Skip to main content Accessibility help
×
  • Cited by 84
Publisher:
Cambridge University Press
Online publication date:
January 2010
Print publication year:
2002
Online ISBN:
9780511549878

Book description

Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations.

Reviews

Review of the hardback:‘The material in the book is presented well: it is detailed, motivation is stressed throughout and the text is written with an enjoyable pinch of dry humour.’

Evelyn Buckwar Source: Zentralblatt MATH

Review of the hardback:'The highlights of the monograph are: Girsanov-Meyer theory on shifted martingales, which covers both the Wiener and Poisson setting; a Doob-Meyer decomposition statement providing really deep information that the objects that can go through the Daniell-like construction of the stochastic. This is an excellent and informative monograph for a general mathematical audience.'

Source: EMS

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.