Skip to main content Accessibility help
×
  • Cited by 335

Book description

Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Lévy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Lévy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science.

Reviews

'Summarising, this book is an excellent addition to the literature on stochastic partial differential equations in general and in particular with respect to evolution equations driven by a discontinuous noise. The exposition is self-contained and very well written and, in my opinion, will become a standard tool for everyone working on stochastic evolution equations and related areas.'

Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.