Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
November 2016
Print publication year:
2016
Online ISBN:
9781316492888

Book description

Thanks to the driving forces of the Itô calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of probability. Uniquely, the book then delves into the possibilities that arise by using the two flavors of calculus together. Taking a distinctive, path-space-oriented approach, this book crystallizes modern day stochastic analysis into a single volume.

Reviews

‘This book is a comprehensive guide to stochastic analysis related to Brownian motion. It contains the basis of the Itô calculus and the Malliavin calculus, which are the heart of the modern analysis of Brownian motion. The book is self-contained and it is accessible for graduate students and researchers who wish to learn about stochastic differential equations.'

Hiroshi Kunita

‘A very readable text on stochastic integrals and differential equations for novices to the area, including a substantial chapter on analysis on Wiener space and Malliavin calculus. The many examples and applications included, such as Schilder's theorem, Ramer's theorem, semi-classical limits, quadratic Wiener functionals, and rough paths, give additional value.'

David Elworthy - University of Warwick

‘This book develops stochastic analysis from the path space point of view, with an emphasis on the connection between Brownian motion and partial differential equations. A detailed treatment of Malliavin calculus and important applications in finance and physics make this monograph an innovative and useful reference in the field.'

David Nualart - University of Kansas

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] R., Adams and J., Fournier, Sobolev Spaces, 2nd edn., Academic Press, 2003.
[2] M., Aizenman and B., Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982), 209–273.
[3] V.I., Arnold, Mathematical Methods of Classical Mechanics, 2nd edn., Springer-Verlag, 1989.
[4] J., Avron, I., Herbst, and B., Simon, Schrödinger operators with magnetic fields, I. general interactions, Duke Math. J., 45 (1978), 847–883.
[5] P., Billingsley, Probability and Measure, 3rd edn., John Wiley & Sons, 1995.
[6] R.M., Blumenthal and R.K., Getoor, Markov Processes and Potential Theory, Academic Press, 1968.
[7] V., Bogachev, Gaussian Measures, Amer. Math. Soc., 1998.
[8] N., Bouleau and F., Hirsch, Dirichlet Forms and Analysis onWiener Space, Walter de Gruyter, 1991.
[9] C., Cocozza and M., Yor, Démonstration d'[A-z]n théorème de Knight à l'[A-z]ide de martingales exponentielles, Séminaire de Probabilités, XIV, eds. J., Azama and M., Yor, Lecture Notes in Math., 784, 496–499, Springer-Verlag, 1980.
[10] H.L., Cycon, R.G., Froese, W., Kirsch, and B., Simon, Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, 1987.
[11] E.B., Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.
[12] B., Davis, Picard's theorem and Brownian motion, Trans. Amer. Math. Soc., 213 (1975), 353–362.
[13] C., Dellacherie, Capacités et Processus Stochastiques, Springer-Verlag, 1971.
[14] D., Deuschel and D., Stroock, Large Deviations, Academic Press, 1989.
[15] J.L., Doob, Stochastic Processes, John Wiley & Sons, 1953.
[16] H., Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), 13 (1977), 99–125.
[17] R.M., Dudley, Real Analysis and Probability, 2nd edn., Cambridge University Press, 2002.
[18] D., Duffie, Dynamic Asset Pricing Theory, 2nd edn., Princeton University Press, 1996.
[19] N., Dunford and J., Schwartz, Linear Operators, II, Interscience, 1963.
[20] R., Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, 1984.
[21] R., Elliot and P., Kopp, Mathematics of Financial Markets, Springer-Verlag, 1999.
[22] K.D., Elworthy, Stochastic Differential Equations on Manifolds, Cambridge University Press, 1982.
[23] W., Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, 1966.
[24] E., Fournié, J.-M., Lasry, J., Lebuchoux, P.-L., Lions, and N., Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch. 3 (1999), 391–412.
[25] M., Fukushima, Y., Oshima, and M., Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd edn., Walter de Gruyter, 2010.
[26] P., Friz and M., Hairer, A Course on Rough Paths, Springer-Verlag, 2014.
[27] P., Friz and N., Victoir, Multidimensional Stochastic Processes as Rough Paths, Cambridge University Press, 2010.
[28] B., Gaveau and P., Trauber, L'[A-z]ntégrale stochastique comme opérateur de divergence dans l'[A-z]pace fonctionnel, J. Func. Anal., 46 (1982), 230–238.
[29] R.K., Getoor and M.J., Sharpe, Conformal martingales, Invent. Math., 16 (1972), 271–308.
[30] E., Getzler, Degree theory for Wiener maps, J. Func. Anal., 68 (1986), 388–403.
[31] I.S., Gradshteyn and I.M., Ryzhik, Tables of Integrals, Series, and Products, 7th edn., Academic Press, 2007.
[32] J.-C., Gruet, Semi-groupe du mouvement Brownien hyperbolique, Stochastic Rep., 56 (1996), 53–61.
[33] D., Hejhal, The Selberg Trace Formula for PSL(2,R), Vol.1, Vol.2, Lecture Notes in Math., 548, 1001, Springer-Verlag, 1976, 1983.
[34] B., Helffer and J., Sjöstrand, Multiple wells in the semiclassical limit, I, Comm. PDE, 9 (1984), 337–408.
[35] B., Helffer and J., Sjöstrand, Puits multiples en limite semi-classique, II. Interaction moléculaire. Symétries. Perturbation., Ann. Inst. H. Poincaré Phys. Théor., 42 (1985), 127–212.
[36] L., Hörmander, The Analysis of Linear Partial Differential Operators, I, Distribution Theory and Fourier Analysis, 2nd edn., Springer-Verlag, 1990.
[37] L., Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171.
[38] E. P., Hsu, Stochastic Analysis on Manifolds, Amer. Math. Soc., 2002.
[39] K., Ichihara, Explosion problem for symmetric diffusion processes, Trans. Amer. Math. Soc., 298 (1986), 515–536.
[40] N., Ikeda, S., Kusuoka, and S., Manabe, Lévy's stochastic area formula and related problems, in Stochastic Analysis, eds. M., Cranston and M., Pinsky, 281–305, Proc. Sympos. Pure Math., 57, Amer. Math. Soc., 1995.
[41] N., Ikeda and S., Manabe, Van Vleck–Pauli formula for Wiener integrals and Jacobi fields, in Itô's Stochastic Calculus and Probability Theory, eds. N., Ikeda, S., Watanabe, M., Fukushima, and H., Kunita, 141–156, Springer-Verlag, 1996.
[42] N., Ikeda and H., Matsumoto, Brownian motion on the hyperbolic plane and Selberg trace formula, J. Funct. Anal., 163 (1999), 63–110.
[43] N., Ikeda and H., Matsumoto, The Kolmogorov operator and classical mechanics, Séminaire de Probabilités XLVII, eds. C., Donati-Martin, A., Lejay, and A., Rouault, Lecture Notes in Math., 2137, 497–504, Springer-Verlag, 2015.
[44] N., Ikeda and S., Taniguchi, Quadratic Wiener functionals, Kalman-Bucy filters, and the KdV equation, in Stochastic Analysis and Related Topics in Kyoto, in honor of Kiyosi Itô, eds., H., Kunita, S., Watanabe, and Y., Takahashi, Adv. Studies Pure Math. 41, 167–187, Math. Soc. Japan, Tokyo, 2004.
[45] N., Ikeda and S., Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edn., North Holland/Kodansha, 1989.
[46] K., Itô, Essentials of Stochastic Processes (translated by Y. Ito), Amer Math. Soc., 2006. (Originally published in Japanese from Iwanami Shoten, 1957, 2006)
[47] K., Itô, Introduction to Probability Theory, Cambridge University Press, 1984. (Originally published in Japanese from Iwanami Shoten, 1978)
[48] K., Itô, Differential equations determining Markov processes, Zenkoku Shijo Sugaku Danwakai, 244 (1942), 1352–1400, (in Japanese). English translation in Kiyosi Itô, Selected Papers, eds. D., Stroock and S. R. S., Varadhan, Springer-Verlag, 1987.
[49] K., Itô, On stochastic differential equations, Mem. Amer. Math. Soc., 4 (1951).
[50] K., Itô and H.P., McKean, Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag, 1974.
[51] K., Itô and M., Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math., 5 (1968), 35–48.
[52] M., Kac, Integration in Function Spaces and Some of Its Applications, Fermi Lectures, Accademia Nazionale dei Lincei, Scuola Normale Superiore, 1980.
[53] M., Kac, On distributions of certainWiener functionals, Trans. Amer. Math. Soc., 65 (1949), 1–13.
[54] M., Kac, On some connections between probability theory and differential and integral equations, Proceedings of 2nd Berkeley Symp. on Math. Stat. and Probability, 189–215, University of California Press, 1951.
[55] M., Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1–23.
[56] I., Karatzas and S.E., Shreve, Brownian Motion and Stochastic Calculus, 2nd edn., Springer-Verlag, 1991.
[57] I., Karatzas and S., Shreve, Methods of Mathematical Finance, Springer-Verlag, 1998.
[58] T., Kato, Perturbation Theory for Linear Operators, 2nd edn., Springer-Verlag, 1995.
[59] N., Kazamaki, The equivalence of two conditions on weighted norm inequalities for martingales, Proc. Intern. Symp. SDE Kyoto 1976 (ed. K., Itô), 141–152, Kinokuniya, 1978.
[60] F.B., Knight, A reduction of continuous square-integrable martingales to Brownian motion, in Martingales, ed. H., Dinges, Lecture Notes in Math., 190, 19–31, Springer-Verlag, 1971.
[61] H., Kunita, Estimation of Stochastic Processes (in Japanese), Sangyou Tosho, 1976.
[62] H., Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990.
[63] H., Kunita, Supports of diffusion processes and controllability problems, Proc. Intern. Symp. SDE Kyoto 1976 (ed. K., Itô), 163–185, Kinokuniya, 1978.
[64] H., Kunita, On the decomposition of solutions of stochastic differential equations, in Stochastic Integrals, ed. D., Williams, Lecture Notes in Math., 851, 213–255, Springer-Verlag, 1981.
[65] H., Kunita and S., Watanabe, On square integrable martingales, Nagoya Math. J., 30 (1967), 209–245.
[66] S., Kusuoka, The nonlinear transformation of Gaussian measure on Banach space and its absolute continuity, J. Fac. Sci. Tokyo Univ., Sect. 1.A., 29 (1982), 567–590.
[67] N.N., Lebedev, Special Functions and their Applications, translated by R. R., Silverman, Dover, 1972.
[68] M., Ledoux, Isoperimetry and Gaussian analysis, in Lectures on Probability Theory and Statistics, Ecole d'[A-z]té de Probabilités de Saint-Flour XXIV – 1994, ed. P., Bernard, Lecture Notes in Math., 1648, 165–294, Springer-Verlag, 1996.
[69] J.-F., LeGall, Applications du temps local aux equations différentielle stochastiques unidimensionalles, Séminaire de Probabilités XVII, edn. J., Azema and M., Yor, Lecture Notes in Math., 986, 15–31, Springer-Verlag, 1983.
[70] P., Lévy, Wiener's random function, and other Laplacian random functions, Proceedings of 2nd Berkeley Symp. on Math. Stat. and Probability, 171–186, University of California Press, 1951.
[71] T., Lyons, M., Caruana, and T., Lévy, Differential equations driven by rough paths, École d'Été de Probabilités de Saint-Flour XXXIV -2004, Lecture Notes in Math., 1908, Springer, 2007.
[72] T., Lyons and Z., Qian, System Control and Rough Paths, Oxford University Press, 2002.
[73] P., Malliavin, Stochastic Analysis, Springer-Verlag, 1997.
[74] P., Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proc. Intern. Symp. SDE Kyoto 1976 ed. K., Itô, 195–263, Kinokuniya, 1978.
[75] P., Malliavin, Ck-hypoellipticity with degeneracy, in Stochastic Analysis, eds. A., Friedman and M., Pinsky, 199–214, 327–340, Academic Press, 1978.
[76] P., Malliavin and A., Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer-Verlag, 2006.
[77] G., Maruyama, Selected Papers, eds. N., Ikeda and H., Tanaka, Kaigai Publications, 1988.
[78] G., Maruyama, On the transition probability functions of the Markov process, Nat. Sci. Rep. Ochanomizu Univ., 5 (1954), 10–20.
[79] G., Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Mate. Palermo., 4 (1955), 48–90.
[80] H., Matsumoto, Semiclassical asymptotics of eigenvalues for Schrödinger operators with magnetic fields, J. Funct. Anal., 129 (1995), 168–190.
[81] H., Matsumoto, L., Nguyen, and M., Yor, Subordinators related to the exponential functionals of Brownian bridges and explicit formulae for the semigroups of hyperbolic Brownian motions, in Stochastic Processes and Related Topics, eds. R., Buckdahn, E., Engelbert and M., Yor, 213–235, Gordon and Breach, 2001.
[82] H., Matsumoto and S., Taniguchi, Wiener functionals of second order and their Lévy measures, Elect. Jour. Probab., 7, No.14 (2002), 1–30.
[83] H., Matsumoto and M., Yor, A version of Pitman's 2M–X theorem for geometric Brownian motions, C.R. Acad. Sc. Paris Série I, 328 (1999), 1067–1074.
[84] H.P., McKean, Jr., Stochastic Integrals, Academic Press, 1969.
[85] H.P., McKean, Jr., Selberg's trace formula as applied to a compact Riemannian surface, Comm. Pure Appl. Math., 101 (1972), 225–246.
[86] P.A., Meyer, Probabilités et Potentiel, Hermann, 1966.
[87] T., Miwa, E., Date, and M., Jimbo, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras (translated by M., Reid), Cambridge University Press, 2000. (Originally published in Japanese from Iwanami Shoten, 1993)
[88] M., Musiela and M., Rutkowski, Martingale Methods in Financial Modeling, Springer-Verlag, 2003.
[89] S., Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9 (1972), 513–518.
[90] A.A., Novikov, On an identity for stochastic integrals, Theory Prob. Appl., 17 (1972), 717–720.
[91] A.A., Novikov, On moment inequalities and identities for stochastic integrals, Proc. Second Japan–USSR Symp. Prob. Theor., eds. G., Maruyama and J.V., Prokhorov, Lecture Notes in Math., 330, 333–339, Springer-Verlag, 1973.
[92] D., Nualart, The Malliavin Calculus and Related Topics, 2nd edn., Springer-Verlag, 2006.
[93] B., Øksendal, Stochastic Differential Equations, an Introduction with Applications, 6th edn., Springer-Verlag, 2003.
[94] S., Port and C., Stone, Brownian Motion and Classical Potential Theory, Academic Press, 1978.
[95] K.M., Rao, On the decomposition theorem of Meyer, Math. Scand., 24 (1969), 66–78.
[96] D., Ray, On spectra of second order differential operators, Trans. Amer. Math. Soc., 77 (1954), 299–321.
[97] L., Richardson, Measure and Integration: a Concise Introduction to Real Analysis, John Wiley & Sons, 2009.
[98] D., Revuz and M., Yor, Continuous Martingales and Brownian Motion, 3rd edn., Springer-Verlag, 1999.
[99] L. C. G., Rogers and D., Williams, Diffusions, Markov Processes, and Martingales, Vol. 1, Foundations, 2nd edn., John Wiley & Sons, New York, 1994.
[100] L. C. G., Rogers and D., Williams, Diffusions, Markov Processes, and Martingales, Vol. 2, Itô Calculus, 2nd edn., John Wiley & Sons, New York, 1994.
[101] K., Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
[102] M., Schilder, Some asymptotic formulae for Wiener integrals, Trans. Amer. Math. Soc., 125 (1966), 63–85.
[103] A., Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47–87.
[104] I., Shigekawa, Stochastic Analysis, Amer. Math. Soc., 2004. (Originally published in Japanese from Iwanami Shoten, 1998)
[105] S., Shreve, Stochastic Calculus for Finance, I, II, Springer-Verlag, 2004.
[106] B., Simon, Functional Integration and Quantum Physics, Academic Press, 1979.
[107] B., Simon, Trace Ideals and Their Applications, 2nd edn., Amer. Math. Soc., 2005.
[108] B., Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447–526.
[109] B., Simon, Semiclassical analysis of low lying eigenvalues I, Non-degenerate minima: Asymptotic expansions, Ann. Inst. Henri-Poincaré, Sect. A, 38 (1983), 295–307.
[110] B., Simon, Semiclassical analysis of low lying eigenvalues II, Tunneling, Ann. Math., 120 (1984), 89–118.
[111] D.W., Stroock, Lectures on Topics in Stochastic Differential Equations, Tata Insitute of Fundamental Research, 1982.
[112] D.W., Stroock, Probability Theory: an Analytic View, 2nd edn., Cambridge University Press, 2010.
[113] D.W., Stroock, An exercise in Malliavin calculus, J. Math. Soc. Japan, 67 (2015), 1785–1799.
[114] D.W., Stroock and S. R. S., Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, 1979.
[115] D.W., Stroock and S. R. S., Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III., 361–368, University of California Press, 1972.
[116] H., Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math., 25 (1988), 665–696.
[117] H.J., Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probab., 6 (1978), 19–41.
[118] S., Taniguchi, Brownian sheet and reflectionless potentials, Stoch. Pro. Appl., 116 (2006), 293–309.
[119] H., Trotter, A property of Brownian motion paths, Illinois J. Math., 2 (1958), 425–433.
[120] A.S., Üstünel and M., Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 2000.
[121] J. H. Van, Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Nat. Acad. Sci. U.S.A., 14 (1928), 178–188.
[122] S., Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., 15 (1987), 1–39.
[123] S., Watanabe, Generalized Wiener functionals and their applications, Probability theory and mathematical statistics, Proceedings of the Fifth Japan–USSR Symposium, Kyoto, 1986, eds. S., Watanabe and Y. V., Prokhorov, 541–548, Lecture Notes in Math., 1299, Springer-Verlag, Berlin, 1988.
[124] H., Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers, Rend. Cir. Mat. Palermo, 39 (1915), 1–50.
[125] D.V., Widder, The Laplace Transform, Princeton University Press, 1941.
[126] D., Williams, Probability with Martingales, Cambridge University Press, 1991.
[127] E., Wong and M., Zakai, On the relation between ordinary and stochastic differential equations, Intern. J. Engng. Sci., 3 (1965), 213–229.
[128] T., Yamada and S., Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoyo Univ., 11 (1971), 155–167.
[129] Y., Yamato, Stochastic differential equations and nilpotent Lie algebras, Z. Wahr. verw. Geb., 47 (1979), 213–229.
[130] M., Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, 2001.
[131] M., Yor, Sur la continuité des temps locaux associés à certaines semimartingales, Astérisque 52–53 (1978), 23–35.
[132] M., Yor, On some exponential functionals of Brownian motion, Adv. Appl. Prob., 24 (1992), 509–531. (Also in [130])
[133] K., Yoshida, Functional Analysis, 6th edn., Springer-Verlag, 1980.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.