Skip to main content Accessibility help
×
  • This book is no longer available to purchase from Cambridge Core
  • Cited by 186
Publisher:
Mathematical Association of America
Online publication date:
June 2014
Print publication year:
1974
Online ISBN:
9781614440178

Book description

H. A. Schwarz showed us how to extend the notion of reflection in straight lines and circles to reflection in an arbitrary analytic arc. Notable applications were made to the symmetry principle and to problems of analytic continuation. Reflection, in the hands of Schwarz, is an antianalytic mapping. By taking its complex conjugate, we arrive at an analytic function that we have called here the Schwarz Function of the analytic arc. This function is worthy of study in its own right and this essay presents such a study. In dealing with certain familiar topics, the use of the Schwarz Function lends a point of view, a clarity and elegance, and a degree of generality which might otherwise be missing. It opens up a line of inquiry which has yielded numerous interesting things in complex variables; it illuminates some functional equations and a variety of iterations which interest the numerical analyst. The perceptive reader will certainly find here some old wine in relabelled bottles. But one of the principles of mathematical growth is that the relabelling process often suggests a new generation of problems. Means become ends; the medium rapidly becomes the message. This book is not wholly self-contained. Readers will find that they should be familiar with the elementary portions of linear algebra and of the theory of functions of a complex variable.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.