Skip to main content Accessibility help
×
  • Cited by 34
  • Allan Pinkus, Technion - Israel Institute of Technology, Haifa
Publisher:
Cambridge University Press
Online publication date:
May 2010
Print publication year:
2009
Online ISBN:
9780511691713

Book description

Totally positive matrices constitute a particular class of matrices, the study of which was initiated by analysts because of its many applications in diverse areas. This account of the subject is comprehensive and thorough, with careful treatment of the central properties of totally positive matrices, full proofs and a complete bibliography. The history of the subject is also described: in particular, the book ends with a tribute to the four people who have made the most notable contributions to the history of total positivity: I. J. Schoenberg, M. G. Krein, F. R. Gantmacher and S. Karlin. This monograph will appeal to those with an interest in matrix theory, to those who use or have used total positivity, and to anyone who wishes to learn about this rich and interesting subject.

Reviews

"... found the book particularly effective as a tool for a reading group on algebraic statistics; it is an excellent resource, cuts straight to the subject's open questions, and should be an interesting read for any researcher for theoretical statistics."
Robin J. Evans, SIAM Review

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Aissen, M., Schoenberg, I. J. and Whitney, A. M. [1952], On the generating functions of totally positive sequences I, J. d'Anal. Math. 2 CrossRef | Google Scholar, 93–103.
Ando, T. [1987], Totally positive matrices, Lin. Alg. and Appl. 90 CrossRef | Google Scholar, 165–219.
Askey, R. and Boor, C. [1990], In memoriam : Schoenberg, I. J. (1903–1990), J. Approx. Theory 63 CrossRef | Google Scholar, 1–2.
Asner, B. A. Jr. [1970], On the total nonnegativity of the Hurwitz matrix, SIAM J. Appl. Math. 18 CrossRef | Google Scholar, 407–414.
Beckenbach, E. F. and Bellman, R. [1961], Inequalities, Springer–Verlag, New York CrossRef | Google Scholar.
Berenstein, A., Fomin, S. and Zelevinsky, A. [1996], Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 CrossRef | Google Scholar, 49–149.
Boocher, A. and Froehle, B. [2008], On generators of bounded ratios of minors for totally positive matrices, Lin. Alg. and Appl. 428 CrossRef | Google Scholar, 1664–1684.
Boor, C. [1982], The inverse of totally positive bi-infinite band matrices, Trans. Amer. Math. Soc. 274 CrossRef | Google Scholar, 45–58.
Boor, C. [1988], I. J. Schoenberg: Selected Papers, 2 Google Scholar Volumes, Birkhäuser, Basel.
Boor, C. and Pinkus, A. [1977], Backward error analysis for totally positive linear systems, Numer. Math. 27 CrossRef | Google Scholar, 485–490.
Boor, C. and Pinkus, A. [1982], The approximation of a totally positive band matrix by a strictly banded totally positive one, Lin. Alg. and Appl. 42 CrossRef | Google Scholar, 81–98.
Brenti, F. [1989], Unimodal, log-concave, and P?olya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 413 Google Scholar.
Brenti, F. [1995], Combinatorics and total positivity, J. Comb. Theory, Series A 71 CrossRef | Google Scholar, 175–218.
Brenti, F. [1996], The applications of total positivity to combinatorics and conversely, inTotal Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht CrossRef | Google Scholar, 451–473.
Brown, L. D., Johnstone, I. M. and MacGibbon, K. B. [1981], Variation diminishing transformations: a direct approach to total positivity and its statistical applications, J. Amer. Stat. Assoc. 76 CrossRef | Google Scholar, 824–832.
Brualdi, R. A., and Schneider, H. [1983], Determinantal identities: Gauss, Schur, Cauchy, Dylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley, Lin. Alg. and Appl. 52/53 CrossRef | Google Scholar, 769–791.
Buslaev, A. P. [1990], A variational description of the spectra of totally positive matrices, and extremal problems of approximation theory, Mat. Zametki 47, 39–46; English transl. in Math. Notes 47 Google Scholar(1990), 26–31.
Carlson, B. C. and Gustafson, J. L. [1983], Total positivity of mean values and hypergeometric functions, SIAM J. Math. Anal. 14 CrossRef | Google Scholar, 389–395.
Carlson, D. [1968], On some determinantal inequalities, Proc. Amer. Math. Soc. 19 CrossRef | Google Scholar, 462–466.
Carnicer, J. M., Goodman, T. N. T. and , J. M. [1995], A generalization of the variation diminishing property, Adv. Comp. Math. 3 CrossRef | Google Scholar, 375–394.
Cavaretta, A. S. Jr., Dahmen, W. A. and Micchelli, C. A. [1991], Stationary subdivision, Mem. Amer. Math. Soc. 93 Google Scholar.
Cavaretta, A. S. Jr., Dahmen, W. A., Micchelli, C. A. and Smith, P. W. [1981], A factorization theorem for banded matrices, Lin. Alg. and Appl. 39 CrossRef | Google Scholar, 229–245.
Crans, A. S., Fallat, S. M. and Johnson, C. R. [2001], The Hadamard core of the totally nonnegative matrices, Lin. Alg. and Appl. 328 CrossRef | Google Scholar, 203–222.
Craven, T. and Csordas, G. [1998], A sufficient condition for strict total positivity of a matrix, Linear and Multilinear Alg. 45 CrossRef | Google Scholar, 19–34.
Cryer, C. [1973], The LU-factorization of totally positive matrices, Lin. Alg. and Appl. 7 CrossRef | Google Scholar, 83–92.
Cryer, C. [1976], Some properties of totally positive matrices, Lin. Alg. and Appl. 15 CrossRef | Google Scholar, 1–25.
Dahmen, W., Micchelli, C. A., and Smith, P. W. [1986], On factorization of bi-infinite totally positive block Toeplitz matrices, Rocky Mountain J. Math. 16 CrossRef | Google Scholar, 335–364.
Demmel, J. and Koev, P. [2005], The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. Matrix. Anal. Appl. 27 CrossRef | Google Scholar, 142–152.
Dimitrov, D. K. and Peña, J. M. [2005], Almost strict total positivity and a class of Hurwitz polynomials, J. Approx. Theory 132 CrossRef | Google Scholar, 212–223.
Edrei, A. [1952], On the generating functions of totally positive sequences II, J. d'Anal. Math. 2 CrossRef | Google Scholar, 104–109.
Edrei, A. [1953], Proof of a conjecture of Schoenberg on the generating functions of totally positive sequences, Canadian J. Math. 5 CrossRef | Google Scholar, 86–94.
Elias, U. and Pinkus, A. [2002], Non-linear eigenvalue-eigenvector problems for STP matrices, Proc. Royal Society Edinburgh: Section A 132 Google Scholar, 1307–1331.
Eveson, S. P. [1996], The eigenvalue distribution of oscillatory and strictly sign-regular matrices, Lin. Alg. and Appl. 246 CrossRef | Google Scholar, 17–21.
Fallat, S. M., Gekhtman, M. I. and Johnson, C. R. [2000], Spectral structures of irreducible totally nonnegative matrices, SIAM J. Matrix Anal. Appl. 22 CrossRef | Google Scholar, 627–645.
Fallat, S. M., Gekhtman, M. I. and Johnson, C. R. [2003], Multiplicative principal-minor inequalities for totally nonnegative matrices, Adv. Applied Math. 30 CrossRef | Google Scholar, 442–470.
Fan, K. [1966], Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29 CrossRef | Google Scholar, 185–196.
Fan, K. [1967], Subadditive functions on a distributive lattice and an extension of Szasz's inequality, J. Math. Anal. Appl. 18 CrossRef | Google Scholar, 262–268.
Fan, K. [1968], An inequality for subadditive functions on a distributive lattice with application to determinantal inequalities, Lin. Alg. and Appl. 1 CrossRef | Google Scholar, 33–38.
Fekete, M. and Pólya, G. [1912], Über ein Problem von Laguerre, Rend. C. M. Palermo 34 CrossRef | Google Scholar, 89–120.
Fomin, S. and Zelevinsky, A. [1999], Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 CrossRef | Google Scholar, 335–380.
Fomin, S. and Zelevinsky, A. [2000], Total positivity: tests and parametrizations, Math. Intell. 22 CrossRef | Google Scholar, 23–33.
Friedland, S. [1985], Weak interlacing properties of totally positive matrices, Lin. Alg. and Appl. 71 CrossRef | Google Scholar, 95–100.
Gantmacher, F. [1936],Sur les noyaux de Kellogg non symétriques, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 1 Google Scholar (10), 3–5.
Gantmacher, F. R. [1953], The Theory of Matrices, Gostekhizdat, Moscow- Leningrad; English transl. as Matrix Theory, Chelsea, New York, 2 Google Scholar vols., 1959.
Gantmacher, F. R. [1965], Obituary, in Uspekhi Mat. Nauk 20, 149–158; English transl. as Russian Math. Surveys, 20 Google Scholar(1965), 143–151.
Gantmacher, F. R. and Krein, M. G. [1935], Sur les matrices oscillatoires, C. R. Acad. Sci.(Paris) 201 Google Scholar, 577–579.
Gantmakher, F. R. and Krein, M. G. [1937], Sur les matrices compl`etement non négatives et oscillatoires, Compositio Math. 4 Google Scholar, 445–476.
Gantmacher, F. R. and Krein, M. G. [1941], Oscillation Matrices and Small Oscillations of Mechanical Systems Google Scholar (Russian), Gostekhizdat, Moscow-Leningrad.
Gantmacher, F. R. and Krein, M. G. [1950], Ostsillyatsionye Matritsy i Yadra i Malye Kolebaniya Mekhanicheskikh Sistem Google Scholar, Gosudarstvenoe Izdatel'stvo, Moskva-Leningrad, 1950; German transl. as Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Akademie Verlag, Berlin, 1960; English transl. as Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, USAEC, 1961, and also a revised English edition from AMS Chelsea Publ., 2002.
Garloff, J. [1982], Criteria for sign regularity of sets of matrices, Lin. Alg. and Appl. 44 CrossRef | Google Scholar, 153–160.
Garloff, J. [2003], Intervals of almost totally positive matrices, Lin. Alg. and Appl. 363 CrossRef | Google Scholar, 103–108.
Garloff, J. and Wagner, D. [1996a], Hadamard products of stable polynomials are stable, J. Math. Anal. Appl. 202 CrossRef | Google Scholar, 797–809.
Garloff, J. and Wagner, D. [1996b], Preservation of total nonnegativity under the Hadamard products and related topics, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht CrossRef | Google Scholar, 97–102.
Gasca, M. and Micchelli, C. A. [1996], Total Positivity and its Applications, eds., Kluwer Acad. Publ., Dordrecht CrossRef | Google Scholar.
Gasca, M., Micchelli, C. A. and Peña, J. M. [1992], Almost strictly totally positive matrices, Numerical Algorithms 2 CrossRef | Google Scholar, 225–236.
Gasca, M. and Peña, J. M. [1992], Total positivity and Neville elimination, Lin. Alg. and Appl. 165 CrossRef | Google Scholar, 25–44.
Gasca, M. and Peña, J. M. [1993], Total positivity, QR factorization, and Neville elimination, SIAM J. Matrix Anal. Appl. 14 CrossRef | Google Scholar, 1132–1140.
Gasca, M. and Peña, J. M. [1995], On the characterization of almost strictly totally positive matrices, Adv. Comp. Math. 3 CrossRef | Google Scholar, 239–250.
Gasca, M. and Peña, J. M. [1996], On factorizations of totally positive matrices, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht CrossRef | Google Scholar, 109–130.
Gasca, M. and Peña, J. M. [2006], Characterizations and decompositions of almost strictly totally positive matrices, SIAM J. Matrix Anal. 28 CrossRef | Google Scholar, 1–8.
Gladwell, G. M. L. [1998], Total positivity and the QR algorithm, Lin. Alg. and Appl. 271 CrossRef | Google Scholar, 257–272.
Gladwell, G. M. L. [2004], Inner totally positive matrices, Lin. Alg. and Appl. 393 CrossRef | Google Scholar, 179–195.
Gohberg, I. [1989], Mathematical Tales, in The Gohberg Anniversary Collection, Eds. Dym, H., Goldberg, S., Kaashoek, M. A., Lancaster, P., pp. 17–56, Operator Theory: Advances and Applications, Vol. 40, Birkhäuser Verlag, Basel CrossRef | Google Scholar.
Gohberg, I. [1990], Mark Grigorievich Krein 1907–1989, Notices Amer. Math. Soc. 37 Google Scholar, 284–285.
Goodman, T. N. T. [1995], Total positivity and the shape of curves, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht Google Scholar, 157–186.
Goodman, T. N. T. and Sun, Q. [2004], Total positivity and refinable functions with general dilation, Appl. Comput. Harmon. Anal. 16 CrossRef | Google Scholar, 69–89.
Gross, K. I. and Richards, D. St. P. [1995], Total positivity, finite reflection groups, and a formula of Harish-Chandra, J. Approx. Theory 82 CrossRef | Google Scholar, 60–87.
Holtz, O. [2003], Hermite-Biehler, Routh-Hurwitz and total positivity, Lin. Alg. and Appl. 372 CrossRef | Google Scholar, 105–110.
Horn, R. A. and Johnson, C. R. [1991], Topics in Matrix Analysis, Cambridge University Press, Cambridge CrossRef | Google Scholar.
Karlin, S. [1964], The existence of eigenvalues for integral operators, Trans. Amer. Math. Soc. 113 CrossRef | Google Scholar, 1–17.
Karlin, S. [1965], Oscillation properties of eigenvectors of strictly totally positive matrices, J. D'Analyse Math. 14 CrossRef | Google Scholar, 247–266.
Karlin, S. [1968], Total Positivity. Volume 1, Stanford University Press, Stanford, CA Google Scholar.
Karlin, S. [1972], Some extremal problems for eigenvalues of certain matrix and integral operators, Adv. in Math. 9 CrossRef | Google Scholar, 93–136.
Karlin, S. [2002], Interdisciplinary meandering in science. 50th anniversary issue of Operations Research. Oper. Res. 50 CrossRef | Google Scholar, 114–121.
Karlin, S. and Pinkus, A. [1974], Oscillation properties of generalized characteristic polynomials for totally positive and positive definite matrices, Lin. Alg. and Appl. 8 CrossRef | Google Scholar, 281–312.
Karlin, S. and Studden, W. J. [1966], Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience Publishers, John Wiley, New York Google Scholar.
Katkova, O. M. and Vishnyakova, A. M. [2006], On sufficient conditions for the total positivity and for the multiple positivity of matrices, Lin. Alg. and Appl. 416 CrossRef | Google Scholar, 1083–1097.
Kellogg, O. D. [1918], Orthogonal function sets arising from integral equations, Amer. J. Math. 40 CrossRef | Google Scholar, 145–154.
Kellogg, O. D. [1929], Foundations of Potential Theory, Springer-Verlag, Berlin CrossRef | Google Scholar.
Kemperman, J. H. B. [1982], A Hurwitz matrix is totally positive, SIAM J. Math. Anal. 13 CrossRef | Google Scholar, 331–341.
Koev, P. [2005], Accurate eigenvalues and SVDs of totally nonnegative matrices, SIAM J. Matrix. Anal. Appl. 27 CrossRef | Google Scholar, 1–23.
Koev, P. [2007], Accurate computations with totally nonnegative matrices, SIAM J. Matrix. Anal. Appl. 29 CrossRef | Google Scholar, 731–751.
Koteljanskii, D. M. [1950], The theory of nonnegative and oscillating matrices (Russian), Ukrain. Mat. Z. 2, 94–101; English transl. in Amer. Math. Soc. Transl., Series 2 27 Google Scholar(1963), 1–8.
Koteljanskii, D. M. [1955], Some sufficient conditions for reality and simplicity of the spectrum of a matrix, Mat. Sb. N.S. 36, 163–168; English transl. in Amer. Math. Soc. Transl., Series 2 27 Google Scholar(1963), 35–42.
Krein, M. G. and Nudel'man, A. A. [1977], The Markov Moment Problem and Extremal Problems, Transl. Math. Monographs, Vol. 50 CrossRef | Google Scholar, Amer. Math. Society, Providence.
Kurtz, D. C. [1992], A sufficient condition for all the roots of a polynomial to be real, Amer. Math. Monthly 99 CrossRef | Google Scholar, 259–263.
Loewner, K. [1955], On totally positive matrices, Math. Z. 63 CrossRef | Google Scholar, 338–340.
Lusztig, G. [1994], Total positivity in reductive groups, in Lie Theory and Geometry, Progress in Mathematics, 123 Google Scholar, Birkhäuser, Boston, 531–568.
Maló, E. [1895], Note sur les équations algébriques dont toutes les racines sont réelles, Journal de Mathématiques Spéciales 4 Google Scholar, 7–10.
Marden, M. [1966], Geometry of Polynomials, Math. Surveys, Vol. 3 Google Scholar (2nd edition), Amer. Math. Society, Providence.
Markham, T. L. [1970], A semi-group of totally nonnegative matrices, Lin. Alg. and Appl. 3 CrossRef | Google Scholar, 157–164.
Marshall, A. W. and Olkin, I. [1979], Inequalities: Theory of Majorization and its Applications, Academic Press, New York Google Scholar.
Metelmann, K. [1973], Ein Kriterium für den Nachweis der Totalnichtnegativität von Bandmatrizen, Lin. Alg. and Appl. 7 CrossRef | Google Scholar, 163–171.
Micchelli, C. A. and Pinkus, A. [1991], Descartes systems from corner cutting, Constr. Approx. 7 CrossRef | Google Scholar, 161–194.
Motzkin, Th. [1936], Beiträge zur Theorie der linearen Ungleichungen, Doctoral Dissertation, Basel, 1933. Azriel Press, Jerusalem Google Scholar.
Mühlbach, G. and Gasca, M. [1985], A generalization of Sylvester's identity on determinants and some applications, Lin. Alg. and Appl. 66 CrossRef | Google Scholar, 221–234.
Pinkus, A. [1985a], Some extremal problems for strictly totally positive matrices, Lin. Alg. and Appl. 64 CrossRef | Google Scholar, 141–156.
Pinkus, A. [1985b], n-widths of Sobolev spaces in Lp, Const. Approx. 1 CrossRef | Google Scholar, 15–62.
Pinkus, A. [1985c], n-Widths in Approximation Theory, Springer-Verlag, Berlin CrossRef | Google Scholar.
Pinkus, A. [1996], Spectral properties of totally positive kernels and matrices, in Total Positivity and its Applications eds., Micchelli, C. A. and Gasca, M., Kluwer Acad. Publ., Dordrecht CrossRef | Google Scholar, 477–511.
Pinkus, A. [1998], An interlacing property of eigenvalues of strictly totally positive matrices, Lin. Alg. and Appl. 279 CrossRef | Google Scholar, 201–206.
Pinkus, A. [2008], Zero minors of totally positive matrices, Electronic J. Linear Algebra 17 CrossRef | Google Scholar, 532–542.
Pitman, J. [1997], Probabilistic bounds on the coefficients of polynomials with only real zeros, J. Comb. Theory, Ser. A 77 CrossRef | Google Scholar, 279–303.
Pólya, G. and Szegő, G. [1976], Problems and Theorems in Analysis II, Springer-Verlag, New York CrossRef | Google Scholar.
Rahman, Q. I. and Schmeisser, G. [2002], Analytic Theory of Polynomials, Oxford University Press, Oxford Google Scholar.
Schoenberg, I. J. [1930], Über variationsvermindernde lineare Transformationen, Math. Z. 32 CrossRef | Google Scholar, 321–328.
Schoenberg, I. J. and Whitney, A. [1951], A theorem on polygons in n dimensions with application to variation-diminishing and cyclic variation-diminishing linear transformations, Compositio Math. 9 Google Scholar, 141–160.
Schumaker, L. L. [1981], Spline Functions: Basic Theory, John Wiley & Sons, New York Google Scholar.
Shapiro, B. Z. and Shapiro, M. Z. [1995], On the boundary of totally positive upper triangular matrices, Lin. Alg. and Appl. 231 CrossRef | Google Scholar, 105–109.
Shohat, J. A. and Tamarkin, J. D. [1943], The Problem of Moments, Math. Surveys, Vol. 1 CrossRef | Google Scholar, Amer. Math. Society, Providence.
Skandera, M. [2004], Inequalities in products of minors of totally nonnegative matrices, J. Alg. Comb. 20 CrossRef | Google Scholar, 195–211.
Smith, P. W. [1983], Truncation and factorization of bi-infinite matrices, in Approximation Theory, IV (College Station, Tex., 1983), 257–289, Academic Press, New York Google Scholar.
Stieltjes, T. J. [1894–95], Recherches sur les fractions continues, Annales Fac. Sciences Toulouse 8, 1–122; 9 CrossRef | Google Scholar, 1–47.
Wagner, D. [1992], Total positivity of Hadamard products, J. Math. Anal. Appl. 163 CrossRef | Google Scholar, 459–483.
Wang, Y. and Yeh, Y.-N. [2005], Polynomials with real zeros and Pólya frequency sequences, J. Comb. Theory, Ser. A 109 CrossRef | Google Scholar, 63–74.
Whitney, A. [1952], A reduction theorem for totally positive matrices, J. d'Anal. Math. 2 CrossRef | Google Scholar, 88–92.

Metrics

Usage data cannot currently be displayed.