Skip to main content Accessibility help
×
  • Cited by 11
Publisher:
Cambridge University Press
Online publication date:
November 2016
Print publication year:
2016
Online ISBN:
9781316492888

Book description

Thanks to the driving forces of the Itô calculus and the Malliavin calculus, stochastic analysis has expanded into numerous fields including partial differential equations, physics, and mathematical finance. This book is a compact, graduate-level text that develops the two calculi in tandem, laying out a balanced toolbox for researchers and students in mathematics and mathematical finance. The book explores foundations and applications of the two calculi, including stochastic integrals and differential equations, and the distribution theory on Wiener space developed by the Japanese school of probability. Uniquely, the book then delves into the possibilities that arise by using the two flavors of calculus together. Taking a distinctive, path-space-oriented approach, this book crystallizes modern day stochastic analysis into a single volume.

Reviews

‘This book is a comprehensive guide to stochastic analysis related to Brownian motion. It contains the basis of the Itô calculus and the Malliavin calculus, which are the heart of the modern analysis of Brownian motion. The book is self-contained and it is accessible for graduate students and researchers who wish to learn about stochastic differential equations.'

Hiroshi Kunita

‘A very readable text on stochastic integrals and differential equations for novices to the area, including a substantial chapter on analysis on Wiener space and Malliavin calculus. The many examples and applications included, such as Schilder's theorem, Ramer's theorem, semi-classical limits, quadratic Wiener functionals, and rough paths, give additional value.'

David Elworthy - University of Warwick

‘This book develops stochastic analysis from the path space point of view, with an emphasis on the connection between Brownian motion and partial differential equations. A detailed treatment of Malliavin calculus and important applications in finance and physics make this monograph an innovative and useful reference in the field.'

David Nualart - University of Kansas

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] R., Adams and J., Fournier, Sobolev Spaces, 2nd edn., Academic Press, 2003 Google Scholar.
[2] M., Aizenman and B., Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982 Google Scholar), 209–273.
[3] V.I., Arnold, Mathematical Methods of Classical Mechanics, 2nd edn., Springer-Verlag, 1989 Google Scholar.
[4] J., Avron, I., Herbst, and B., Simon, Schrödinger operators with magnetic fields, I. general interactions, Duke Math. J., 45 (1978 Google Scholar), 847–883.
[5] P., Billingsley, Probability and Measure, 3rd edn., John Wiley & Sons, 1995 Google Scholar.
[6] R.M., Blumenthal and R.K., Getoor, Markov Processes and Potential Theory, Academic Press, 1968 Google Scholar.
[7] V., Bogachev, Gaussian Measures, Amer. Math. Soc., 1998 Google Scholar.
[8] N., Bouleau and F., Hirsch, Dirichlet Forms and Analysis onWiener Space, Walter de Gruyter, 1991 Google Scholar.
[9] C., Cocozza and M., Yor, Démonstration d'[A-z]n théorème de Knight à l'[A-z]ide de martingales exponentielles, Séminaire de Probabilités, XIV, eds. J., Azama and M., Yor, Lecture Notes in Math., 784, 496–499, Springer-Verlag, 1980 Google Scholar.
[10] H.L., Cycon, R.G., Froese, W., Kirsch, and B., Simon, Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, 1987 Google Scholar.
[11] E.B., Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989 Google Scholar.
[12] B., Davis, Picard's theorem and Brownian motion, Trans. Amer. Math. Soc., 213 (1975 Google Scholar), 353–362.
[13] C., Dellacherie, Capacités et Processus Stochastiques, Springer-Verlag, 1971 Google Scholar.
[14] D., Deuschel and D., Stroock, Large Deviations, Academic Press, 1989 Google Scholar.
[15] J.L., Doob, Stochastic Processes, John Wiley & Sons, 1953 Google Scholar.
[16] H., Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), 13 (1977 Google Scholar), 99–125.
[17] R.M., Dudley, Real Analysis and Probability, 2nd edn., Cambridge University Press, 2002 Google Scholar.
[18] D., Duffie, Dynamic Asset Pricing Theory, 2nd edn., Princeton University Press, 1996 Google Scholar.
[19] N., Dunford and J., Schwartz, Linear Operators, II, Interscience, 1963 Google Scholar.
[20] R., Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, 1984 Google Scholar.
[21] R., Elliot and P., Kopp, Mathematics of Financial Markets, Springer-Verlag, 1999 Google Scholar.
[22] K.D., Elworthy, Stochastic Differential Equations on Manifolds, Cambridge University Press, 1982 Google Scholar.
[23] W., Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, 1966 Google Scholar.
[24] E., Fournié, J.-M., Lasry, J., Lebuchoux, P.-L., Lions, and N., Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch. 3 (1999 Google Scholar), 391–412.
[25] M., Fukushima, Y., Oshima, and M., Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd edn., Walter de Gruyter, 2010 Google Scholar.
[26] P., Friz and M., Hairer, A Course on Rough Paths, Springer-Verlag, 2014 Google Scholar.
[27] P., Friz and N., Victoir, Multidimensional Stochastic Processes as Rough Paths, Cambridge University Press, 2010 Google Scholar.
[28] B., Gaveau and P., Trauber, L'[A-z]ntégrale stochastique comme opérateur de divergence dans l'[A-z]pace fonctionnel, J. Func. Anal., 46 (1982 Google Scholar), 230–238.
[29] R.K., Getoor and M.J., Sharpe, Conformal martingales, Invent. Math., 16 (1972 Google Scholar), 271–308.
[30] E., Getzler, Degree theory for Wiener maps, J. Func. Anal., 68 (1986 Google Scholar), 388–403.
[31] I.S., Gradshteyn and I.M., Ryzhik, Tables of Integrals, Series, and Products, 7th edn., Academic Press, 2007 Google Scholar.
[32] J.-C., Gruet, Semi-groupe du mouvement Brownien hyperbolique, Stochastic Rep., 56 (1996 Google Scholar), 53–61.
[33] D., Hejhal, The Selberg Trace Formula for PSL(2,R), Vol.1, Vol.2, Lecture Notes in Math., 548, 1001, Springer-Verlag, 1976, 1983 Google Scholar.
[34] B., Helffer and J., Sjöstrand, Multiple wells in the semiclassical limit, I, Comm. PDE, 9 (1984 Google Scholar), 337–408.
[35] B., Helffer and J., Sjöstrand, Puits multiples en limite semi-classique, II. Interaction moléculaire. Symétries. Perturbation., Ann. Inst. H. Poincaré Phys. Théor., 42 (1985 Google Scholar), 127–212.
[36] L., Hörmander, The Analysis of Linear Partial Differential Operators, I, Distribution Theory and Fourier Analysis, 2nd edn., Springer-Verlag, 1990 Google Scholar.
[37] L., Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967 Google Scholar), 147–171.
[38] E. P., Hsu, Stochastic Analysis on Manifolds, Amer. Math. Soc., 2002 Google Scholar.
[39] K., Ichihara, Explosion problem for symmetric diffusion processes, Trans. Amer. Math. Soc., 298 (1986 Google Scholar), 515–536.
[40] N., Ikeda, S., Kusuoka, and S., Manabe, Lévy's stochastic area formula and related problems, in Stochastic Analysis, eds. M., Cranston and M., Pinsky, 281–305, Proc. Sympos. Pure Math., 57, Amer. Math. Soc., 1995 Google Scholar.
[41] N., Ikeda and S., Manabe, Van Vleck–Pauli formula for Wiener integrals and Jacobi fields, in Itô's Stochastic Calculus and Probability Theory, eds. N., Ikeda, S., Watanabe, M., Fukushima, and H., Kunita, 141–156, Springer-Verlag, 1996 Google Scholar.
[42] N., Ikeda and H., Matsumoto, Brownian motion on the hyperbolic plane and Selberg trace formula, J. Funct. Anal., 163 (1999 Google Scholar), 63–110.
[43] N., Ikeda and H., Matsumoto, The Kolmogorov operator and classical mechanics, Séminaire de Probabilités XLVII, eds. C., Donati-Martin, A., Lejay, and A., Rouault, Lecture Notes in Math., 2137, 497–504, Springer-Verlag, 2015 Google Scholar.
[44] N., Ikeda and S., Taniguchi, Quadratic Wiener functionals, Kalman-Bucy filters, and the KdV equation, in Stochastic Analysis and Related Topics in Kyoto, in honor of Kiyosi Itô, eds., H., Kunita, S., Watanabe, and Y., Takahashi, Adv. Studies Pure Math. 41, 167–187, Math. Soc. Japan, Tokyo, 2004 Google Scholar.
[45] N., Ikeda and S., Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edn., North Holland/Kodansha, 1989 Google Scholar.
[46] K., Itô, Essentials of Stochastic Processes (translated by Y. Ito), Amer Math. Soc., 2006 Google Scholar. (Originally published in Japanese from Iwanami Shoten, 1957, 2006)
[47] K., Itô, Introduction to Probability Theory, Cambridge University Press, 1984 Google Scholar. (Originally published in Japanese from Iwanami Shoten, 1978)
[48] K., Itô, Differential equations determining Markov processes, Zenkoku Shijo Sugaku Danwakai, 244 (1942), 1352–1400, (in Japanese). English translation in Kiyosi Itô, Selected Papers, eds. D., Stroock and S. R. S., Varadhan, Springer-Verlag, 1987 Google Scholar.
[49] K., Itô, On stochastic differential equations, Mem. Amer. Math. Soc., 4 (1951 Google Scholar).
[50] K., Itô and H.P., McKean, Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag, 1974 Google Scholar.
[51] K., Itô and M., Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math., 5 (1968 Google Scholar), 35–48.
[52] M., Kac, Integration in Function Spaces and Some of Its Applications, Fermi Lectures, Accademia Nazionale dei Lincei, Scuola Normale Superiore, 1980 Google Scholar.
[53] M., Kac, On distributions of certainWiener functionals, Trans. Amer. Math. Soc., 65 (1949 Google Scholar), 1–13.
[54] M., Kac, On some connections between probability theory and differential and integral equations, Proceedings of 2nd Berkeley Symp. on Math. Stat. and Probability, 189–215, University of California Press, 1951 Google Scholar.
[55] M., Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966 Google Scholar), 1–23.
[56] I., Karatzas and S.E., Shreve, Brownian Motion and Stochastic Calculus, 2nd edn., Springer-Verlag, 1991 Google Scholar.
[57] I., Karatzas and S., Shreve, Methods of Mathematical Finance, Springer-Verlag, 1998 Google Scholar.
[58] T., Kato, Perturbation Theory for Linear Operators, 2nd edn., Springer-Verlag, 1995 Google Scholar.
[59] N., Kazamaki, The equivalence of two conditions on weighted norm inequalities for martingales, Proc. Intern. Symp. SDE Kyoto 1976 (ed. K., Itô), 141–152, Kinokuniya, 1978 Google Scholar.
[60] F.B., Knight, A reduction of continuous square-integrable martingales to Brownian motion, in Martingales, ed. H., Dinges, Lecture Notes in Math., 190, 19–31, Springer-Verlag, 1971 Google Scholar.
[61] H., Kunita, Estimation of Stochastic Processes (in Japanese), Sangyou Tosho, 1976 Google Scholar.
[62] H., Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990 Google Scholar.
[63] H., Kunita, Supports of diffusion processes and controllability problems, Proc. Intern. Symp. SDE Kyoto 1976 (ed. K., Itô), 163–185, Kinokuniya, 1978 Google Scholar.
[64] H., Kunita, On the decomposition of solutions of stochastic differential equations, in Stochastic Integrals, ed. D., Williams, Lecture Notes in Math., 851, 213–255, Springer-Verlag, 1981 Google Scholar.
[65] H., Kunita and S., Watanabe, On square integrable martingales, Nagoya Math. J., 30 (1967 Google Scholar), 209–245.
[66] S., Kusuoka, The nonlinear transformation of Gaussian measure on Banach space and its absolute continuity, J. Fac. Sci. Tokyo Univ., Sect. 1.A., 29 (1982 Google Scholar), 567–590.
[67] N.N., Lebedev, Special Functions and their Applications, translated by R. R., Silverman, Dover, 1972 Google Scholar.
[68] M., Ledoux, Isoperimetry and Gaussian analysis, in Lectures on Probability Theory and Statistics, Ecole d'[A-z]té de Probabilités de Saint-Flour XXIV – 1994, ed. P., Bernard, Lecture Notes in Math., 1648, 165–294, Springer-Verlag, 1996 Google Scholar.
[69] J.-F., LeGall, Applications du temps local aux equations différentielle stochastiques unidimensionalles, Séminaire de Probabilités XVII, edn. J., Azema and M., Yor, Lecture Notes in Math., 986, 15–31, Springer-Verlag, 1983 Google Scholar.
[70] P., Lévy, Wiener's random function, and other Laplacian random functions, Proceedings of 2nd Berkeley Symp. on Math. Stat. and Probability, 171–186, University of California Press, 1951 Google Scholar.
[71] T., Lyons, M., Caruana, and T., Lévy, Differential equations driven by rough paths, École d'Été de Probabilités de Saint-Flour XXXIV -2004, Lecture Notes in Math., 1908, Springer, 2007 Google Scholar.
[72] T., Lyons and Z., Qian, System Control and Rough Paths, Oxford University Press, 2002 Google Scholar.
[73] P., Malliavin, Stochastic Analysis, Springer-Verlag, 1997 Google Scholar.
[74] P., Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proc. Intern. Symp. SDE Kyoto 1976 ed. K., Itô, 195–263, Kinokuniya, 1978 Google Scholar.
[75] P., Malliavin, Ck-hypoellipticity with degeneracy, in Stochastic Analysis, eds. A., Friedman and M., Pinsky, 199–214, 327–340, Academic Press, 1978 Google Scholar.
[76] P., Malliavin and A., Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer-Verlag, 2006 Google Scholar.
[77] G., Maruyama, Selected Papers, eds. N., Ikeda and H., Tanaka, Kaigai Publications, 1988 Google Scholar.
[78] G., Maruyama, On the transition probability functions of the Markov process, Nat. Sci. Rep. Ochanomizu Univ., 5 (1954 Google Scholar), 10–20.
[79] G., Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Mate. Palermo., 4 (1955 Google Scholar), 48–90.
[80] H., Matsumoto, Semiclassical asymptotics of eigenvalues for Schrödinger operators with magnetic fields, J. Funct. Anal., 129 (1995 Google Scholar), 168–190.
[81] H., Matsumoto, L., Nguyen, and M., Yor, Subordinators related to the exponential functionals of Brownian bridges and explicit formulae for the semigroups of hyperbolic Brownian motions, in Stochastic Processes and Related Topics, eds. R., Buckdahn, E., Engelbert and M., Yor, 213–235, Gordon and Breach, 2001 Google Scholar.
[82] H., Matsumoto and S., Taniguchi, Wiener functionals of second order and their Lévy measures, Elect. Jour. Probab., 7, No.14 (2002 Google Scholar), 1–30.
[83] H., Matsumoto and M., Yor, A version of Pitman's 2M–X theorem for geometric Brownian motions, C.R. Acad. Sc. Paris Série I, 328 (1999 Google Scholar), 1067–1074.
[84] H.P., McKean, Jr., Stochastic Integrals, Academic Press, 1969 Google Scholar.
[85] H.P., McKean, Jr., Selberg's trace formula as applied to a compact Riemannian surface, Comm. Pure Appl. Math., 101 (1972 Google Scholar), 225–246.
[86] P.A., Meyer, Probabilités et Potentiel, Hermann, 1966 Google Scholar.
[87] T., Miwa, E., Date, and M., Jimbo, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras (translated by M., Reid), Cambridge University Press, 2000 Google Scholar. (Originally published in Japanese from Iwanami Shoten, 1993)
[88] M., Musiela and M., Rutkowski, Martingale Methods in Financial Modeling, Springer-Verlag, 2003 Google Scholar.
[89] S., Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9 (1972 Google Scholar), 513–518.
[90] A.A., Novikov, On an identity for stochastic integrals, Theory Prob. Appl., 17 (1972 Google Scholar), 717–720.
[91] A.A., Novikov, On moment inequalities and identities for stochastic integrals, Proc. Second Japan–USSR Symp. Prob. Theor., eds. G., Maruyama and J.V., Prokhorov, Lecture Notes in Math., 330, 333–339, Springer-Verlag, 1973 Google Scholar.
[92] D., Nualart, The Malliavin Calculus and Related Topics, 2nd edn., Springer-Verlag, 2006 Google Scholar.
[93] B., Øksendal, Stochastic Differential Equations, an Introduction with Applications, 6th edn., Springer-Verlag, 2003 Google Scholar.
[94] S., Port and C., Stone, Brownian Motion and Classical Potential Theory, Academic Press, 1978 Google Scholar.
[95] K.M., Rao, On the decomposition theorem of Meyer, Math. Scand., 24 (1969 Google Scholar), 66–78.
[96] D., Ray, On spectra of second order differential operators, Trans. Amer. Math. Soc., 77 (1954 Google Scholar), 299–321.
[97] L., Richardson, Measure and Integration: a Concise Introduction to Real Analysis, John Wiley & Sons, 2009 Google Scholar.
[98] D., Revuz and M., Yor, Continuous Martingales and Brownian Motion, 3rd edn., Springer-Verlag, 1999 Google Scholar.
[99] L. C. G., Rogers and D., Williams, Diffusions, Markov Processes, and Martingales, Vol. 1, Foundations, 2nd edn., John Wiley & Sons, New York, 1994 Google Scholar.
[100] L. C. G., Rogers and D., Williams, Diffusions, Markov Processes, and Martingales, Vol. 2, Itô Calculus, 2nd edn., John Wiley & Sons, New York, 1994 Google Scholar.
[101] K., Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999 Google Scholar.
[102] M., Schilder, Some asymptotic formulae for Wiener integrals, Trans. Amer. Math. Soc., 125 (1966 Google Scholar), 63–85.
[103] A., Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956 Google Scholar), 47–87.
[104] I., Shigekawa, Stochastic Analysis, Amer. Math. Soc., 2004 Google Scholar. (Originally published in Japanese from Iwanami Shoten, 1998)
[105] S., Shreve, Stochastic Calculus for Finance, I, II, Springer-Verlag, 2004 Google Scholar.
[106] B., Simon, Functional Integration and Quantum Physics, Academic Press, 1979 Google Scholar.
[107] B., Simon, Trace Ideals and Their Applications, 2nd edn., Amer. Math. Soc., 2005 Google Scholar.
[108] B., Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982 Google Scholar), 447–526.
[109] B., Simon, Semiclassical analysis of low lying eigenvalues I, Non-degenerate minima: Asymptotic expansions, Ann. Inst. Henri-Poincaré, Sect. A, 38 (1983 Google Scholar), 295–307.
[110] B., Simon, Semiclassical analysis of low lying eigenvalues II, Tunneling, Ann. Math., 120 (1984 Google Scholar), 89–118.
[111] D.W., Stroock, Lectures on Topics in Stochastic Differential Equations, Tata Insitute of Fundamental Research, 1982 Google Scholar.
[112] D.W., Stroock, Probability Theory: an Analytic View, 2nd edn., Cambridge University Press, 2010 Google Scholar.
[113] D.W., Stroock, An exercise in Malliavin calculus, J. Math. Soc. Japan, 67 (2015 Google Scholar), 1785–1799.
[114] D.W., Stroock and S. R. S., Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, 1979 Google Scholar.
[115] D.W., Stroock and S. R. S., Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III., 361–368, University of California Press, 1972 Google Scholar.
[116] H., Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math., 25 (1988 Google Scholar), 665–696.
[117] H.J., Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probab., 6 (1978 Google Scholar), 19–41.
[118] S., Taniguchi, Brownian sheet and reflectionless potentials, Stoch. Pro. Appl., 116 (2006 Google Scholar), 293–309.
[119] H., Trotter, A property of Brownian motion paths, Illinois J. Math., 2 (1958 Google Scholar), 425–433.
[120] A.S., Üstünel and M., Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 2000 Google Scholar.
[121] J. H. Van, Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Nat. Acad. Sci. U.S.A., 14 (1928 Google Scholar), 178–188.
[122] S., Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., 15 (1987 Google Scholar), 1–39.
[123] S., Watanabe, Generalized Wiener functionals and their applications, Probability theory and mathematical statistics, Proceedings of the Fifth Japan–USSR Symposium, Kyoto, 1986, eds. S., Watanabe and Y. V., Prokhorov, 541–548, Lecture Notes in Math., 1299, Springer-Verlag, Berlin, 1988 Google Scholar.
[124] H., Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers, Rend. Cir. Mat. Palermo, 39 (1915 Google Scholar), 1–50.
[125] D.V., Widder, The Laplace Transform, Princeton University Press, 1941 Google Scholar.
[126] D., Williams, Probability with Martingales, Cambridge University Press, 1991 Google Scholar.
[127] E., Wong and M., Zakai, On the relation between ordinary and stochastic differential equations, Intern. J. Engng. Sci., 3 (1965 Google Scholar), 213–229.
[128] T., Yamada and S., Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoyo Univ., 11 (1971 Google Scholar), 155–167.
[129] Y., Yamato, Stochastic differential equations and nilpotent Lie algebras, Z. Wahr. verw. Geb., 47 (1979 Google Scholar), 213–229.
[130] M., Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, 2001 Google Scholar.
[131] M., Yor, Sur la continuité des temps locaux associés à certaines semimartingales, Astérisque 52–53 (1978 Google Scholar), 23–35.
[132] M., Yor, On some exponential functionals of Brownian motion, Adv. Appl. Prob., 24 (1992 Google Scholar), 509–531. (Also in [130])
[133] K., Yoshida, Functional Analysis, 6th edn., Springer-Verlag, 1980 Google Scholar.

Metrics

Altmetric attention score

Usage data cannot currently be displayed.