Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-21T07:53:17.328Z Has data issue: false hasContentIssue false

Knowledge Discovery from Archaeological Materials

Published online by Cambridge University Press:  20 September 2024

Pedro A. López García
Affiliation:
Escuela Nacional de Antropologia e Historia
Denisse L. Argote
Affiliation:
Instituto Nacional de Antropologia e Historia
Manuel A. Torres-García
Affiliation:
Instituto Nacional de Antropología e Historia
Michael C. Thrun
Affiliation:
Philipps-Universität Marburg, Germany

Summary

This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These operate in both high- and low-dimensional environments and often have better results than traditional methods. The basic principles and main methods are introduced with recommendations for when to use them.
Get access
Type
Element
Information
Online ISBN: 9781009181884
Publisher: Cambridge University Press
Print publication: 30 November 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, M. (2012). Towards theoretical foundations of clustering. PhD thesis, David R. Cheriton School of Computer Science, University of Waterloo, ON.Google Scholar
Adolfsson, A., Ackerman, M. & Brownstein, N. C. (2019). To cluster, or not to cluster: An analysis of clusterability methods. Pattern Recognition, 88, 1326.CrossRefGoogle Scholar
Afseth, N. K. & Kohler, A. (2012). Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemometrics and Intelligent Laboratory Systems, 117, 9299.CrossRefGoogle Scholar
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman & Hall.CrossRefGoogle Scholar
Aitchison, J., Barceló-Vidal, C. & Pawlowsky-Glahn, V. (2002). Some comments on compositional data analysis in archaeometry, in particular the fallacies in Tangri and Wright’s dismissal of log ratio analysis. Archaeometry, 44(2), 295304.CrossRefGoogle Scholar
Alelyani, S., Tang, J. & Liu, H. (2014). Feature selection for clustering: A review. In Aggarwal, C. C. and Reddy, C. K., eds., Data Clustering: Algorithms and Applications, Vol. 29. Hoboken, NJ: CRC Press, pp. 133.Google Scholar
Alqurashi, T. & Wang, W. (2019). Clustering ensemble method. International Journal of Machine Learning and Cybernetics, 10(6), 12271246.CrossRefGoogle Scholar
Ball, F. & Geyer-Schulz, A. (2018). Invariant graph partition comparison measures. Symmetry, 10(10), 127.CrossRefGoogle Scholar
Barca, D., Crisci, G. M. & Miriello, D. (2019). Chapter 11 Obsidian and volcanic glass shards: Characterization and provenancing. In Artioli, G. and Oberti, R., eds., The Contribution of Mineralogy to Cultural Heritage, Vol. 20 of EMU Notes in Mineralogy. London: European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, pp. 393409.CrossRefGoogle Scholar
Barwick, V. (2003). Preparation of Calibration Curves: A Guide to Best Practice. Technical report no. LGC/VAM/2003/032. https://biosearch-cdn.azureedge.net/assetsv6/Calibration-curve-guide.pdf.Google Scholar
Baudry, J. P., Raftery, A. E., Celeux, G., Lo, K. & Gottardo, R. (2010). Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 9(2), 332353.CrossRefGoogle ScholarPubMed
Baxter, M. J. (1995). Standardization and transformation in principal component analysis, with applications to archaeometry. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4), 513527.Google Scholar
Baxter, M. J. (2003). Statistics in Archaeology. Oxford: Oxford University Press.Google Scholar
Baxter, M. J. (2015). Notes on Quantitative Archaeology and R. www.mikemetrics.com/download/mark_dl/Book (accessed November 1, 2019).Google Scholar
Baxter, M. J. & Buck, C. (2000). Data handling and statistical analysis. In Ciliberto, E. and Spoto, G., eds., Modern Analytical Methods in Art and Archaeology. New York: Wiley-Interscience, pp. 681746.Google Scholar
Beirnaert, C., Meysman, P., Vu, T. N., Hermans, N., Apers, S., Pieters, L., Covaci, A. & Laukens, K. (2018). Speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Computational Biology, 14(3), e1006018.CrossRefGoogle ScholarPubMed
Bellman, R. E. (1961). Adaptive Control Processes: A Guided Tour. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. (2009). Mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32(6), 129.CrossRefGoogle Scholar
Ben-Hur, A. & Guyon, I. (2003). Detecting stable clusters using principal component analysis. In Brownstein, M. J. and Kohodursky, A., eds., Functional Genomics: Methods and Protocols. Geneva: Humana Press, pp. 159182.CrossRefGoogle Scholar
Biecek, P., Szczurek, E., Vingron, M. & Tiuryn, J. (2012). The R package bgmm: Mixture modeling with uncertain knowledge. Journal of Statistical Software, 47(3), 132.CrossRefGoogle Scholar
Biernacki, C., Celeux, G. & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719725.CrossRefGoogle Scholar
Biernacki, C., Celeux, G., Govaert, G. & Langrognet, F. (2006). Model-based cluster and discriminant analysis with the Mixmod software. Computational Statistics and Data Analysis, 51(2), 587600.CrossRefGoogle Scholar
Biernacki, C., Marbac, M. & Vandewalle, V. (2019). Package “ClusVis”: [A] Gaussian-based Visualization of Gaussian and Non-Gaussian Model-Based Clustering. https://cran.r-project.org/web/packages/ClusVis/ClusVis.pdf (accessed August 18, 2019).Google Scholar
Biernacki, C., Marbac, M. & Vandewalle, V. (2021). Gaussian-based visualization of Gaussian and non-Gaussian-based clustering. Journal of Classification, 38, 129157.CrossRefGoogle Scholar
Bishop, R. L. & Neff, H. (1989). Compositional data analysis in archaeology. In Allen, R. O., ed., Archaeological Chemistry IV. Advances in Chemistry Series 220. Washington, DC: American Chemical Society, pp. 576586.Google Scholar
Bolin, J. H., Edwards, J. M., Holmes, W. H. & Cassady, J. C. (2014). Applications of cluster analysis to the creation of perfectionism profiles: A comparison of two clustering approaches. Frontiers in Psychology, 5, article 343. https://doi.org/10.3389/fpsyg.2014.00343.CrossRefGoogle Scholar
Bonner, R. E. (1964). On some clustering technique. IBM Journal of Research and Development, 8(1), 2232.CrossRefGoogle Scholar
Bouveyron, C. & Brunet-Saumard, C. (2014). Model-based clustering of high-dimensional data: A review. Computational Statistics and Data Analysis, 71, 5278.CrossRefGoogle Scholar
Bouveyron, C., Hammer, B. & Villmann, T. (2012). Recent developments in clustering algorithms. In Verleysen, M., ed., Proceedings of the 20th European Symposium on Artificial Neural Networks. Bruges, Belgium: Computational Intelligence and Machine Learning, pp. 447458.Google Scholar
Buck, C. E. & Litton, C. D. (1996). Mixtures, Bayes and archaeology. In Bernado, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., eds., Bayesian Statistics 5. Oxford: Clarendon Press, pp. 499506.CrossRefGoogle Scholar
Carter, T., Batist, Z., Campeau, K., Garfinkel, Y. & Streit, K. (2017). Investigating pottery neolithic socio-economic “regression” in the Southern Levant: Characterising obsidian consumption at Sha’ar Hagolan (N. Israel). Journal of Archaeological Science: Reports, 15, 305317.Google Scholar
Ceccarelli, L., Rossetti, I., Primavesi, L. & Stoddart, S. (2016). Non-destructive method for the identification of ceramic production by portable X-rays fluorescence (pXRF): A case study of amphorae manufacture in central Italy. Journal of Archaeological Science: Reports, 10, 253262.Google Scholar
Chang, W. C. (1983). On using principal components before separating a mixture of two multivariate normal distributions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 32(3), 267275.Google Scholar
Chen, W. & Maitra, R. (2019). EMCluster: EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution. https://CRAN.R-project.org/package=EMCluster (accessed November 15, 2020).Google Scholar
Daszykowski, M., Kaczmarek, K., Stanimirova, I., Vander Heyden, Y. & Walczak, B. (2007). Robust SIMCA-bounding influence of outliers. Chemometrics and Intelligent Laboratory Systems, 87(1), 95103.CrossRefGoogle Scholar
Davies, D. L. & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI- 1(2), 224227.CrossRefGoogle ScholarPubMed
Dean, E. A., Neff, H., Glascock, M. D. & Speakman, R. J. (2007). Sourcing the palygorskite used in Maya blue: A pilot study comparing the results of INAA and LA-ICP-MS. Latin American Antiquity, 18(1), 4458.Google Scholar
Delaunay, B. (1934). Sur la sphere vide: A la memoire de Georges Voronoi. Bulletin de l’Académie des Sciences de l’URSS: Classe des sciences mathématiques et naturelles, 6, 793800.Google Scholar
Demartines, P. & Hérault, J. (1995). CCA: “Curvilinear Component Analysis.” In Proceedings of 15°Colloque sur le Traitement du Signal et des Images, Vol. 199. Juan-les-pins, France: Groupe d’Etudes du Traitement du Signal et des Images (GRETSI), pp. 921924.Google Scholar
Descantes, C., Speakman, R. & Glascock, M. (2008). Compositional studies of Caribbean ceramics: An introduction to instrumental neutron activation analysis. Journal of Caribbean Archaeology, Special Publication No. 2: An Exploratory Study into the Chemical Characterization of Caribbean Ceramics, 114.Google Scholar
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1, 269271.CrossRefGoogle Scholar
Doran, J. & Hodson, F. R. (1975). Mathematics and Computers in Archaeology. Cambridge, MA: Harvard University Press.Google Scholar
Dos Santos Panero, P., dos Santos Panero, F., dos Santos Panero, J. & Bezerra da Silva, H. E. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1(3), 3034.CrossRefGoogle Scholar
Duda, R. O., Hart, P. E. & Stork, D. G. (2001). Pattern Classification, 2nd ed. New York: John Wiley & Sons.Google Scholar
Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4(1), 95104.CrossRefGoogle Scholar
Egozcue, J. J. & Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37(7), 795828.CrossRefGoogle Scholar
Egozcue, J. J. & Pawlowsky-Glahn, V. (2011). Análisis composicional de datos en Ciencias Geoambientales. Boletín Geológico y Minero, 122(4), 439452.Google Scholar
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279300.CrossRefGoogle Scholar
Egozcue Rubí, J. J., Tolosana-Delgado, R., Jarauta Bragulat, E., Ortego Martínez, M. I. & Díaz Barrero, J. L. (2011). Análisis de datos composicionales: Aguas, contaminantes, recursos, sociología … Jornada de Recerca i Innovació a l’Escola de Camins. Comunicació de congrés presented at the Jornada de Recerca i Innovació a l’Escola de Camins. Barcelona: Universitat Politècnica de Catalunya, Escola Tècnica Superior d’Enginyers de Camins Canals i Ports de Barcelona.Google Scholar
Elson, C., Nichols, D., Cecil, L. & Glascock, M. C. (2006). Aztec Elites and the Post Classic Economy: Instrumental Neutron Activation Analysis (INAA) of Museum Collections from Chiconautla, México. Report submitted to FAMSI. www.famsi.org/reports/03019/index.html (accessed August 20, 2020).Google Scholar
Engelen, S. & Hubert, M. (2004). Fast cross-validation for robust PCA. In Antoch, J., ed., Proceedings in Computational Statistics COMPSTAT’2004 Symposium. Heidelberg: Physica/Springer, pp. 989996.Google Scholar
Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. ACM SIGKDD Explorations Newsletter, 4(1), 6575.CrossRefGoogle Scholar
Everitt, B. S. & Hand, D. J. (1981). Finite Mixture Distributions. Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Everitt, B. S., Landau, S., Leese, M. & Stahl, D. (2011). Cluster Analysis, 5th ed. Vol. 848 of Wiley Series in Probability and Statistics. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
Ferguson, J. R. & Glascock, M. D. (2007). Instrumental Neutron Activation Analysis of Ionian Cups from the Western Mediterranean. Technical report prepared for Ulrike Krotscheck of the Department of Classics, Standford CA. http://blogs.evergreen.edu/ulrikek/files/2016/10/krotscheck-2007-report.pdf (accessed July 15, 2020).Google Scholar
Filzmoser, P. & Todorov, V. (2011). Review of robust multivariate statistical methods in high dimension. Analytica Chimica Acta, 705(1–2), 214.CrossRefGoogle ScholarPubMed
Filzmoser, P., Gussenbauer, J. & Templ, M. (2016). Detecting Outliers in Household Consumption Survey Data. Vienna University of Technology Technical Report. www.ihsn.org/node/695 (accessed May 9, 2022).Google Scholar
Filzmoser, P., Hron, K. & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20, 621632.CrossRefGoogle Scholar
Fop, M. & Murphy, T. B. (2018). Variable selection methods for model-based clustering. Statistics Surveys, 12, 148.CrossRefGoogle Scholar
Fraley, C. & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal, 41(8), 578588.CrossRefGoogle Scholar
Fraley, C. & Raftery, A. E. (2002). Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association, 97(458), 611631.CrossRefGoogle Scholar
Fraley, C., Raftery, A. E., Murphy, T. B. & Scrucca, L. (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical report no. 597. Department of Statistics, University of Washington. https://stat.uw.edu/sites/default/files/files/reports/2012/tr597.pdf (accessed April 14, 2024).Google Scholar
Gallhofer, D. & Lottermoser, B. G. (2018). The influence of spectral interferences on critical element determination with portable X-ray fluorescence (pXRF). Minerals, 8(8), 320.CrossRefGoogle Scholar
George, E. I. & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881889.CrossRefGoogle Scholar
George, E. I. & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7, 339373.Google Scholar
Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In Neff, H., ed., Chemical Characterization of Ceramic Pastes in Archaeology. Vol. 7 of Monographs in World Archaeology. Madison, WI: Prehistory Press, pp. 1126.Google Scholar
Glascock, M. D. (1994). New World obsidian: Recent investigations. In Scott, D. A. and Meyers, P., eds., Archaeometry of Pre-Columbian Sites and Artifacts: Proceedings of a Symposium. Los Angeles, CA: UCLA Institute of Archaeology and Getty Conservation Institute, pp. 113134.Google Scholar
Glascock, M. D. (2011). Chapter 8 Comparison and contrast between XRF and NAA: Used for characterization of obsidian sources in Central Mexico. In Shackley, M. S., ed., X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology. New York: Springer, pp. 161192.CrossRefGoogle Scholar
Glascock, M. D. & Ferguson, J. R. (2012). Report on the Analysis of Obsidian Source Samples by Multiple Analytical Methods. Report for Bruce Kaiser on XRF01-40. Archaeometry Laboratory, University of Missouri. www.researchgate.net/publication/236850163_Report_on_the_Analysis_of_Obsidian_Source_Samples_by_Multiple_Analytical_Methods.Google Scholar
Glascock, M. D. & Neff, H. (2003). Neutron activation analysis and provenance research in archaeology. Measurement Science and Technology, 14(9), 15161526.CrossRefGoogle Scholar
Glascock, M. D., Braswell, G. E. & Cobean, R. H. (1998). A systematic approach to obsidian source characterization. In Shackley, M. S., ed., Archaeological Obsidian Studies. Vol 3 of Advances in Archaeological and Museum Science. Boston, MA: Springer, pp. 1565.CrossRefGoogle Scholar
Glascock, M. D., Elam, J. & Cobean, R. H. (1988). Differentiation of obsidian sources in Mesoamerica. In Farquahr, R. M., Hancock, R. G. V., and Pavlish, L. A., eds., Proceedings of the 26th International Symposium on Archaeometry. Toronto: Archaeometry Laboratory, University of Toronto, pp. 245251.Google Scholar
Grün, B. (2019). Chapter 8 Model-based clustering. In Frühwirth-Schnatter, S., Celeux, G., and Robert, C. P., eds., Handbook of Mixture Analysis. Boca Raton, FL: CRC Press, pp. 136.Google Scholar
Handl, J., Knowles, J. & Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15), 32013212.CrossRefGoogle ScholarPubMed
Harbottle, G. (1976). Neutron activation analysis in archaeology. Radiochemistry, 3, 3372.Google Scholar
Harbottle, G., Sayre, E. V. & Abascal, R. (1976). Neutron Activation Analysis of Thin Orange Pottery. Upton, NY: Brookhaven National Lab.Google Scholar
Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P. & Botstein, D. (1999). Imputing Missing Data for Gene Expression Arrays. Technical report, Stanford University Statistics Department. https://hastie.su.domains/Papers/missing.pdf.Google Scholar
Hawkins, D. M. (1980). Identification of Outliers. London: Chapman & Hall.CrossRefGoogle Scholar
Heller, K. A. (2007). Efficient Bayesian methods for clustering. PhD thesis, Gatsby Computational Neuroscience Unit, University College London, UK.Google Scholar
Heller, K. A. & Ghahramani, Z. (2005). Bayesian hierarchical clustering. In Raedt, L. De and Wrobel, S., eds., Proceedings of the 22nd International Conference on Machine Learning. New York: Association for Computing Machinery, pp. 297304.CrossRefGoogle Scholar
Hennig, C. (2015). What are the true clusters? Pattern Recognition Letters, 64, 5362.CrossRefGoogle Scholar
Hennig, C., Meila, M., Murtagh, F. & Rocci, R., eds. (2015). Handbook of Cluster Analysis. New York: Chapman & Hall.CrossRefGoogle Scholar
Hintze, J. L. & Nelson, R. D. (1998). Violin plots: A box plot-density trace synergism. American Statistician, 52(2), 181184.CrossRefGoogle Scholar
Honaker, J., King, G. & Blackwell, M. (2011). Amelia II: A program for missing data. Journal of Statistical Software, 45(7), 147.CrossRefGoogle Scholar
Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193218.CrossRefGoogle Scholar
Hubert, M. & Vanden Branden, K. (2003). Robust methods for partial least squares regression. Journal of Chemometrics, 17(10), 537549.CrossRefGoogle Scholar
Hubert, M. & Engelen, S. (2004). Robust PCA and classification in biosciences. Bioinformatics, 20(11), 17281736.CrossRefGoogle ScholarPubMed
Hubert, M., Rousseeuw, P. J. & Vanden Branden, K. (2005). ROBPCA: A new approach to robust principal component analysis. Technometrics, 47(1), 6479.CrossRefGoogle Scholar
Hunt, A. M. W. & Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 53, 626638.CrossRefGoogle Scholar
Islam, M. H., Kondo, N., Ogawa, Y., Fujiura, T., Suzuki, T. & Fujitani, S. (2018). Interval partial least squares (iPLS) regression approach to predict hatching time of chick. International Journal of Experimental Spectroscopic Techniques, 3(1), article 014. https://doi.org/10.35840/2631-505X/8514.CrossRefGoogle Scholar
Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data, Vol. 3. Englewood Cliffs, NJ: Prentice Hall College Division.Google Scholar
Jajuga, K. & Walesiak, M. (2000). Standardization of data set under different measurement scales. In Decker, R. and Gaul, W., eds., Classification and Information Processing at the Turn of the Millennium: Studies in Classification, Data Analysis, and Knowledge Organization. Berlin: Springer, pp. 105112.CrossRefGoogle Scholar
Joyce, A., Elam, J., Glascock, M. D., Neff, H. & Winter, M. (1995). Exchange implications of obsidian source analysis from the lower Rio Verde Valley, Oaxaca, Mexico. Latin American Antiquity, 6(1), 315.CrossRefGoogle Scholar
Kampstra, P. (2008). Beanplot: A boxplot alternative for visual comparison of distributions. Journal of Statistical Software, Code Snippets, 28(1), 19.Google Scholar
Kass, R. E. & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773795.CrossRefGoogle Scholar
Kaufman, L. & Rousseeuw, P. J. (2005). Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: Wiley-Interscience.Google Scholar
Konstorum, A., Jekel, N., Vidal, E. & Laubenbacher, R. (2018). Comparative analysis of linear and nonlinear dimension reduction techniques on mass cytometry data. bioRxiv, 1–15.CrossRefGoogle Scholar
Kropko, J., Goodrich, B., Gelman, A. & Hill, J. (2014). Multiple imputation for continuous and categorical data: Comparing joint multivariate normal and conditional approaches. Political Analysis, 22(4), 497519.CrossRefGoogle Scholar
Kucheryavskiy, S. (2020). mdatools – R package for chemometrics. Chemometrics and Intelligent Laboratory Systems, 198, 103937.CrossRefGoogle Scholar
Lazzari, M., Pereyra Domingorena, L., Stoner, W. D., Scattolin, M. C., Korstanje, M. A. & Glascock, M. D. (2017). Compositional data supports decentralized model of artefact production and circulation in the pre-Columbian Andes. Proceedings of the National Academy of Sciences, 114(20), E3917E3926.CrossRefGoogle Scholar
Leardi, R. (2000). Application of genetic algorithm-PLS for feature selection in spectral data sets. Journal of Chemometrics, 14(5–6), 643655.3.0.CO;2-E>CrossRefGoogle Scholar
Lebret, R., Lovleff, S., Langrognet, F., Biernacki, C., Celeux, G. & Govaert, G. (2015). Rmixmod: The R package of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library. Journal of Statistical Software, 67(6), 129.CrossRefGoogle Scholar
Liland, K. H. & Indahl, U. G. (2020). Package “EMSC”: Extended Multiplicative Signal Correction. https://cran.r-project.org/web/packages/EMSC/EMSC.pdf (accessed August 22, 2020).Google Scholar
Litton, C. D. & Buck, C. E. (1995). The Bayesian approach to the interpretation of archaeological data. Archaeometry, 37(1), 124.CrossRefGoogle Scholar
López-García, P., Argote, D. L. & Beirnaert, C. (2019). Chemometric analysis of Mesoamerican obsidian sources. Quaternary International, 510, 100118.CrossRefGoogle Scholar
López-García, P., Argote-Espino, D. & Facevicova, K. (2018). Statistical processing of compositional data: The case of ceramic samples from the archaeological site of Xalasco, Tlaxcala, Mexico. Journal of Archaeological Sciences: Reports, 19, 100114.Google Scholar
López-García, P. A., Argote, D. L. & Thrun, M. C. (2020). Projection-based classification of chemical groups for provenance analysis of archaeological materials. IEEE Access, 8, 152439152451.CrossRefGoogle Scholar
López-García, P. A., García-Gómez, V. H., Acosta-Ochoa, G. & Argote, D. L. (2024). Semi-supervised classification to determine the provenance of archaeological obsidian samples. Archaeometry, 66(1), 142159.CrossRefGoogle Scholar
Lötsch, J., Lerch, F., Djaldetti, R., Tegder, I. & Ultsch, A. (2018). Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). Big Data Analytics, 3(1), article 5. https://doi.org/10.1186/s41044-018-0032-1.CrossRefGoogle Scholar
Lu, B., Morgan, S. P., Crowe, J. A. & Stockford, I. M. (2006). Comparison of methods for reducing the effects of scattering in spectrophotometry. Applied Spectroscopy, 60(10), 11571166.CrossRefGoogle ScholarPubMed
Martens, H. & Stark, E. (1991). Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 9(8), 625635.CrossRefGoogle ScholarPubMed
Martens, H., Nielsen, J. P. & Søren, B. E. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction: Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394404.CrossRefGoogle ScholarPubMed
Martín-Fernández, J. A., Barceló-Vidal, C. & Pawlowsky-Glahn, V. (2000). Zero replacement in compositional data sets. In Kiers, H. A. L., Rasson, J. P., Groenen, P. J. F. and Shader, M., eds., Data Analysis, Classification, and Related Methods: Studies in Classification, Data Analysis, and Knowledge Organization. Berlin: Springer, pp. 155160.CrossRefGoogle Scholar
Martín-Fernández, J. A., Buxeda i Garrigós, J. & Pawlowsky-Glahn, V. (2015). Logratio analysis in archaeometry: Principles and methods. In Barcelo, J. A. and Bogdanovic, I., eds., Mathematics and Archaeology. Boca Raton, FL: CRC Press, pp. 178189.Google Scholar
Mateu-i-Figueras, G. & Daunis-i-Estadella, J. (2008). Compositional amalgamations and balances: A critical approach. https://dugi-doc.udg.edu/handle/10256/738.Google Scholar
Maugis, C., Celeux, G. & Martin-Magniette, M. L. (2009). Variable selection for clustering with Gaussian mixture models. Biometrics, 65(3), 701709.CrossRefGoogle ScholarPubMed
McLachlan, G. & Peel, D. (2000). Finite Mixture Models. New York: John Wiley & Sons.CrossRefGoogle Scholar
Millhauser, J. K., Fargher, L. F., Heredia Espinoza, V. Y. & Blanton, R. E. (2015). The geopolitics of obsidian supply in postclassic Tlaxcallan: A portable X-ray fluorescence study. Journal of Archaeological Science, 58, 133146.CrossRefGoogle Scholar
Millhauser, J. K., Rodríguez-Alegría, E. & Glascock, M. D. (2011). Testing the accuracy of portable X-ray fluorescence to study Aztec and Colonial obsidian supply at Xaltocan, Mexico. Journal of Archaeological Science, 38(11), 31413152.CrossRefGoogle Scholar
Milligan, G. W. & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181204.CrossRefGoogle Scholar
Mitchell, T. J. & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404), 10231032.CrossRefGoogle Scholar
Moholy-Nagy, H., Meierhoff, J., Golitko, M. & Kestle, C. (2013). An analysis of pXRF obsidian source attributions from Tikal, Guatemala. Latin American Antiquity, 24(1), 7297.CrossRefGoogle Scholar
Mörchen, F. (2006). Time series knowledge mining. Marburg, Germany: Görich and Weiershäuser.Google Scholar
Munita, C. S., Toyota, R. G., Oliveira, P. M. S., Neves, E. G., Demartini, C. C. & Schaan, D. P. (2011). Chapter 7 Chemical characterization of Marajoara pottery. In International Atomic Energy Agency, ed., Nuclear Techniques for Cultural Heritage Research. IAEA Radiation Technology Series No. 2. Vienna: International Atomic Energy Agency (IAEA), pp. 133146.Google Scholar
Muñoz, J. & Amón, I. (2013). Técnicas para detección de outliers multivariantes. Revista en Telecomunicaciones e Informática, 3(5), 1125.Google Scholar
Murphy, K. & Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. Advances in Data Analysis and Classification, 14, 293325.CrossRefGoogle Scholar
Murphy, T. B., Dean, N. & Raftery, A. E. (2010). Variable selection and updating in model-based discriminant analysis for high-dimensional data with food authenticity applications. Annals of Applied Statistics, 4(1), 396421.CrossRefGoogle ScholarPubMed
Murtagh, F. (2004). On ultrametricity, data coding, and computation. Journal of Classification, 21(2), 167184.CrossRefGoogle Scholar
Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54, 286295.CrossRefGoogle Scholar
Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L. & Engelsen, S. B. (2000). Interval partial least squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy, 54(3), 413419.CrossRefGoogle Scholar
Nurunnabi, A., Belton, D. & West, G. (2012). Diagnostic-robust statistical analysis for local surface fitting in 3D point cloud data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 13, 269274.CrossRefGoogle Scholar
Palarea-Albaladejo, J. & Martín-Fernández, J. A. (2015). zCompositions – R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics and Intelligent Laboratory Systems, 143, 8596.CrossRefGoogle Scholar
Palarea-Albaladejo, J., Martín-Fernández, J. A. & Gómez-García, J. (2007). A parametric approach for dealing with compositional rounded zeros. Mathematical Geology, 39(7), 625645.CrossRefGoogle Scholar
Papageorgiou, I. & Liritzis, I. (2007). Multivariate mixture of normals with unknown number of components: An application to cluster neolithic ceramics from Aegean and Asia Minor using portable XRF. Archaeometry, 49(4), 795813.CrossRefGoogle Scholar
Papageorgiou, I., Baxter, M. J. & Cau, M. A. (2001). Model-based cluster analysis of artefact compositional data. Archaeometry, 43(4), 571588.CrossRefGoogle Scholar
Partovi Nia, V. (2009). Fast high-dimensional Bayesian classification and clustering. PhD thesis, Ecole Polytechnique Federale de Lasuanne, Switzerland.Google Scholar
Partovi Nia, V. & Davison, A. C. (2012). High-dimensional Bayesian clustering with variable selection: The R package bclust. Journal of Statistical Software, 47(5), 122.Google Scholar
Partovi Nia, V. & Davison, A. C. (2015). Package “bclust”: Bayesian Hierarchical Clustering Using Spike and Slab Models. https://cran.microsoft.com/snapshot/2017-07-05/web/packages/bclust/bclust.pdf (accessed January 15, 2020).Google Scholar
Pawlowsky-Glahn, V. & Egozcue, J. J. (2011). Exploring compositional data with the CoDa-dendrogram. Austrian Journal of Statistics, 40(1–2), 103113.Google Scholar
Pawlowsky-Glahn, V. & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. In Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V., eds., Compositional Data Analysis in the Geosciences: From Theory to Practice. Special Publication Vol. 264. London: Geological Society, pp. 110.Google Scholar
Pawlowsky-Glahn, V., Egozcue, J. J. & Tolosana-Delgado, R. (2015). Modelling and Analysis of Compositional Data. Chichester, UK: Wiley.CrossRefGoogle Scholar
Pielou, E. C. (1984). The Interpretation of Ecological Data: A Primer on Classification and Ordination. New York: Wiley-Interscience.Google Scholar
Raftery, A. E. & Dean, N. (2006). Variable selection for model-based clustering. Journal of the American Statistical Association, 101(473), 168178.CrossRefGoogle Scholar
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846850.CrossRefGoogle Scholar
R Development Core Team. (2011). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. www.R-project.org (accessed November 24, 2016).Google Scholar
Reimann, C., Filzmoser, P. & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17(3), 185206.CrossRefGoogle Scholar
Reyment, R. A. & Savazzi, S. (1999). Aspects of Multivariate Statistical Analysis in Geology. Amsterdam: Elsevier.Google Scholar
Rousseau, R. M. (2001). Concept of the influence coefficient. Rigaku Journal, 18(1), 821.Google Scholar
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 5365.CrossRefGoogle Scholar
Rousseeuw, P. J. & Hubert, M. (2017). Anomaly detection by robust statistics. WIREs Data Mining and Knowledge Discovery, 8(2), e1236. https://doi.org/10.1002/widm.1236.CrossRefGoogle Scholar
Rousseeuw, P. J. & van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), 212223.CrossRefGoogle Scholar
Rousseeuw, P. J. & van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85(411), 633639.CrossRefGoogle Scholar
Salem, N. & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292299.CrossRefGoogle Scholar
Santos, J. O., Munita, C. S., Valério, M. E. G., Vergne, C. & Oliveira, P. M. S. (2006). Determination of trace elements in archaeological ceramics and application of kernel density estimates: Implications for the definition of production locations. Journal of Radioanalytical and Nuclear Chemistry, 269(2), 441445.CrossRefGoogle Scholar
Savitzky, A. & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 16271639.CrossRefGoogle Scholar
Sayre, E. V. (1976). Brookhaven procedures for statistical analysis of multivariate archaeometric data. In Conference on Applications of Physical Sciences to Medieval Archaeology, Berkeley and Los Angeles, CA, USA, March 18, 1975. Upton, NY: Office of Scientific and Technical Information, pp. 133.Google Scholar
Schafer, R. W. (2011). What is a Savitzky-Golay filter? IEEE Signal Processing Magazine, 28(4), 111117.CrossRefGoogle Scholar
Shackley, M. S. (1995). Sources of archaeological obsidian in the greater American Southwest: An update and quantitative analysis. American Antiquity, 60(3), 531551.CrossRefGoogle Scholar
Speakman, R. (2012). Evaluation of Bruker’s Tracer Family Factory Obsidian Calibration for Handheld Portable XRF Studies of Obsidian. www.researchgate.net/publication/256547427_Evaluation_of_Bruker’s_Tracer_Family_Factory_Obsidian_Calibration_for_Handheld_Portable_XRF_Studies_of_Obsidian.Google Scholar
Speakman, R., Glascock, M. D. & Steponaitis, V. P. (2008). Chapter 5 Geochemistry. In Herbert, J. M. and McReynolds, T. E., eds., Woodland Pottery Sourcing in the Carolina Sandhills. Chapel Hill: University of North Carolina Press, pp. 5672.Google Scholar
Stekhoven, D. J. & Buehlmann, P. (2012). MissForest: Nonparametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112118.CrossRefGoogle ScholarPubMed
Stevens, A. & Ramirez-Lopez, L. (2015). Package “prospectr”: Miscellaneous Functions for Processing and Sample Selection of Vis-NIR Diffuse Reflectance Data. https://cran.rproject.org/web/packages/prospectr/prospectr.pdf (accessed April 24, 2017).Google Scholar
Stevens, A., Ramirez-Lopez, L. & Hans, G. (2022). Package “prospectr”: Miscellaneous Functions for Processing and Sample Selection of Spectroscopic Data Version 0.2.4. https://mran.microsoft.com/web/packages/prospectr/prospectr.pdf (accessed April 17, 2022).Google Scholar
Tadesse, M. G., Naijun, S. & Vannucci, M. (2005). Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association, 100(470), 602617.CrossRefGoogle Scholar
Tanasi, D., Tykot, R. H., Pirone, F. & McKendry, E. (2017). Provenance study of prehistoric ceramics from Sicily: A comparative study between pXRF and XRF. Open Archaeology, 3, 222234.CrossRefGoogle Scholar
Templ, M., Alfons, A. & Filzmoser, P. (2012). Exploring incomplete data using visualization techniques. Advances in Data Analysis and Classification, 6, 2947.CrossRefGoogle Scholar
Thrun, M. C. (2018). Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data. Wiesbaden: Springer Vieweg.CrossRefGoogle Scholar
Thrun, M. C. (2020). Improving the sensitivity of statistical testing for clusterability with mirrored-density plot. In Archambault, D., Nabney, I., and Peltonen, J., eds., Machine Learning Methods in Visualisation for Big Data. Norrköping, Sweden: Eurographics Association.Google Scholar
Thrun, M. C. (2021a). Distance-based clustering challenges for unbiased benchmarking studies. Scientific Reports, 11, 18988.CrossRefGoogle ScholarPubMed
Thrun, M. C. (2021b). The exploitation of distance distributions for clustering. International Journal of Computational Intelligence and Applications, 20(3), 2150016.CrossRefGoogle Scholar
Thrun, M. C. (2022). Identification of explainable structures in data with a human-in-the-loop. German Journal of Artificial Intelligence (Künstl Intelligenz), 36, 297301.Google Scholar
Thrun, M. C. & Stier, Q. (2021). Fundamental clustering algorithms suite. SoftwareX, 13, 100642.CrossRefGoogle Scholar
Thrun, M. C. & Ultsch, A. (2020a). Uncovering high-dimensional structures of projections from dimensionality reduction methods. MethodsX, 7, 101093.CrossRefGoogle ScholarPubMed
Thrun, M. C. & Ultsch, A. (2020b). Clustering benchmark datasets exploiting the fundamental clustering problems. Data in Brief, 30(C), 105501.CrossRefGoogle ScholarPubMed
Thrun, M. C. & Ultsch, A. (2021a). Swarm intelligence for self-organized clustering. Artificial Intelligence, 290, 103237.CrossRefGoogle Scholar
Thrun, M. C. & Ultsch, A. (2021b). Using projection-based clustering to find distance- and density-based clusters in high-dimensional data. Journal of Classification, 38, 280312.CrossRefGoogle Scholar
Thrun, M. C., Gehlert, T. & Ultsch, A. (2020a). Analyzing the fine structure of distributions. PLoS One, 15(10), e0238835.CrossRefGoogle ScholarPubMed
Thrun, M. C., Lerch, F., Lötsch, J. & Ultsch, A. (2016). Visualization and 3D printing of multivariate data of biomarkers. In Skala, V., ed., 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG). Plzen, Czech Republic: Computer Science Research Notes (CSRN)/University of West Bohemia, pp. 716.Google Scholar
Thrun, M. C., Märte, J. & Stier, Q. (2023). Analyzing quality measurements for dimensionality reduction. Machine Learning and Knowledge Extraction, 5(3), 10761118.CrossRefGoogle Scholar
Thrun, M. C., Pape, F. & Ultsch, A. (2020b). Interactive machine learning tool for clustering in visual analytics. In 7th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2020). Sydney, Australia: IEEE, pp. 672680.Google Scholar
Thrun, M. C., Pape, F. & Ultsch, A. (2021). Conventional displays of structures in data compared with interactive projection-based clustering (IPBC). International Journal of Data Science and Analytics, 12(3), 249271.CrossRefGoogle Scholar
Todorov, V. (2020). Package “rrcov”: Scalable Robust Estimators with High Breakdown Point. https://cran.r-project.org/web/packages/rrcov/rrcov.pdf (accessed September 24, 2020).Google Scholar
Todorov, V. & Filzmoser, P. (2009). An object-oriented framework for robust multivariate analysis. Journal of Statistical Software, 32(3), 147.CrossRefGoogle Scholar
Todorov, V., Templ, M. & Filzmoser, P. (2011). Detection of multivariate outliers in business survey data with incomplete information. Advances in Data Analysis and Classification, 5(1), 3756.CrossRefGoogle Scholar
Tubb, A., Parker, A. J. & Nickless, G. (1980). The analysis of Romano-British pottery by atomic absorption spectrophotometry. Archaeometry, 22(2), 153171.CrossRefGoogle Scholar
Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.Google Scholar
Ultsch, A. (1995). Self-organizing neural networks perform different from statistical k-means clustering. In Proceedings of the Society for Information and Classification (GFKL), Vol. 1995. Basel, Switzerland, March 8–10. www.researchgate.net/publication/228827060_Self_organizing_neural_networks_perform_different_from_statistical_k-means_clustering.Google Scholar
Ultsch, A. (1999). Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series. In Oja, E. and Kaski, S., eds., Kohonen Maps. Amsterdam: Elsevier Science B.V., pp. 3346.CrossRefGoogle Scholar
Ultsch, A. (2000). Clustering with dataBots. In Proceedings of the International Conference in Advances in Intelligent Systems Theory and Applications (AISTA). Canberra, Australia: IEEE ACT Section, pp. 99104.Google Scholar
Ultsch, A. (2003). U*-matrix: A Tool to Visualize Clusters in High Dimensional Data. Technical report 36. Department of Mathematics and Computer Science, University of Marburg, Germany. www.cs.ubbcluj.ro/~gabis/DocDiplome/SOM/ultsch03ustar.pdf (accessed April 14, 2024).Google Scholar
Ultsch, A. (2005). Pareto density estimation: A density estimation for knowledge discovery. In Baier, D. and Werrnecke, K. D., eds., Innovations in Classification, Data Science, and Information Systems, Vol. 27. Berlin: Springer, pp. 91100.CrossRefGoogle Scholar
Ultsch, A. & Lötsch, J. (2017). Machine-learned cluster identification in high-dimensional data. Journal of Biomedical Informatics, 66(C), 95104.CrossRefGoogle ScholarPubMed
Ultsch, A. & Siemon, H. P. (1990). Kohonen’s self-organizing feature maps for exploratory data analysis. In Proceedings of the International Neural Network Conference. Paris, France: Kluwer Academic Press, pp. 305308.Google Scholar
Ultsch, A. & Thrun, M. C. (2017). Credible visualizations for planar projections. In 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM 2017), Vol. 1. Nancy, France: IEEE, pp. 256260.Google Scholar
Ultsch, A., Thrun, M. C., Hansen-Goos, O. & Lötsch, J. (2015). Identification of molecular fingerprints in human heat pain thresholds by use of an interactive mixture model R toolbox (AdaptGauss). International Journal of Molecular Sciences, 16(10), 2589725911.CrossRefGoogle Scholar
van Buuren, S. & Groothuis-Oudshoorn, C. (2011). MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 167.Google Scholar
Van den Boogaart, K. G. & Tolosana-Delgado, R. (2013). Analyzing Compositional Data with R. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Van der Maaten, L. & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(86), 25792605.Google Scholar
Van der Maaten, L. J., Postma, E. O. & van den Herik, H. J. (2009). Dimensionality Reduction: A Comparative Review. Technical report 2009–005. Tilburg Centre for Creative Computing, Tilburg University, The Netherlands.Google Scholar
Van Loco, J., Elskens, M., Croux, C. & Beernaert, H. (2002). Linearity of calibration curves: Use and misuse of the correlation coefficient. Accreditation and Quality Assurance, 7, 281285.CrossRefGoogle Scholar
Varmuza, K. & Filzmoser, P. (2009). Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton, FL: CRC Press.Google Scholar
Venna, J., Peltonen, J., Nybo, K., Aidos, H. & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 11, 451490.Google Scholar
Verboven, S. & Hubert, M. (2005). LIBRA: A MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory Systems, 75(2), 127136.CrossRefGoogle Scholar
Verleysen, M., Francois, D., Simon, G. & Wertz, V. (2003). On the effects of dimensionality on data analysis with neural networks. In Mira, J. and Álvarez, J. R., eds., International Work-Conference on Artificial Neural Networks IWANN 2003: Artificial Neural Nets Problem Solving Methods. Berlin: Springer, pp. 105112.Google Scholar
Vu, T. N., Valkenborg, D., Smets, K., Verwaest, K. A., Dommisse, R., Lemière, F., Verschoren, A., Goethals, B. & Laukens, K. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12, 405.CrossRefGoogle ScholarPubMed
Wang, L. L., Lin, Y. W., Wang, X. F., Xiao, N., Xu, Y. D., Li, H. D. & Xu, Q. S. (2018). A selective review and comparison for interval variable selection in spectroscopic modelling. Chemometrics and Intelligent Laboratory Systems, 172, 229240.CrossRefGoogle Scholar
Wang, S. & Zhu, J. (2008). Variable selection for model-based high-dimensional clustering and its application to microarray data. Biometrics, 64(2), 440448.CrossRefGoogle ScholarPubMed
Wehrens, R. (2011). Chemometrics with R: Multivariate Data Analysis in the Natural Science and Life Sciences. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Weigand, P. C., Harbottle, G. & Sayre, E. V. (1977). Chapter 2 Turquoise sources and source analysis: Mesoamerica and the Southwestern U.S.A. In Earle, T. K. and Ericson, J. E., eds., Exchange Systems in Prehistory. New York: Academic Press, pp. 1534.CrossRefGoogle Scholar
Wilke, C. O. (2019). Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. Sebastopol, CA: O’Reilly Media.Google Scholar
Wilkinson, L. & Friendly, M. (2009). The history of the cluster heat map. American Statistician, 63(2), 179184.CrossRefGoogle Scholar
Xie, B., Pan, W. & Shen, X. (2008). Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables. Electronic Journal of Statistics, 2, 168212.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Knowledge Discovery from Archaeological Materials
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Knowledge Discovery from Archaeological Materials
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Knowledge Discovery from Archaeological Materials
Available formats
×