Skip to main content Accessibility help
×
  • Cited by 19
Publisher:
Cambridge University Press
Online publication date:
September 2010
Print publication year:
2010
Online ISBN:
9780511770838

Book description

Providing a new perspective on quantum field theory, this book gives a pedagogical and up-to-date exposition of non-perturbative methods in relativistic quantum field theory and introduces the reader to modern research work in theoretical physics. It describes in detail non-perturbative methods in quantum field theory, and explores two- dimensional and four- dimensional gauge dynamics using those methods. The book concludes with a summary emphasizing the interplay between two- and four- dimensional gauge theories. Aimed at graduate students and researchers, this book covers topics from two-dimensional conformal symmetry, affine Lie algebras, solitons, integrable models, bosonization, and 't Hooft model, to four-dimensional conformal invariance, integrability, large N expansion, Skyrme model, monopoles and instantons. Applications, first to simple field theories and gauge dynamics in two dimensions, and then to gauge theories in four dimensions and quantum chromodynamics (QCD) in particular, are thoroughly described.

Reviews

'… Non-Perturbative Field Theory will have enduring value as a comprehensive reference.'

Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
References
E., Abdalla and M. C. B., Abdalla, “Updating QCD in two-dimensions,” Phys. Rept. 265, 253 (1996 Google Scholar) [arXiv:hep-th/9503002].
E., Abdalla, M. C. B., Abdalla and K. D., Rothe, Nonperturbative Methods in Two-Dimensional Quantum Field Theory, Singapore: World Scientific (2001 Google Scholar).
A., Abrashkin, Y., Frishman and J., Sonnenschein, “The spectrum of states with one current acting on the adjoint vacuum of massless QCD2,” Nucl. Phys. B 703, 320 (2004 Google Scholar) [arXiv:hep-th/0405165].
C., Adam, “Charge screening and confinement in the massive Schwinger model,” Phys. Lett. B 394, 161 (1997 Google Scholar) [arXiv:hep-th/9609155].
G. S., Adkins, C. R., Nappi and E., Witten, “Static properties of nucleons in the Skyrme model,” Nucl. Phys. B 228, 552 (1983 Google Scholar).
S. L., Adler, J. C., Collins and A., Duncan, “Energy momentum tensor trace anomaly in spin ½ quantum electrodynamics'Phys. Rev. D 15, 1712 (1977 Google Scholar).
I., Affleck, “On the realization of chiral symmetry in (1+1)-dimensions,” Nucl. Phys. B 265, 448 (1986 Google Scholar).
O., Aharony, O., Ganor, J., Sonnenschein and S., Yankielowicz, “On the twisted G/H topological models,” Nucl. Phys. B 399, 560 (1993 Google Scholar) [arXiv:hep-th/9208040].
O., Aharony, O., Ganor, J., Sonnenschein, S., Yankielowicz and N., Sochen, “Physical states in G/G models and 2-d gravity,” Nucl. Phys. B 399, 527 (1993 Google Scholar) [arXiv:hep-th/9204095].
O., Aharony, S. S., Gubser, J. M., Maldacena, H., Ooguri and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000 Google Scholar) [arXiv:hep-th/9905111].
A. Y., Alekseev and V., Schomerus, “D-branes in the WZW model,” Phys. Rev. D 60, 061901 (1999 Google Scholar) [arXiv:hep-th/9812193].
D., Altschuler, K., Bardakci and E., Rabinovici, “A construction of the c < 1 modular invariant partition function,” Commun. Math. Phys. 118, 241 (1988 Google Scholar).
L., Alvarez-Gaume, G., Sierra and C., Gomez, “Topics in conformal field theory,” contribution to the Knizhnik Memorial Volume, L., Brink, et al., World Scientific. In Brink, L. (ed.) et al.: Physics and Mathematics of Strings16–184 (1989). Singapore Google Scholar.
F., Antonuccio and S., Dalley, “Glueballs from (1+1)-dimensional gauge theories with transverse degrees of freedom,” Nucl. Phys. B 461, 275 (1996 Google Scholar) [arXiv:hep-ph/9506456].
A., Armoni, Y., Frishman and J., Sonnenschein, “The string tension in massive QCD(2),” Phys. Rev. Lett. 80, 430 (1998 Google Scholar) [arXiv:hep-th/9709097].
A., Armoni, Y., Frishman and J., Sonnenschein, “The string tension in two dimensional gauge theories,” Int. J. Mod. Phys. A 14, 2475 (1999 Google Scholar) [arXiv:hep-th/9903153].
A., Armoni, Y., Frishman and J., Sonnenschein, “Massless QCD(2) from current constituents,” Nucl. Phys. B 596, 459 (2001 Google Scholar) [arXiv:hep-th/0011043].
A., Armoni and J., Sonnenschein, “Mesonic spectra of bosonized QCD in two-dimensions models,” Nucl. Phys. B 457, 81 (1995 Google Scholar) [arXiv:hep-th/9508006].
M. F., Atiyah and N. J., Hitchin, “The geometry and dynamics of magnetic monopole. M.B. Porter lecturesPrinceton, USA: Princeton University Press (1988 Google Scholar) 133p.
M. F., Atiyah, N. J., Hitchin, V. G., Drinfeld and Yu. I., Manin, “Construction of instantons,” Phys. Lett. A 65, 185 (1978 Google Scholar).
F. A., Bais, “To be or not to be? Magnetic monopoles in non-abelian gauge theories,” in 't Hooft, Hackensack, G. ed. Fifty years of Yang–Mills Theory, New JerseyWorld Scientific, C 2005 Google Scholar.
A. P., Balachandran, “Solitons in nuclear and elementary physics. Proceedings of the Lewes workshop,” World Scientific, 1984 Google Scholar.
I. I., Balitsky and L. N., Lipatov, “The Pomeranchuk singularity in quantum chromodynamics,” Sov. J. Nucl. Phys. 28, 822 (1978 Google Scholar) [Yad. Fiz.28, 1597 (1978)].
V., Baluni, “The Bose form of two-dimensional quantum chromodynamics,” Phys. Lett. B 90, 407 (1980 Google Scholar).
T., Banks, “Lectures on conformal field theory,” presented at the Theoretical Advanced Studies Institute, St. John's College, Santa Fe, N. Mex., Jul 5 – Aug 1, 1987 Google Scholar. Published in Santa Fe: TASI 87:572.
T. I., Banks and C. M., Bender, “Anharmonic oscillator with polynomial self-interaction,” J. Math. Phys. 13, 1320 (1972 Google Scholar).
K., Bardakci and M. B., Halpern, “New dual quark models,” Phys. Rev. D 3, 2493 (1971 Google Scholar).
A., Bassetto, G., Nardelli and R., Soldati, Yang-Mills Theories in Algebraic Noncovariant Gauges: Canonical Quantization and Renormalization, SingaporeWorld Scientific (1991 Google Scholar).
R. J., Baxter, Exactly Solved Models in Statistical Mechanics, London: Academic press (1989 Google Scholar).
K., Becker, M., Becker and J. H., Schwarz, String Theory and M-Theory: A modern introduction, Cambridge, UK: Cambridge University Press (2007 Google Scholar).
N., Beisert, “The dilatation operator of N = 4 super Yang-Mills theoryPhys. Rept. 405, 1 (2005 Google Scholar) [arXiv:hep-th/0407277].
A. A., Belavin, A. M., Polyakov, A. S., Shvarts and Yu. S., Tyupkin, “Pseudoparticle solutions of the Yang-Mills equations,” Phys. Lett. B 59, 85 (1975 Google Scholar).
A. A., Belavin, A. M., Polyakov and A. B., Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B 241, 333 (1984 Google Scholar).
A. V., Belitsky, V. M., Braun, A. S., Gorsky and G. P., Korchemsky, “Integrability in QCD and beyond,” Int. J. Mod. Phys. A 19, 4715 (2004 Google Scholar) [arXiv:hep-th/0407232].
D. E., Berenstein, J. M., Maldacena and H. S., Nastase, “Strings in flat space and pp waves from N = 4 super Yang Mills,” JHEP 0204, 013 (2002 Google Scholar) [arXiv:hep-th/0202021].
M., Bernstein and J., Sonnenschein, “A comment on the quantization of the chiral bosonsPhys. Rev. Lett. 60, 1772 (1988 Google Scholar).
J. D., Bjorken and S. D., Drell, Relativistic Quantum Field Theory, New York: McGraw-Hill (1965 Google Scholar), ISBN 0-07-005494-0.
G., Bhanot, K., Demeterfi and I. R., Klebanov, “(1+1)-dimensional large N QCD coupled to adjoint fermions,” Phys. Rev. D 48, 4980 (1993 Google Scholar) [arXiv:hep-th/9307111].
D., Bernard and A., Leclair, “Quantum group symmetries and nonlocal currents in 2-D QFT,” Commun. Math. Phys. 142, 99 (1991 Google Scholar).
K. M., Bitar and S. J., Chang, “Vacuum tunneling of gauge theory in minkowski space,” Phys. Rev. D 17, 486 (1978 Google Scholar).
E. B., Bogomolny, “Stability of classical solutions,” Sov. J. Nucl. Phys. 24, 449 (1976 Google Scholar) [Yad. Fiz.24, 861 (1976)].
V. M., Braun, S. E., Derkachov, G. P., Korchemsky and A. N., Manashov, “Baryon distribution amplitudes in QCD,” Nucl. Phys. B 553, 355 (1999 Google Scholar) [arXiv:hep-ph/9902375].
V. M., Braun, G. P., Korchemsky and D., Mueller, “The uses of conformal symmetry in QCD,” Prog. Part. Nucl. Phys. 51, 311 (2003 Google Scholar) [arXiv:hep-ph/0306057].
E., Brezin and J. L., Gervais, “Nonperturbative aspects in quantum field theory. Proceedings of Les Houches Winter Advanced Study Institute, March 1978,” Phys. Rept. 49, 91 (1979 Google Scholar).
E., Brezin, C., Itzykson, J., Zinn-Justin and J. B., Zuber, “Remarks about the existence of nonlocal charges in two-dimensional models,” Phys. Lett. B 82, 442 (1979 Google Scholar).
E., Brezin and S. R., Wadia, “The large N expansion in quantum field theory and statistical physics: From spin systems to two-dimensional gravity,” Singapore, Singapore: World Scientific (1993 Google Scholar) 1130 p
S. J., Brodsky, “Gauge theories on the light-front,” Braz. J. Phys. 34, 157 (2004 Google Scholar) [arXiv:hep-th/0302121].
S. J., Brodsky, H. C., Pauli and S. S., Pinsky, “Quantum chromodynamics and other field theories on the light cone,” Phys. Rept. 301, 299 (1998 Google Scholar) [arXiv:hep-ph/9705477].
S. J., Brodsky, Y., Frishman, G. P., Lepage and C. T., Sachrajda, “Hadronic wave functions at short distances and the operator product expansion,” Phys. Lett. B 91, 239 (1980 Google Scholar).
S. J., Brodsky, Y., Frishman and G. P., Lepage, “On the application of conformal symmetry to quantum field theory,” Phys. Lett. B 167, 347 (1986 Google Scholar).
S. J., Brodsky, P., Damgaard, Y., Frishman and G. P., Lepage, “Conformal symmetry: exclusive processes beyond leading order,” Phys. Rev. D 33, 1881 (1986 Google Scholar).
R. C., Brower, W. L., Spence and J. H., Weis, “Effects of confinement on analyticity in two-dimensional QCD,” Phys. Rev. D 18, 499 (1978 Google Scholar).
G. E., Brown, “Selected papers, with commentary, of Tony Hilton Royle Skyrme,” Singapore: World Scientific (1994 Google Scholar) 438 p. (World Scientific series in 20th century physics, 3).
R. N., Cahn, Semisimple Lie Algebras and their Representations, Menlo Park, USA: Benjamin/Cummings (1984 Google Scholar) 158 p. (Frontiers In Physics, 59)
C. G., Callan, “Broken scale invariance in scalar field theory,” Phys. Rev. D 2, 1541 (1970 Google Scholar).
C. G., Callan, N., Coote and D. J., Gross, “Two-dimensional Yang-Mills theory: a model of quark confinement,” Phys. Rev. D 13, 1649 (1976 Google Scholar).
C. G., Callan, R. F., Dashen and D. J., Gross, “Toward a theory of the strong interactions,” Phys. Rev. D 17, 2717 (1978 Google Scholar).
J. L., Cardy, “Boundary conditions, fusion rules and the Verlinde formula,” Nucl. Phys. B 324, 581 (1989 Google Scholar).
J. L., Cardy Google Scholar, “Conformal invariance and statistical mechanics,” Les Houches Summer School 1988:0169-246.
A., Casher, H., Neuberger and S., Nussinov, “Chromoelectric flux tube model of particle production,” Phys. Rev. D 20, 179 (1979 Google Scholar).
A., Chodos, “Simple connection between conservation laws in the Korteweg-De Vries and sine-Gordon systems,” Phys. Rev. D 21, 2818 (1980 Google Scholar).
E., Cohen, Y., Frishman and D., Gepner, “Bosonization of two-dimensional QCD with flavor,” Phys. Lett. B 121, 180 (1983 Google Scholar).
S. R., Coleman, “Quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. D 11, 2088 (1975 Google Scholar).
S. R., Coleman, “More about the massive Schwinger model,” Annals Phys. 101, 239 (1976 Google Scholar).
S. R., Coleman, “The uses of instantons,” Subnucl. Ser. 15, 805 (1979 Google Scholar).
S., Coleman, Aspects of Symmetry, selected Erice lectures of Sidney Coleman, Cambridge, UK, Cambridge Univ. Press (1985 Google Scholar).
S. R., Coleman, The magnetic monopole fifty years later, In the Unity of Fundamental Interactions, ed. A., Zichichi: New York, Plenum (1983 Google Scholar).
S. R., Coleman, R., Jackiw and L., Susskind, “Charge shielding and quark confinement in the massive Schwinger model,” Annals Phys. 93, 267 (1975 Google Scholar).
S., Cordes, G. W., Moore and S., Ramgoolam, “Large N 2-D Yang-Mills theory and topological string theory,” Commun. Math. Phys. 185, 543 (1997 Google Scholar) [arXiv:hep-th/9402107].
E., Corrigan, D. B., Fairlie, S., Templeton and P., Goddard, “A Green's function for the general selfdual gauge field,” Nucl. Phys. B 140, 31 (1978 Google Scholar).
E., Corrigan and P., Goddard, “Construction of instanton and monopole solutions and reciprocity,” Annals Phys. 154, 253 (1984 Google Scholar).
S., Dalley and I. R., Klebanov, “String spectrum of (1+1)-dimensional large N QCD with adjoint matter,” Phys. Rev. D 47, 2517 (1993 Google Scholar) [arXiv:hep-th/9209049].
R. F., Dashen and Y., Frishman, “Four fermion interactions and scale invariance,” Phys. Rev. D 11, 2781 (1975 Google Scholar).
R. F., Dashen, B., Hasslacher and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons,” Phys. Rev. D 10, 4130 (1974 Google Scholar).
G., Date, Y., Frishman and J., Sonnenschein, “The spectrum of multiflavor QCD in two-dimensions'Nucl. Phys. B 283, 365 (1987 Google Scholar).
G. F., Dell-Antonio, Y., Frishman and D., Zwanziger, “Thirring model in terms of currents: solution and light cone expansions,” Phys. Rev. D 6, 988 (1972 Google Scholar).
P., Di Francesco, P., Mathieu, D., SenechalConformal Field Theory, Series: Graduate Texts in Contemporary Physics. New York: Springer-Verlag (1997 Google Scholar).
P. A. M., Dirac, “Theory Of Magnetic Monopoles,” In *Coral Gables 1976, Proceedings, New Pathways In High-energy Physics, Vol. I*, New York: Plenum Press, 1976 Google Scholar, 1–14.
F. M., Dittes and A. V., Radyushkin, “Two loop contribution to the evolution of the pion wave function,” Phys. Lett. B 134, 359 (1984 Google Scholar); M. H. Sarmadi, Phys. Lett. B 143, 471 (1984); S. V. Mikhailov and A. V. Radyushkin, Nucl. Phys. B 254, 89 (1985); G. R. Katz, Phys. Rev. D 31, 652 (1985).
N., Dorey, T. J., Hollowood, V. V., Khoze, M. P., Mattis and S., Vandoren, “Multi-instanton calculus and the AdS/CFT correspondence in N = 4Nucl. Phys. B 552, 88 (1999 Google Scholar) [arXiv:hep-th/9901128].
N., Dorey, T. J., Hollowood, V. V., Khoze and M. P., Mattis, “The calculus of many instantons,” Phys. Rept. 371, 231 (2002 Google Scholar) [arXiv:hep-th/0206063].
M. R., Douglas, K., Li and M., Staudacher, “Generalized two-dimensional QCD,” Nucl. Phys. B 420, 118 (1994 Google Scholar) [arXiv:hep-th/9401062].
A. V., Efremov and A. V., Radyushkin, “Factorization and asymptotical behavior of pion form-factor in QCD,” Phys. Lett. B 94, 245 (1980 Google Scholar).
T., Eguchi and H., Ooguri, “Chiral bosonization on a Riemann surface,” Phys. Lett. B 187, 127 (1987 Google Scholar).
S., Elitzur and G., Sarkissian, “D-branes on a gauged WZW model,” Nucl. Phys. B 625, 166 (2002 Google Scholar) [arXiv:hep-th/0108142].
J. R., Ellis, Y., Frishman, A., Hanany and M., Karliner, “Quark solitons as constituents of hadrons,” Nucl. Phys. B 382, 189 (1992 Google Scholar) [arXiv:hep-ph/9204212].
J. R., Ellis, Y., Frishman and M., Karliner, “Meson baryon scattering in QCD(2) for any coupling,” Phys. Lett. B 566, (2003 Google Scholar) 201 [arXiv:hep-ph/0305292].
L. D., Faddeev Google Scholar, “How algebraic Bethe ansatz works for integrable model,” arXiv:hep-th/9605187.
B. L., Feigin and D. B., FuchsSkew symmetric differential operators on the line and Verma modules over the Virasoro algebraFunct. Anal. Prilozhen 16, (1982 Google Scholar) 47.
S., Ferrara, A. F., Grillo and R., Gatto, “Improved light cone expansion,” Phys. Lett. B 36, 124 (1971 Google Scholar) [Phys. Lett. B 38, 188 (1972)].
D., Finkelstein and J., Rubinstein, “Connection between spin, statistics, and kinks,” J. Math. Phys. 9, 1762 (1968 Google Scholar).
R., Floreanini and R., Jackiw, “Selfdual fields as charge density solitons,” Phys. Rev. Lett. 59, 1873 (1987 Google Scholar).
D., Friedan Google Scholar, “Introduction To Polyakov's string theory,” Published in Les Houches Summer School 1982:0839.
D., Friedan, E. J., Martinec and S. H., Shenker, “Conformal invariance, supersymmetry and string theory,” Nucl. Phys. B 271, 93 (1986 Google Scholar).
D., Friedan, Z. a., Qiu and S. H., Shenker, “Conformal invariance, unitarity and two-dimensional critical exponents,” Phys. Rev. Lett. 52, 1575 (1984 Google Scholar).
Y., Frishman, A., Hanany and J., Sonnenschein, “Subtleties in QCD theory in two-dimensions,” Nucl. Phys. B 429, 75 (1994 Google Scholar) [arXiv:hep-th/9401046].
Y., Frishman and M., Karliner, “Baryon wave functions and strangeness content in QCD in two-dimensions,” Nucl. Phys. B 344, 393 (1990 Google Scholar).
Y., Frishman and M., Karliner, “Scattering and resonances in QCD(2),” Phys. Lett. B 541, 273 (2002 Google Scholar). Erratum-ibid. B 562, 367, (2003). [arXiv:hep-ph/0206001].
Y., Frishman and J., Sonnenschein, “Bosonization of colored-flavored fermions and QCD in two-dimenstions,” Nucl. Phys. B 294, 801 (1987 Google Scholar).
Y., Frishman and J., Sonnenschein, “Gauging of chiral bosonized actions'Nucl. Phys. B 301, 346 (1988 Google Scholar).
Y., Frishman and J., Sonnenschein, “Bosonization and QCD in two-dimensions,” Phys. Rept. 223, 309 (1993 Google Scholar) [arXiv:hep-th/9207017].
Y., Frishman and W. J., Zakrzewski, “Multibaryons in QCD in two-dimensions,” Nucl. Phys. B 328, 375 (1989 Google Scholar).
Y., Frishman and W. J., Zakrzewski, “Explicit expressions for masses and bindings of multibaryons in QCD(2),” Nucl. Phys. B 331, 781 (1990 Google Scholar).
S., Fubini, A. J., Hanson and R., Jackiw, “New approach to field theory,” Phys. Rev. D 7, 1732 (1973 Google Scholar).
O., Ganor, J., Sonnenschein and S., Yankielowicz, “The string theory approach to generalized 2-d Yang-Mills theory,” Nucl. Phys. B 434, 139 (1995 Google Scholar) [arXiv:hep-th/9407114].
E. G., Gimon, L. A., Pando Zayas, J., Sonnenschein and M. J., Strassler, “A soluble string theory of hadrons,” JHEP 0305, 039 (2003 Google Scholar) [arXiv:hep-th/0212061].
D., Gepner, “Nonabelian bosonization and multiflavor QED and QCD in two-dimensions,” Nucl. Phys. B 252, 481 (1985 Google Scholar).
D., Gepner and E., Witten, “String theory on group manifolds,” Nucl. Phys. B 278, 493 (1986 Google Scholar).
P. H., Ginsparg Google Scholar, “Applied conformal field theory,” Published in Les Houches Summer School 1988:1-168, arXiv:hep-th/9108028.
P., Goddard, A., Kent and D. I., Olive, “Virasoro algebras and coset space models,” Phys. Lett. B 152, 88 (1985 Google Scholar).
P., Goddard and D. I., Olive, “Kac-Moody and Virasoro algebras in relation to quantum physics,” Int. J. Mod. Phys. A 1, 303 (1986 Google Scholar).
D., Gonzales and A. N., Redlich, “The low-energy effective dynamics of two-dimensional gauge theories,” Nucl. Phys. B 256, 621 (1985 Google Scholar).
M. B., Green, J. H., Schwarz and E., Witten, “Superstring theory. Vol. 2: Loop amplitudes, anomalies and phenomenology,” Cambridge, UK: Univ. Pr. (1987 Google Scholar) 596 P. (Cambridge Monographs On Mathematical Physics)
C., Gomez, G., Sierra and M., Ruiz-Altaba, “Quantum groups in two-dimensional physics,” Cambridge, UK: Univ. Pr. (1996 Google Scholar) 457 p
D. J., Gross, “Two-dimensional QCD as a string theory,” Nucl. Phys. B 400, 161 (1993 Google Scholar) [arXiv:hep-th/9212149].
D. J., Gross, I. R., Klebanov, A. V., Matytsin and A. V., Smilga, “Screening vs. Confinement in 1+1 Dimensions,” Nucl. Phys. B 461, 109 (1996 Google Scholar) [arXiv:hep-th/9511104].
D. J., Gross and A., Neveu, “Dynamical symmetry breaking in asymptotically free field theories,” Phys. Rev. D 10, 3235 (1974 Google Scholar).
D. J., Gross and W., Taylor, “Two-dimensional QCD is a string theory,” Nucl. Phys. B 400, 181 (1993 Google Scholar) [arXiv:hep-th/9301068].
D. J., Gross and W., Taylor, “Twists and Wilson loops in the string theory of two-dimensional QCD,” Nucl. Phys. B 403, 395 (1993 Google Scholar) [arXiv:hep-th/9303046].
I. G., Halliday, E., Rabinovici, A., Schwimmer and M. S., Chanowitz, “Quantization of anomalous two-dimensional models,” Nucl. Phys. B 268, 413 (1986 Google Scholar).
M. B., Halpern, “Quantum solitons which are SU(N) fermions,” Phys. Rev. 12, 1684 (1975 Google Scholar).
G., 't Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B 72, 461 (1974 Google Scholar).
G., 't Hooft, “Magnetic monopoles in unified gauge theoriesNucl. Phys. B 79, 276 (1974 Google Scholar).
G., 't Hooft, “A two-dimensional model for mesons,” Nucl. Phys. B 75, 461 (1974 Google Scholar).
G., 't Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle,” Phys. Rev. D 14, 3432 (1976 Google Scholar) [Erratum-ibid. D 18, 2199 (1978)].
P., Horava, “Topological strings and QCD in two-dimensions,” hep-th/9311156, talk given at NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, Cargese, France, 12–21 May 1993 Google Scholar.
K., Hornbostel, “The application of light cone quantization to quantum chromodynamics in (1+1)-dimensions,” Ph.D. thesis, SLAC-R-333, Dec 1988 Google Scholar.
K., Hornbostel, S. J., Brodsky and H. C., Pauli, “Light cone quantized QCD in (1+1)-dimensions,” Phys. Rev. D 41, 3814 (1990 Google Scholar).
C., Imbimbo and A., Schwimmer, “The Lagrangian formulation of chiral scalars,” Phys. Lett. B 193, 455 (1987 Google Scholar).
C., Itzykson and J. B., Zuber, Quantum Field Theory, New York, USA: McGraw-Hill (1980 Google Scholar) 705 P.(International Series In Pure and Applied Physics)
R., Jackiw and C., Rebbi, “Vacuum periodicity in a Yang-Mills quantum theory,” Phys. Rev. Lett. 37, 172 (1976 Google Scholar).
R., Jackiw, C., Nohl and C., Rebbi, “Conformal properties of pseudoparticle configurations”, Phys. Rev. D 15, 1642 (1977 Google Scholar).
A. D., Jackson and M., Rho, “Baryons as chiral solitons,” Phys. Rev. Lett. 51, 751 (1983 Google Scholar).
B., Julia and A., Zee, “Poles with both magnetic and electric charges in nonabelian gauge theory,” Phys. Rev. D 11, 2227 (1975 Google Scholar).
N., Ishibashi, “The boundary and crosscap states in conformal field theories,” Mod. Phys. Lett. A 4, 251 (1989 Google Scholar).
V. G., Kac, “Simple graded algebras of finite growth,” Funct. Anal. Appl. 1, 328 (1967 Google Scholar).
L. P., Kadanoff, “Correlators along the line of two dimensional Ising model,” Phys. Rev. 188, 859 (1969 Google Scholar).
M., Kaku, Strings, Conformal Fields, and M-Theory, New York, USA: Springer (2000 Google Scholar) 531 p.
V. A., Kazakov, “Wilson loop average for an arbitrary contour in two-dimensional U(N) gauge theory,” Nucl. Phys. B 179, 283 (1981 Google Scholar).
S. V., Ketov, Conformal Field Theory, Singapore, Singapore: World Scientific (1995 Google Scholar) 486 p.
V. V., Khoze, M. P., Mattis and M. J., Slater, “The instanton hunter's guide to supersymmetric SU(N) gauge theory,” Nucl. Phys. B 536, 69 (1998 Google Scholar) [arXiv:hep-th/9804009].
E., Kiritsis, String Theory in a Nutshell, Princeton, USA: Univ. Pr. (2007 Google Scholar) 588 p.
V. G., Knizhnik and A. B., Zamolodchikov, “Current algebra and Wess-Zumino model in two dimensions,” Nucl. Phys. B 247, 83 (1984 Google Scholar).
W., Krauth and M., Staudacher, “Non-integrability of two-dimensional QCD,” Phys. Lett. B 388, 808 (1996 Google Scholar) [arXiv:hep-th/9608122].
E. A., Kuraev, L. N., Lipatov and V. S., Fadin, “The Pomeranchuk singularity in non-abelian gauge theories,” Sov. Phys. JETP 45, 199 (1977 Google Scholar) [Zh. Eksp. Teor. Fiz. 72, 377 (1977)]. “Multi-reggeon processes in the Yang-Mills theory,” Sov. Phys. JETP44, 443 (1976) [Zh. Eksp. Teor. Fiz.71, 840 (1976)].
D., Kutasov, “Duality off the critical point in two-dimensional systems with nonabelian symmetries,” Phys. Lett. B 233, 369 (1989 Google Scholar).
D., Kutasov, “Two-dimensional QCD coupled to adjoint matter and string theory,” Nucl. Phys. B 414, 33 (1994 Google Scholar) [arXiv:hep-th/9306013].
D., Kutasov and A., Schwimmer, “Universality in two-dimensional gauge theory,” Nucl. Phys. B 442, 447 (1995 Google Scholar) [arXiv:hep-th/9501024].
T. D., Lee and Y., Pang, “Nontopological solitons,” Phys. Rept. 221, 251 (1992 Google Scholar).
G. P., Lepage and S. J., Brodsky, “Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons,” Phys. Lett. B 87, 359 (1979 Google Scholar).
L. N., Lipatov, The Creation of Quantum Chromodynamics and the Effective Energy, Bologna, Italy: Univ. Bologna (1998 Google Scholar) 367 p.
J. H., Lowenstein and J. A., Swieca, “Quantum electrodynamics in two-dimensions,” Annals Phys. 68, 172 (1971 Google Scholar).
M., Luscher, “Quantum nonlocal charges and absence of particle production in the two-dimensional nonlinear Sigma model,” Nucl. Phys. B 135, 1 (1978 Google Scholar).
D., Lust and S., Theisen, “Lectures on string theory,” Lect. Notes Phys. 346, 1 (1989 Google Scholar).
A., Maciocia, “Metrics on the moduli spaces of instantons over Euclidean four space,” Commun. Math. Phys. 135, 467 (1991 Google Scholar).
G., Mack and A., Salam, “Finite component field representations of the conformal group,” Annals Phys. 53, 174 (1969 Google Scholar).
V. G., Makhankov, Y. P., Rybakov and V. I., Sanyuk, The Skyrme model: Fundamentals, methods, applications, Berlin, Germany: Springer (1993 Google Scholar) 265 p. (Springer series in nuclear and particle physics).
J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998 Google Scholar) [Int. J. Theor. Phys.38, 1113 (1999)] [arXiv:hep-th/9711200].
S., Mandelstam, “Soliton operators for the quantized sine-Gordon equation,” Phys. Rev. D 11, 3026 (1975 Google Scholar).
A. V., Manohar, “Large N QCD,” arXiv:hep-ph/9802419, Published in *Les Houches 1997 Google Scholar, Probing the standard model of particle interactions, Pt. 2* 1091-1169.
A. A., Migdal, “Recursion equations in gauge field theories,” Sov. Phys. JETP 42, 413 (1975 Google Scholar) [Zh. Eksp. Teor. Fiz.69, 810 (1975)].
J. A., Minahan and K., Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,” JHEP 0303, 013 (2003 Google Scholar) [arXiv:hep-th/0212208].
C., Montonen and D. I., Olive, “Magnetic monopoles as gauge particles?,” Phys. Lett. B 72, 117 (1977 Google Scholar).
R. V., Moody, “Lie algebras associated with generalized Cartan matrices,” Bull. Am. Math. Soc. 73, 217 (1967 Google Scholar).
M., Moshe and J., Zinn-Justin, “Quantum field theory in the large N limit: A review,” Phys. Rept. 385, 69 (2003 Google Scholar) [arXiv:hep-th/0306133].
D., Mueller, “Constraints for anomalous dimensions of local light cone operators in phi**3 in six-dimensions theory,” Z. Phys. C 49, 293 (1991 Google Scholar); Phys. Rev. D 49, 2525 (1994).
W., Nahm, “A simple formalism for the BPS monopole,” Phys. Lett. B 90, 413 (1980 Google Scholar).
N. K., Nielsen, “Gauge invariance and broken conformal symmetry,” Nucl. Phys. B 97, 527 (1975 Google Scholar).
N. K., Nielsen, “The energy momentum tensor in a nonabelian quark gluon theory,” Nucl. Phys. B 120, 212 (1977 Google Scholar).
S. P., Novikov, “Multivalued functions and functionals, An analogue to Morse theory,” Sov. Math. Dock. 24, 222 (1981 Google Scholar)
T., Ohrndorf, “Constraints from conformal covariance on the mixing of operators of lowest twist,” Nucl. Phys. B 198, 26 (1982 Google Scholar).
R. D., Peccei and H. R., Quinn, “Constraints imposed by CP conservation in the presence of instantons,” Phys. Rev. D 16, 1791 (1977 Google Scholar).
M. E., Peskin and D. V., Schroeder, An Introduction To Quantum Field Theory, Reading, USA: Addison-Wesley (1995 Google Scholar) 842 p.
J., Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge, UK: Univ. Pr. (1998 Google Scholar) 531 p.
A. M., Polyakov, “Particle spectrum in quantum field theory,” JETP Lett. 20, 194 (1974 Google Scholar) [Pisma Zh. Eksp. Teor. Fiz.20, 430 (1974)].
A. M., Polyakov, “Hidden symmetry of the two-dimensional chiral fields,” Phys. Lett. B 72, 224 (1977 Google Scholar).
A. M., Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B 103, 207 (1981 Google Scholar).
A. M., Polyakov, Gauge Fields and Strings, Chur, Switzerland: Harwood (1987 Google Scholar) 301 p. (Contemporary concepts in Physics, 3).
A. M., Polyakov and P. B., Wiegmann, “Goldstone fields in two-dimensions with multivalued actions,” Phys. Lett. B 141, 223 (1984 Google Scholar).
M. K., Prasad and C. M., Sommerfield, “An exact classical solution for the 't Hooft monopole and the Julia-Zee dyon,” Phys. Rev. Lett. 35, 760 (1975 Google Scholar).
E., Rabinovici, A., Schwimmer and S., Yankielowicz, “Quantization in the presence of Wess-Zumino terms,” Nucl. Phys. B 248, 523 (1984 Google Scholar).
R., Rajaraman, An Introduction to Solitons and Instantons in Quantum Field Theory, Amsterdam, Netherlands: North-holland (1982 Google Scholar) 409p.
C., Rebbi and G., Soliani, Solitons and particles, World Scientific 1984 Google Scholar.
B. E., Rusakov, “Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds,” Mod. Phys. Lett. A 5, 693 (1990 Google Scholar).
T., Schafer and E. V., Shuryak, “Instantons in QCD,” Rev. Mod. Phys. 70, 323 (1998 Google Scholar) [arXiv:hep-ph/9610451].
J., Schechter and H., Weigel Google Scholar, “The Skyrme model for baryons,” arXiv:hep-ph/9907554.
T. D., Schultz, D. C., Mattis and E. H., Lieb, “Two-dimensional Ising model as a soluble problem of many fermions,” Rev. Mod. Phys. 36, 856 (1964 Google Scholar).
M. A., Shifman, Instantons in Gauge Theories, Singapore, Singapore: World Scientific (1994 CrossRef | Google Scholar) 488 p.
E. V., Shuryak, “The role of instantons in quantum chromodynamics. 1. Physical vacuum,” Nucl. Phys. B 203, 93 (1982 Google Scholar).
J. S., Schwinger, “Gauge invariance and mass. 2,” Phys. Rev. 128, 2425 (1962 Google Scholar).
N., Seiberg and E., Witten, “Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD,” Nucl. Phys. B 431, 484 (1994 Google Scholar) [arXiv:hep-th/9408099].
N., Seiberg and E., Witten, “Monopole condensation, and confinement in N=2 super-symmetric Yang-Mills theory,” Nucl. Phys. B 426, 19 (1994 Google Scholar) [Erratum-ibid. B 430, 485 (1994)] [arXiv:hep-th/9407087].
Y. M., Shnir, Magnetic Monopoles, Berlin, Germany: Springer (2005 Google Scholar) 532 p.
W., Siegel, “Manifest Lorentz invariance sometimes requires nonlinearity,” Nucl. Phys. B 238, 307 (1984 Google Scholar).
T. H. R., Skyrme, “A Nonlinear theory of strong interactions,” Proc. Roy. Soc. Lond. A 247, 260 (1958 Google Scholar).
T. H. R., Skyrme, “Particle states of a quantized meson field,” Proc. Roy. Soc. Lond. A 262, 237 (1961 Google Scholar).
T. H. R., Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556 (1962 Google Scholar).
Smirnov, F. A.Form factors in completely integrable models of quantum field theory,” Adv. Ser. Math. Phys. 14:1–208 (1992 CrossRef | Google Scholar).
J., Sonnenschein, “Chiral bosonsNucl. Phys. B 309, 752 (1988 Google Scholar).
M., Spiegelglas and S., Yankielowicz, “G/G topological field theories by cosetting G(K),” Nucl. Phys. B 393, 301 (1993 Google Scholar) [arXiv:hep-th/9201036].
P. J., Steinhardt, “Baryons and baryonium in QCD in two-dimensions,” Nucl. Phys. B 176, 100 (1980 Google Scholar).
M., Stone, Bosonization, Singapore: World Scientific (1994 Google Scholar) 539 p.
H., Sugawara, “A Field theory of currents,” Phys. Rev. 170, 1659 (1968 Google Scholar).
K., Symanzik, “Small distance behavior in field theory and power counting,” Commun. Math. Phys. 18, 227 (1970 Google Scholar).
W. E., Thirring, “A soluble relativistic field theory,” Annals Phys. 3, 91 (1958 Google Scholar).
C. B., Thorn, “Computing the Kac determinant using dual model techniques and more about the no-ghost theorem,” Nucl. Phys. B 248, 551 (1984 Google Scholar).
S. B, Treiman, R., Jackiw and D., GrossCurrent Algebra and its Applications (Princeton, University Press, New Jersey, 1972 Google Scholar).
A. I., Vainshtein, V. I., Zakharov, V. A., Novikov and M. A., Shifman, “ABC of instantons,” Sov. Phys. Usp. 25, 195 (1982 Google Scholar) [Usp. Fiz. Nauk136, 553 (1982)].
S., Vandoren and P., Nieuwenhuizen Google Scholar, “Lectures on instantons,” arXiv:0802.1862 [hep-th].
E. P., Verlinde, “Fusion rules and modular transformations in 2d conformal field theory,” Nucl. Phys. B 300, 360 (1988 Google Scholar).
E. P., Verlinde and H. L., Verlinde, “Chiral bosonization, determinants and the string partition function,” Nucl. Phys. B 288, 357 (1987 Google Scholar).
M. S., Virasoro, “Subsidiary conditions and ghosts in dual resonance models,” Phys. Rev. D 1, 2933 (1970 Google Scholar).
M., Wakimoto, “Fock representations of the affine Lie algebra A1(1),” Commun. Math. Phys. 104, 605 (1986 Google Scholar).
E. J., Weinberg and P., Yi, “Magnetic monopole dynamics, supersymmetry, and duality,” Phys. Rept. 438, 65 (2007 Google Scholar) [arXiv:hep-th/0609055].
S., Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations, Cambridge, UK: Univ. Pr. (1995 Google Scholar) 609 p.
G., Veneziano, “U(1) Without instantons,” Nucl. Phys. B 159, 213 (1979 Google Scholar).
J., Wess and B., Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37, 95 (1971 Google Scholar).
F., Wilczek, “Inequivalent embeddings of SU(2) and instanton interactions,” Phys. Lett. B 65 Google Scholar, 160.
K. G., Wilson, “Nonlagrangian models of current algebra,” Phys. Rev. 179, 1499 (1969 Google Scholar).
E., Witten, “Some exact multipseudoparticle solutions of classical Yang-Mills theory,” Phys. Rev. Lett. 38, 121 (1977 Google Scholar).
E., Witten, “Instantons, the Quark model, and the 1/N expansion,” Nucl. Phys. B 149, 285 (1979 Google Scholar).
E., Witten, “Baryons in the 1/N expansion,” Nucl. Phys. B 160, 57 (1979 Google Scholar).
E., Witten, “Large N chiral dynamics,” Annals Phys. 128, 363 (1980 Google Scholar).
E., Witten, “Nonabelian bosonization in two dimensions,” Commun. Math. Phys. 92, 455 (1984 Google Scholar).
E., Witten, “Global aspects of current algebra,” Nucl. Phys. B 223, 422 (1983 Google Scholar).
E., Witten, “Current algebra, baryons, and quark confinement,” Nucl. Phys. B 223, 433 (1983 Google Scholar).
E., Witten, “On holomorphic factorization of WZW and coset models,” Commun. Math. Phys. 144, 189 (1992 Google Scholar).
E., Witten, “Two-dimensional gauge theories revisited,” J. Geom. Phys. 9, 303 (1992 Google Scholar) [arXiv:hep-th/9204083].
C. N., Yang and R. L., Mills, “Conservation of isotopic spin and isotopic gauge invariance,” Phys. Rev. 96, 191 (1954 Google Scholar).
C. N., Yang, “Some exact results for the many body problems in one dimension with repulsive delta function interaction,” Phys. Rev. Lett. 19, 1312 (1967 Google Scholar).
I., Zahed and G. E., Brown, “The Skyrme model,” Phys. Rept. 142, 1 (1986 Google Scholar).
A. B., Zamolodchikov, “Renormalization group and perturbation theory near fixed points in two-dimensional field theory,” Sov. J. Nucl. Phys. 46, 1090 (1987 Google Scholar) [Yad. Fiz.46, 1819 (1987)].
A. B., Zamolodchikov, “Exact solutions of conformal field theory in two-dimensions and critical phenomena,” Rev. Math. Phys. 1, 197 (1990 Google Scholar).
A. B., Zamolodchikov, “Thermodynamic Bethe anzatz in relativistic models, scaling three state Potts and Lee-Yang models,” Nucl. Phys. B 342, 695 (1990 Google Scholar).
A. B., Zamolodchikov and A. B., Zamolodchikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models,” Annals Phys. 120, 253 (1979 Google Scholar).
A. B., Zamolodchikov, A. B., Zamolodchikov and I. M., Khalatnikov, “Physics Reviews, Vol. 10, pt. 4: Condormal field theory and critical phenomena in two-dimensional systems,” London, UK: Harwood (1989 Google Scholar) 269–433. (Soviet scientific reviews, Section A, 10.4)
B., Zwiebach, A First Course in String Theory, Cambridge, UK: Univ. Pr. (2004 Google Scholar) 558 p

Metrics

Altmetric attention score

Usage data cannot currently be displayed.