. Categories, Allegories. North-Holland, Amsterdam, 1990 Google Scholar.
Gabriel, P. and F., Ulmer. Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221. Springer, Berlin, 1971 Google Scholar.
Gähler, W.Monads and convergence. In Proc. Conf. Generalized Functions, Convergence Structures and Their Applications, Dubrovnik, Yugoslavia, 1987 Google Scholar. Springer, New York, 1988, pp. 29-46.
Gähler, W. (ed.) etal. Recent Developments of General Topology and its Applications. Int. Conf. in Memory of Felix Hausdorff (1868-1942), Berlin, Germany, March 22-28, 1992 Google Scholar. Akademie Verlag. Math. Res. 67, Berlin, 1992, pp. 136-149.
Gerlo, A., E., Vandersmissen, and C. Van, Olmen. Sober approach spaces are firmly reflective for the class of epimorphic embeddings. Appl. Categ. Structures, 14:251-258, 2006 Google Scholar.
Gierz, G., K.H., Hofmann, K., Keimel, J.D., Lawson, M.W., Mislove, and D.S., Scott. A Compendium of Continuous Lattices. Springer, Berlin, 1980 Google Scholar.
Gierz, G., K.H., Hofmann, K., Keimel, J.D., Lawson, M.W., Mislove, and D.S., Scott. Continuous Lattices and Domains. Cambridge University Press, Cambridge, 2003 Google Scholar.
Godement, R.Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris, 1958 Google Scholar.
Grimeisen, G.Gefilterte Summation von Filtern und iterierte Grenzprozesse I. Math. Ann., 141:318-342, 1960 Google Scholar.
Grimeisen, G.Gefilterte Summation von Filtern und iterierte Grenzprozesse, II. Math. Ann., 144:386-417, 1961 Google Scholar.
Grothendieck, A., J.-L., Verdier, and P., Deligne. Conditions de finitude, topos et sites fibrés. Applications aux questions de passage à la limite. In Séminaire de Géométrie Algébrique du Bois Marie 1963/64, SGA 4, no. 6. Lecture Notes in Mathematics 270. Springer, Berlin, 1972 Google Scholar, pp. 163-340.
Gutierres, G. and D., Hofmann. Axioms for sequential convergence. Appl. Categ. Structures, 15:599-614, 2007 Google Scholar.
Gutierres, G. and D., Hofmann. Approaching metric domains. Appl. Categ. Structures, 21(6):617-650, 2013 Google Scholar.
Hausdorff, F.Grundzüge der Mengenlehre. Veit, Leipzig, 1914 Google Scholar.
Hermida, C.Representable multicategories. Adv. Math., 151:164-225, 2000 Google Scholar.
Hermida, C.From coherent structures to universal properties. J. Pure Appl. Algebra, 165:7-61, 2001 Google Scholar.
Herrlich, H.Perfect subcategories and factorizations. In Topics in Topol., Colloqu. Keszthely 1972. Colloquia Math. Soc. János Bolyai 8, 1974, pp. 387-403, 1974 Google Scholar.
Herrlich, H.Topologie, I: Topologische Räume. Heldermann, Berlin, 1986 Google Scholar.
Herrlich, H.On the representability of partial morphisms in Top and in related constructs. In Proc. 1st Conf. Categorical Algebra and its Applications, Louvain-la-Neuve, Belgium, 1987 Google Scholar. Lecture Notes in Mathematics 1348. Springer, Berlin, 1988a, pp. 143-153.
Herrlich, H.Topologie, II: Uniforme Räume. Heldermann, Berlin, 1988 Google Scholarb.
Herrlich, H.Axiom of Choice. Lecture Notes in Mathematics 1876. Springer, Berlin, 2006 Google Scholar.
Herrlich, H., E., Colebunders, and F., Schwarz. Improving Top: PrTop and PsTop. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work. Heldermann, Berlin, 1991 Google Scholar, pp. 21-34.
Herrlich, H. and M., Husek. Galois connections categorically. J. Pure Appl. Algebra, 68:165-180, 1990 Google Scholar.
Herrlich, H., G., Salicrup, and G.E., Strecker. Factorizations, denseness, separation, and relatively compact objects. Topology Appl., 27:157-169, 1987 Google Scholar.
Hochster, M.Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969 Google Scholar.
Höhle, U.M-valued sets and sheaves over integral commutative CL-monoids. In S.E., Rod-abaugh, E.P., Klement, and U., Höhle, eds., Applications of Category Theory to Fuzzy Subsets. Theory and Decision Library vol. 14. Kluwer, Dordrecht, 1992 Google Scholar, pp. 33-72.
Höhle, U.Many-Valued Topology and its Applications. Kluwer, Boston, 2001 Google Scholar.
Hoffmann, R.-E.Die kategorielle Auffassung der Initial- und Finaltopologie. Ph.D. thesis, Ruhr-Universität, Bochum, 1972 Google Scholar.
Hoffmann, R.-E.Projective sober spaces. In Structure of Topological Categories, Math.-Arbeitspapiere, vol. 18. University of Bremen, Bremen, 1979 Google Scholar, pp. 109-153.
Hoffmann, R.-E.Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. B., Bernaschewski and R.-E., Hoffmann, eds., Proc. Conf. Continuous Lattices, Bremen, 1979 Google Scholar. Lecture Notes in Mathematics 871. Berlin, Springer, 1981, pp. 61-96.
Hofmann, D.An algebraic description of regular epimorphisms in topology. J. Pure Appl. Algebra, 199:71-86, 2005 Google Scholar.
Hofmann, D.Exponentiation forunitary structures. Topology Appl., 153:3180-3202, 2006 Google Scholar.
Hofmann, D.Topological theories and closed objects. Adv. Math., 215:789-824, 2007 Google Scholar.
Hofmann, D. and C.D., Reis. Probabilistic metric spaces as enriched categories. Fuzzy Set. Syst., 210:1-21, 2013 Google Scholar.
Hofmann, D. and W., Tholen. Kleisli compositions for topological spaces. Topology Appl., 153:2952-2961, 2006 Google Scholar.
Hofmann, D. and W., Tholen. Lax algebra meets topology. Topology Appl., 159:2434-2452, 2012 Google Scholar.
Hofmann, D. and P., Waszkiewicz. Approximation in quantale-enriched categories. Topology Appl., 158:963-977, 2011 Google Scholar.
Huber, P.J.Homotopy theory in general categories. Math. Ann., 144:361-385, 1961 Google Scholar.
Isbell, J.R.Six theorems about injective metric spaces. Comment. Math. Helv., 39:65-76, 1964 Google Scholar.
Isbell, J.R.Atomless parts of spaces. Math. Scand., 31:5-32, 1972 Google Scholar.
Isbell, J.R.General function spaces, products and continuous lattices. Math. Proc. Camb. Philos. Soc., 100:193-205, 1986 Google Scholar.
Jäger, G.A one-point compactification for lattice-valued convergence spaces. Fuzzy Set. Syst., 190:21-31, 2012 Google Scholar.
James, I.M.Fibrewise Topology.Cambridge University Press, Cambridge, 1989 Google Scholar.
Janelidze, G.Categorical Galois theory: revision and some recent developments. In K., Deneckeet al., eds., Galois Connections and Applications. Mathematics and its Applications (Dordrecht) 565. Kluwer, Dordrecht, 2004 Google Scholar, pp. 139-171.
Jayewardene, R. and O., Wyler. Categories of relations and functional relations. Appl. Categ. Structures, 9:279-305, 2000 Google Scholar.
Johnstone, P.T.Topos Theory.Academic Press, London, 1977 Google Scholar.
Johnstone, P.T.On a topological topos. Proc. London Math. Soc. (3), 38:237-271, 1979 Google Scholar.
Johnstone, P.T.Stone Spaces.Cambridge University Press, Cambridge, 1982 Google Scholar.
Johnstone, P.T.Sketches of an Elephant: A Topos Theory Compendium 1.Clarendon, New York, 2002 Google Scholara.
Johnstone, P.T.Sketches of an Elephant: A Topos Theory Compendium 2.Clarendon, New York, 2002 Google Scholarb.
Jung, A.Stably compact spaces and the probabilistic powerspace construction. Electron. Notes Theoret Comput. Sci., 87:5-20, 2004 Google Scholar.
Kamnitzer, S.H.Protoreflections, Relational Algebras and Topology. Ph.D. thesis, University of Cape Town, Cape Town, 1974 Google Scholara.
Kamnitzer, S.H.Topological aspects of relational algebras. Math. Colloq. Univ. Cape Town, 9:23-59, 1974 Google Scholarb.
Kelley, J.L.Convergence in topology. Duke Math. J., 17:277-283, 1950 Google Scholar.
Kelly, G.M.Basic Concepts of Enriched Category Theory.Cambridge University Press, Cambridge, 1982 Google Scholar. Republished as Repr. Theory Appl. Categ.10 (2005).
Kelly, G.M.A note on relations relative to a factorization system. In Proc. Int. Conf. Category Theory, Como, Italy, 1990 Google Scholar. Lecture Notes in Mathematics 1488. Springer, Berlin, 1991, pp. 249-261.
Kent, D.C. and W.K., Min. Neighborhood spaces. Int. J. Math. Math. Sci., 32:387-399, 2002 Google Scholar.
Kent, D.C. and G.D., Richardson. Open and proper maps between convergence spaces. Czech. Math. J., 23:15-23, 1973 Google Scholar.
Klein, A.Relations in categories. Illinois J. Math., 14:536-550, 1970 Google Scholar.
Kock, A.Monads for which structures are adjointto units. J. Pure Appl. Algebra, 104:41-59, 1995 Google Scholar.
Kopperman, R.All topologies come from generalized metrics. Amer. Math. Month., 95:89-97, 1988 Google Scholar.
Kostanek, M. and P., Waszkiewicz. The formal ball model for Q-categories. Math. Structures Comput. Sci., 21:41-64, 2011 Google Scholar.
Kowalsky, H.-J.Beiträge zur topologischen Algebra. Math. Nachr., 11:143-185, 1954 Google Scholara.
Kowalsky, H.-J.Limesräume und Komplettierung. Math. Nachr., 12:301-340, 1954 Google Scholarb.
Kreyszig, E.Interaction between general topology and functional analysis. In Handbook of the History of General Topology, vol. 1. Kluwer, Dordrecht, 1997 Google Scholar, pp. 357-390.
Kruml, D. and J., Paseka. Algebraic and categorical aspects of quantales. In M., Hazewinkel, ed., Handbook of Algebra, vol. 5. Elsevier, Amsterdam, 2008 Google Scholar, pp. 323-362.
Kuratowski, C.Évaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques. Fundam. Math., 17:249-272, 1931 Google Scholar.
Lack, S. and R., Street. The formal theory of monads, II. J. Pure Appl. Algebra, 175:243-265, 2002 Google Scholar.
Lambek, J.Deductive systems and categories, II. Standard constructions and closed categories. In Proc. Conf. Category Theory, Homology Theory and their Applications, Battelle Memorial Institute Seattle Research Center, 1968 Google Scholar. Lecture Notes in Mathematics 86. Springer, Berlin, 1969, pp. 76-122.
Lawson, J.The duality of continuous posets. Houston J. Math., 5:357-386, 1979 Google Scholar.
Lawson, J.The round ideal completion via sobrification. Topology Proc., 22:261-274, 1997 Google Scholar.
Lawson, J.Stably compact spaces. Math. Structures Comput. Sci., 21:125-169, 2011 Google Scholar.
Lawvere, F.W.The category of categories as a foundation for mathematics. In Proc. Conf. Categorical Algebra, Springer, New York, 1966 Google Scholar, pp. 1-20.
Lawvere, F.W.Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135-166, 1973 Google Scholar. Republished as Repr. Theory Appl. Categ.1 (2002).
Lawvere, F.W. and R., Rosebrugh. Sets for Mathematics.Cambridge University Press, Cambridge, 2003 Google Scholar.
Lowen R., Kuratowski'smeasure of noncompactness revisited. Quart. J. Math. Oxford Ser. 2, 39:235-254, 1988 Google Scholar.
Lowen, R.Approach spaces: a common supercategory of TOP and MET. Math. Nachr., 141:183-226, 1989 Google Scholar.
Lowen, R.Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad.Oxford University Press, Oxford, 1997 Google Scholar.
Lowen, R.A survey of some categorical aspects of approach theory. In H., Herrlich and H.-E., Porst, eds., Categorical Methods in Algebra and Topology.University of Bremen, Bremen, 2000 Google Scholar, pp. 267-277.
Lowen, R.Index Calculus: Approach Theory at Work.Springer, Berlin, 2013 Google Scholar.
Lowen, R. and M., Sioen. A note on separation in AP. Appl. Gen. Topol., 4:475-486, 2003 Google Scholar.
Lowen, R., C. Van, Olmen, and T., Vroegrijk. Functional ideals and topological theories. Houston J. Math., 34:1065-1089, 2008 Google Scholar.
Lowen, R. and C., Verbeeck. Local compactness in approach spaces I. Int. J. Math. Math. Sci., 21:429-438, 1998 Google Scholar.
Lowen, R. and C., Verbeeck. Local compactness in approach spaces, II. Int. J. Math. Math. Sci., 2:109-117, 2003 Google Scholar.
Lowen, R. and T., Vroegrijk. A new lax algebraic characterization of approach spaces. Quad. Mat., 22:199-232, 2008 Google Scholar.
Lucyshyn-Wright, R.B.B.Monoidal domain-theoretic topology. Master's thesis, York University, Toronto, 2009 Google Scholar.
Lucyshyn-Wright, R.B.B.Domains occur among spaces as strict algebras among lax. Math. Structures Comput. Sci., 21:647-670, 2011 Google Scholar.
MacLane, S.Natural associativity and commutativity. Rice Univ. Studies, 49:28-46, 1963 Google Scholar.
Mac Lane, S.One universe as a foundation for category theory. In Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106. Springer, Berlin, 1969 Google Scholar, pp. 192-200.
Mac Lane, S.Categories for the Working Mathematician.Springer, New York, 1971; 2nd edn. 1998 Google Scholar.
Mac Lane, S. and I., Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.Springer, New York, 1994 Google Scholar.
MacDonald, J. and M., Sobral. Aspects of monads. In C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004 Google Scholar, pp. 213-268.
Machado, A.Espaces d'Antoine et pseudo-topologies. Cah. Topol. Géom. Différ. Catég., 14:309-327, 1973 Google Scholar.
Machner, J.T-algebras of the monad L-Fuzz. Czech. Math. J., 35(110):515-528, 1985 Google Scholar.
McShane, E.J.Partialorderings and Moore-Smith limits. Am. Math. Mon., 59:1-11, 1952 Google Scholar.
Mahmoudi, M., C., Schubert, and W., Tholen. Universality of coproducts in categories of lax algebras. Appl. Categ. Structures, 14:243-249, 2006 Google Scholar.
Manes, E.G.A Triple Miscellany. Ph.D. thesis, Wesleyan University, Middletown, 1967 Google Scholar.
Manes, E.G.Atriple theoretic construction of compactalgebras. In Sem. Triples and Categorical Homology Theory, ETH, Zurich, 1966 Google Scholar/67. Lecture Notes in Mathematics 80. Springer, Berlin, 1969, pp. 91-118.
Manes, E.G.Compact Hausdorff objects. Gen. Topology Appl., 4:341-360, 1974 Google Scholar.
Manes, E.G.Algebraic Theories. Springer, New York, 1976 Google Scholar.
Manes, E.G.Taut monads and T0-spaces. Theor. Comp. Sci., 275:79-109, 2002 Google Scholar.
Manes, E.G.Taut monads, dynamical logic and determinism. Electron. Notes Theoret. Comput. Sci., 173:241-262, 2007 Google Scholar.
Manes, E.G.Monads in topology. Topology Appl., 157:961-989, 2010 Google Scholar.
Manes, E.G. and P., Mulry. Monad compositions, I: General constructions and recursive distributive laws. Theory Appl. Categ., 18:172-208, 2007 Google Scholar.
Marmolejo, F., R., Rosebrugh, and R., Wood. A basic distributive law. J. Pure Appl. Algebra, 168:209-226, 2002 Google Scholar.
Marny, T.On epireflective subcategories of topological categories. Gen. Topology Appl., 10:175-181, 1979 Google Scholar.
Meisen, J.Relations in regular categories. In Symp. Localized Group Theory Homotopy Theory and Related Topics, Battelle Memorial Institute Seattle Research Center. Lecture Notes in Mathematics 418. Springer, Berlin, 1974 Google Scholar, pp. 196-202.
Menger, K.Statistical metrics. Proc. Nat. Acad. Sci. USA, 28:535-537, 1942 Google Scholar.
Möbus, A. (E, M)-Relationalalgebren und -Objekte. In Nordwestdeutsches Kate-gorien seminar 1977. Universität Bielefeld, Bielefeld, 1978 Google Scholar, pp. 163-194.
Möbus, A.Relational-Algebren. Ph.D. thesis, Universität Düsseldorf, Düsseldorf, 1981 Google Scholar.
Möbus, A.Wallman compactification of T4-relational algebras and Mal'cev monads. In D., Pumpliin and W., Tholen, eds., Seminarberichte, vol. 16. Fernuniversität, Hagen, 1982 Google Scholar, pp. 111-132.
Möbus, A.Alexandrov compactification of relational algebras. Arch. Math. (Basel), 40:526-537, 1983 Google Scholar.
Moore, E.H.Definition of limit in general integral analysis. Nat. Acad. Proc., 1:628-632, 1915 Google Scholar.
Moore, E.H. and H.L., Smith. A general theory of limits. Amer. J. Math., 44: 102-121, 1922 Google Scholar.
Mrówka, S.Compactness and productspaces. Colloq. Math., 7:19-22, 1959 Google Scholar.
Nachbin, L.Sur les espaces topologiques ordonnés. C.R. Acad. Sci. Paris, 226:381-382, 1948 Google Scholar.
Nachbin, L.Topologia e Ordem.University of Chicago Press, Chicago, IL, 1950 Google Scholar. English translation: Topology and Order, Van Nostrand, Princeton, NJ, 1965.
Niefield, S.Cartesianness: topological spaces, uniform spaces, and affine schemes. J. Pure Appl. Algebra, 23:147-167, 1982 Google Scholar.
Pasynkov, B.A.Partial topological products. Trans. Mosc. Math. Soc., 13: 153-271, 1965 Google Scholar.
Pedicchio, M.C. and W., Tholen. Multiplicative structures over sup-lattices. Arch. Math. (Brno), 25:107-114, 1989 Google Scholar.
Pedicchio, M.C. and R.J., Wood. Groupoidal completely distributive lattices. J. Pure Appl. Algebra, 143:339-350, 1999 Google Scholar.
Penon, J.Objets séparés ou compacts dans une catégorie. C.R. Acad. Sci. Paris Sér. A, 274:384-387, 1972 Google Scholar.
Penon, J.Quasi-topos. C.R. Acad. Sci. Paris Sér. A, 276:237-240, 1973 Google Scholar.
Perry, R.J.Completely regular relational algebras. Cahiers Topologie Géom. Différentielle, 17:125-133, 1976 Google Scholar.
Picado, J., A., Pultr, and A., Tozzi. Locales. In M.C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004 Google Scholar, pp. 49-101.
Pisani, C.Convergence in exponentiable spaces. Theory Appl. Categ., 5:148-162, 1999 Google Scholar.
Ramaley, J.F. and O., Wyler. Cauchy spaces, I, structure and uniformization theorems. Math. Ann., 187:175-186, 1970 Google Scholar.
Reis, C.D.Topologia via Categorias Enriquecidas. Ph.D. thesis, University of Aveiro, Aveiro, 2013 Google Scholar.
Reitermann, J. and W., Tholen. Effective descent maps of topological spaces. Topology Appl., 57:53-69, 1994 Google Scholar.
Riesz, F.Stetigkeitsbegriff und abstrakte Mengenlehre. In Atti del IV Congresso Intern. dei Matem., Bologna, vol. 2, 1908 Google Scholar, pp. 18-24.
Robeys, K.T.Extensions of Products of Metric Spaces. Ph.D. thesis, University of Antwerp, Antwerp, 1992 Google Scholar.
Rosebrugh, R. and R., Wood. Boundedness and complete distributivity. Appl. Categ. Structures, 9:437-456, 2001 Google Scholar.
Rosebrugh, R. and R.J., Wood. Distributive laws and factorization. J. Pure Appl. Algebra, 175:327-353, 2002 Google Scholar.
Rosenthal, K.I.Quantales and their Applications. Addison Wesley Longman, Harlow, 1990 Google Scholar.
Rosenthal, K.I.The Theory of Quantaloids. Addison Wesley Longman, Harlow, 1996 Google Scholar.
Rutten, J.J.M.M.Weighted colimits and formal balls in generalized metric spaces. Topology Appl., 89:179-202, 1998 Google Scholar.
Schubert, C.Lax Algebras – A Scenic Approach. Ph.D. thesis, Universität Bremen, Bremen, 2006 Google Scholar.
Schubert, C. and G.J., Seal. Extensions in the theory of lax algebra. Theory Appl. Categ., 21:118-151, 2008 Google Scholar.
Schubert, H.Categories.Springer, New York, 1972 Google Scholar.
Schweizer, B. and A., Sklar. Probabilistic Metric Spaces.North-Holland, New York, 1983 Google Scholar.
Scott, D.Continuous lattices. In Conf. Toposes, Algebraic Geometry and Logic, Dalhousie, Halifax N.S., 1971. Lecture Notes in Mathematics 274. Springer, Berlin, 1972 Google Scholar, pp. 97-136.
Seal, G.J.Canonical and op-canonical lax algebras. Theory Appl. Categ., 14:221-243, 2005 Google Scholar.
Seal, G.J.A Kleisli-based approach to lax algebras. Appl. Categ. Structures, 17:75-89, 2009 Google Scholar.
Seal, G.J.Order-adjointmonads and injective objects. J. Pure Appl. Algebra, 214:778-796, 2010 Google Scholar.
Seal, G.J.On the monadic nature of categories of ordered sets. Cah. Topol. Géom. Différ. Catég., 52:163-187, 2011 Google Scholar.
Smyth, M.B.Effectively given domains. Theoret. Comput. Sci., 5:257-274, 1977/1978 Google Scholar.
Solovyov, S.A.On the category Q-mod. Algebra Universalis, 58:35-58, 2008 Google Scholar.
Solovyov, S.A.On a lax-algebraic characterization of closed maps, Appl. Categ. Structures, 2013 Google Scholar, in press; DOI: 10.1007/s 10485-013-9334-7.
Šostak, A.P.Fuzzy functions and an extension of the category L-Top of Chang-Goguen L-topological spaces. In Proc. Ninth Prague Topological Symp., 2001 Google Scholar, pp. 271-294. Contributed papers available at www.emis.de/procedings/TopoSym2001/00.htm.
Šostak, A.P.Fuzzy functions as morphisms in an extension of the category of Hutton L-uniform spaces. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci., 57:121-127, 2003 Google Scholar.
Stone, M.H.Applications of the theory of Boolean rings to generaltopology. Trans. Amer. Math. Soc., 41:375-481, 1937 Google Scholar.
Street, R.The formal theory of monads. J. Pure Appl. Algebra, 2:149-168, 1972 Google Scholar.
Street, R.Fibrations and Yoneda's lemma in a 2-category. In Proc. Category Sem., Sydney, 1972/73. Lecture Notes in Mathematics 420. Springer, Berlin, 1974 Google Scholar, pp. 104-133.
Street, R.Categorical structures. In M., Hazewinkel, ed., Handbook of Algebra, vol. 1. Elsevier, Amsterdam, pp. 529-577. 1996 Google Scholar.
Streicher, T.Fibred categories à la Jean Bénabou. Lecture notes. Available at http://www.mathematik.tu-darmstadt.de/〜st:reiche:r/FIBR/FibLec.pdf, 1998-2012 Google Scholar.
Stubbe, I.Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl. Categ., 14:1-45, 2005 Google Scholar.
Stubbe, I.Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl. Categ., 16:283-306, 2006 Google Scholar.
Stubbe, I.Q-modules are Q-suplattices. Theory Appl. Categ., 19:50-60, 2007 Google Scholar.
Tarski, A.Une contribution à la théorie de la mesure. Fundam. Math., 15:42-50, 1930 Google Scholar.
Thampuran, D.V.Extended topology: filters and convergence I. Math. Ann., 158:57-68, 1965 Google Scholar.
Tholen, W.On Wyler's tautlift theorem. Gen. Topology Appl., 8:197-206, 1978 Google Scholar.
Tholen, W.Semitopological functors I. J. Pure Appl. Algebra, 15:53-73, 1979 Google Scholar.
Tholen, W.Factorizations, localizations, and the orthogonal subcategory problem. Math. Nachr., 114:63-85, 1983 Google Scholar.
Tholen, W.A categorical guide to separation, compactness and perfectness. Homology, Homotopy Appl., 1:147-161, 1999 Google Scholar.
Tholen, W.Ordered topological structures. Topology Appl., 156:2148-2157, 2009 Google Scholar.
Trnková, V.Relational automata in a category and their languages. In Proc. Int. Conf. Fundamental Computing Theory, Poznan-Kornik, 1977 Google Scholar. Lecture Notes in Computer Science 56. Springer, Berlin, 1977, pp. 340-355.
Tukey, J.W.Convergence and Uniformity in Topology.Princeton University Press, Princeton, NJ, 1940 Google Scholar.
Tychonoff, A.N.Über die topologische Erweiterung von Räumen. Math. Ann., 102:544-561, 1930 Google Scholar.
van Breugel, F.An introduction to metric semantics: operational and denotational models for programming and specification languages. Theoret. Comput. Sci., 258:1-98, 2001 Google Scholar.
VanOlmen, C.A study of the interaction between frame theory and approach theory. Ph.D. thesis, University of Antwerp, 2005 Google Scholar.
Van Olmen, C. and S., Verwulgen. A finite axiom scheme for approach frames. Bull. Belg. Math. Soc. Simon Stevin, 17:899-908, 2010 Google Scholar.
Vietoris, L.Bereiche zweiter Ordnung. Monatsh. Math. Phys., 32:258-280, 1922 Google Scholar.
Wagner, K.R.Solving recursive domain equations with enriched categories. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 1994 Google Scholar.
Waszkiewicz, P.On domain theory over Girard quantales. Fund. Inform., 92:169-192, 2009 Google Scholar.
Wood, R.J.Ordered sets via adjunctions. In C., Pedicchio and W., Tholen, eds., Categorical Foundations.Cambridge University Press, Cambridge, 2004 Google Scholar, pp. 5-47.
Wyler, O.On the categories of general topology and topological algebra. Arch. Math. (Basel), 22:7-17, 1971 Google Scholar.
Wyler, O.Are there topoi in topology? In Proc. Conf. Categorical Topology, Mannheim, 1975. Lecture Notes in Mathematics 540. Springer, Berlin, 1976 Google Scholar, pp. 699-719.
Wyler, O.Algebraic theories of continuous lattices. In Continous Lattices. Lecture Notes in Mathematics 871. Springer, Berlin, 1981 Google Scholar, pp. 390-413.
Wyler, O.Lectures Notes on Topoi and Quasitopoi.World Scientific, Singapore, 1991 Google Scholar.
Wyler, O.Convergence axioms for topology. Ann. NY Acad. Sci., 806:465-475, 1995 Google Scholar.
Zhang, D.Tower extensions of topological constructs. Comment. Math. Univ. Carolinae, 41:41-51, 2000 Google Scholar.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.