Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T21:05:40.679Z Has data issue: false hasContentIssue false

Triple Oxygen Isotopes

Published online by Cambridge University Press:  19 August 2019

Huiming Bao
Affiliation:
Louisiana State University

Summary

The 'detective' power of stable isotopes for processes that occurred in the past, and for elucidating mechanisms at the molecular level, has impressed researchers over the past 100 years, since the time when isotopes of elements were first discovered. While most are interested in the normalized abundance ratios of two isotopes of an element, further power was unleashed when researchers investigated the relationship of three or more isotopes of the same element, e.g. 16O, 17O, and 18O for oxygen. This Element focuses on the history of discovery of triple isotope effects, the conceptual framework behind these effects, and major lines of development in the past few years of triple oxygen isotope research.
Get access
Type
Element
Information
Online ISBN: 9781108688543
Publisher: Cambridge University Press
Print publication: 29 August 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aston, F.W. (1919a) The Constitution of the Elements. Nature 104, 393.CrossRefGoogle Scholar
Aston, F.W. (1919b) Neon. Nature 104, 334.CrossRefGoogle Scholar
Aston, F.W. (1919c) A positive ray spectrograph. Philosophical Magazine 38, 707714.Google Scholar
Aston, F.W. (1920a) The constitution of atmospheric neon. Philosophical Magazine 39, 449455.Google Scholar
Aston, F.W. (1920b) Isotopes and Atomic Weights. Nature 105, 617.Google Scholar
Aston, F.W. (1929) The Constitution of Oxygen. Nature 123, 488.Google Scholar
Aston, F.W. (1932) Mass-Spectra of Helium and Oxygen. Nature 130, 21.CrossRefGoogle Scholar
Babikov, D., Kendrick, B.K., Walker, R.B., Pack, R.T., Fleurat-Lesard, P. and Schinke, R. (2003) Formation of ozone: Metastable states and anomalous isotope effect. Journal of Chemical Physics 119, 25772589.CrossRefGoogle Scholar
Bao, H. (2005) Sulfate in modern playa settings and in ash beds in hyperarid deserts: Implication on the origin of 17O-anomalous sulfate in an Oligocene ash bed. Chemical Geology 214, 127134.Google Scholar
Bao, H. (2015) Sulfate: A time capsule for Earth’s O2, O3, and H2O. Chemical Geology 395, 108118.CrossRefGoogle Scholar
Bao, H., Campbell, D.A., Bockheim, J.G. and Thiemens, M.H. (2000a) Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous O-17 compositions. Nature 407, 499502.CrossRefGoogle Scholar
Bao, H. M., Cao, X. B., and Hayles, J. A. (2016) Triple Oxygen Isotopes: Fundamental Relationships and Applications, in: Jeanloz, R. and Freeman, K. H. (Eds.), Annual Review of Earth and Planetary Sciences, Volume 44: Palo Alto, Annual Reviews, pp. 463492.CrossRefGoogle Scholar
Bao, H., Chen, Z.-Q. and Zhou, C. (2012) An 17O record of late Neoproterozoic glaciation in the Kimberley region, Western Australia. Precambrian Research 216219, 152161.CrossRefGoogle Scholar
Bao, H., Fairchild, I.J., Wynn, P.M. and Spoetl, C. (2009) Stretching the Envelope of Past Surface Environments: Neoproterozoic Glacial Lakes from Svalbard. Science 323, 119122.CrossRefGoogle ScholarPubMed
Bao, H. and Gu, B.H. (2004) Natural perchlorate has a unique oxygen isotope signature. Environmental Science & Technology 38, 50735077.Google Scholar
Bao, H., Lyons, J. R., and Zhou, C. (2008) Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453(7194), 504506.Google Scholar
Bao, H. and Marchant, D.R. (2006) Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research-Atmospheres 111.CrossRefGoogle Scholar
Bao, H. and Thiemens, M.H. (2000) Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous analysis of δ18O and δ17O. Analytical Chemistry 72, 40294032.Google Scholar
Bao, H., Thiemens, M.H., Farquhar, J., Campbell, D.A., Lee, C.C.W., Heine, K. and Loope, D.B. (2000b) Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406, 176178.CrossRefGoogle ScholarPubMed
Bao, H.M., Thiemens, M.H. and Heine, K. (2001) Oxygen-17 excesses of the Central Namib gypcretes: spatial distribution. Earth and Planetary Science Letters 192, 125135.Google Scholar
Bao, H., Thiemens, M.H., Loope, D.B. and Yuan, X.L. (2003) Sulfate oxygen-17 anomaly in an Oligocene ash bed in mid-North America: Was it the dry fogs? Geophysical Research Letters 30.CrossRefGoogle Scholar
Bao, H., Yu, S.C. and Tong, D.Q. (2010) Massive volcanic SO2 oxidation and sulphate aerosol deposition in Cenozoic North America. Nature 465, 909912.CrossRefGoogle ScholarPubMed
Barkan, E. and Luz, B. (2007) Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Communications in Mass Spectrometry 21(18), 29993005.Google Scholar
Barkan, E. and Luz, B. (2012) High-precision measurements of 17O/16O and 18O/16O ratios in CO2. Rapid Communications in Mass Spectrometry 26, 27332738.CrossRefGoogle Scholar
Benn, D.I., Le Hir, G., Bao, H.M., Donnadieu, Y., Dumas, C., Fleming, E.J., Hambrey, M.J., McMillan, E.A., Petronis, M.S., Ramstein, G., Stevenson, C.T.E., Wynn, P.M. and Fairchild, I.J. (2015) Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation. Nature Geoscience 8, 704–+.Google Scholar
Bigeleisen, J. (2006) Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in: Kohen, A., Limbach, H.-H. (Eds.), Isotope Effects in Chemistry and Biology. Taylor & Francis Group, LLC, Boca Raton London New York, pp. 139.Google Scholar
Bigeleisen, J., Mayer, M. G. (1947) Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics 15, 261267.CrossRefGoogle Scholar
Bindeman, I.N., Zakharov, D.O., Palandri, J., Greber, N.D., Dauphas, N., Retallack, G.J., Hofmann, A., Lackey, J.S. and Bekker, A. (2018) Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545548.Google Scholar
Blackett, P.M.S. (1925) The ejection of protons from nitrogen nuclei, photographed by the Wilson method. Proceedings of the Royal Society of London. Series A 107, 349360.Google Scholar
Brickwedde, F.G. (1982) Urey, Harold and the discovery of deuterium. Physics Today 35, 3439.Google Scholar
Cao, X.B. and Bao, H.M. (2013) Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proceedings of the National Academy of Sciences of the United States of America 110, 1454614550.Google Scholar
Clayton, R.N. (2007) Isotopes: From Earth to the Solar System. Annual Review of Earth and Planetary Sciences 35, 119.CrossRefGoogle Scholar
Clayton, R.N. (2008) Oxygen isotopes in the early Solar System – A historical perspective, in: MacPherson, G.J., Mittlefehldt, D.W., Jones, J.H., Simon, S.B. (Eds.), Oxygen in the Solar System, pp. 514. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T.K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters 67, 151161.CrossRefGoogle Scholar
Clayton, R.N., Grossman, L. and Mayeda, T.K. (1973) A component of primitive nuclear composition in carbonaceous chondrites. Science 182, 485488.CrossRefGoogle Scholar
Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133149.Google Scholar
Craig, H. (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 18331834.CrossRefGoogle ScholarPubMed
Crockford, P.W., Cowie, B.R., Johnston, D.T., Hoffman, P.F., Sugiyama, I., Pellerin, A., Bui, T.H., Hayles, J., Halverson, G.P., Macdonald, F.A. and Wing, B.A. (2016) Triple oxygen and multiple sulfur isotope constraints on the evolution of the post-Marinoan sulfur cycle. Earth and Planetary Science Letters 435, 7483.Google Scholar
Crockford, P.W., Hayles, J.A., Bao, H.M., Planavsky, N.J., Bekker, A., Fralick, P.W., Halverson, G.P., Bui, T.H., Peng, Y.B. and Wing, B.A. (2018a) Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559, 613–+.Google Scholar
Crockford, P.W., Hodgskiss, M.S.W., Uhlein, G.J., Caxito, F., Hayles, J.A. and Halverson, G.P. (2018b) Linking paleocontinents through triple oxygen isotope anomalies. Geology 46, 179182.Google Scholar
Dauphas, N. and Schauble, E. A. (2016) Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies, in: Jeanloz, R. and Freeman, K. H. (Eds.), Annual Review of Earth and Planetary Sciences, Vol 44, Volume 44: Palo Alto, Annual Reviews, pp. 709783.CrossRefGoogle Scholar
Eiler, J., Cesar, J., Chimiak, L., Dallas, B., Grice, K., Griep-Raming, J., Juchelka, D., Kitchen, N., Lloyd, M., Makarov, A., Robins, R. and Schwieters, J. (2017) Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. International Journal of Mass Spectrometry 422, 126142.Google Scholar
Evans, N.P., Bauska, T. K., Gázquez, F., Curtis, J.H., Brenner, M., Hodell, D.A. (2018) Quantification of drought during the collapse of the classic Maya civilization. Science 361, 498501.CrossRefGoogle ScholarPubMed
Farquhar, J., Johnston, D.T., Wing, B.A., Habicht, K.S., Canfield, D.E., Airieau, S. and Thiemens, M.H. (2003) Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1, 2736.Google Scholar
Gao, Y.Q. and Marcus, R.A. (2001) Strange and unconventional isotope effects in ozone formation. Science 293, 259263.Google Scholar
Gao, Y.Q. and Marcus, R.A. (2002) On the theory of the strange and unconventional isotopic effects in ozone formation. Journal of Chemical Physics 116, 137154.Google Scholar
Gázquez, F. Morellón, M., Bauska, T., Herwartz, D., Surma, J., Moreno, A. Staubwasser, M., Valero-Garcés, B., Delgado-Huertas, A., Hodella, D.A. (2018) Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction. Earth and Planetary Science Letters 481, 177188.Google Scholar
Giauque, W.F. and Johnston, H.L. (1929a) An Isotope of Oxygen, Mass 18. Nature 123, 318.Google Scholar
Giauque, W.F. and Johnston, H.L. (1929b) An Isotope of Oxygen of Mass 17 in the Earth’s Atmosphere. Nature 123, 831.CrossRefGoogle Scholar
Hayles, A., Cao, X. and Bao, H. (2017) The statistical mechanical basis of the triple isotope fractionation relationship. Geochemical Perspectives Letters 3, 111.Google Scholar
Hayles, J., Gao, C.H., Cao, X.B., Liu, Y. and Bao, H.M. (2018) Theoretical calibration of the triple oxygen isotope thermometer. Geochimica et Cosmochimica Acta 235, 237245.CrossRefGoogle Scholar
Herwartz, D., Pack, A., Krylov, D., Xiao, Y., Muehlenbachs, K., Sengupta, S. and Di Rocco, T. (2015) Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks. Proceedings of the National Academy of Sciences 112, 53375341.CrossRefGoogle ScholarPubMed
Herwartz, D., Surma, J., Voigt, C., Assonov, S. and Staubwasser, M. (2017) Triple oxygen isotope systematics of structurally bonded water in gypsum. Geochimica Et Cosmochimica Acta 209, 254266.Google Scholar
Hoffman, P.F., Kaufman, A.J., Halverson, G.P. and Schrag, D.P. (1998) A Neoproterozoic snowball earth. Science 281, 13421346.Google Scholar
Hogness, T.R. and Kvalnes, H.M. (1928) Isotopes of neon. Nature 122, 441441.Google Scholar
Holton, J.R., Haynes, P.H., McIntyre, M.E., Douglass, A.R., Rood, R.B. and Pfister, L. (1995) Stratosphere-troposphere exchange. Reviews of Geophysics 33, 403439.Google Scholar
Hughes, J. (2009) Making isotopes matter: Francis Aston and the mass-spectrograph. Dynamis 29, 131165.CrossRefGoogle Scholar
Johnston, J.C. and Thiemens, M.H. (1997) The isotopic composition of tropospheric ozone in three environments. Journal of Geophysical Research – Atmospheres 102, 2539525404.CrossRefGoogle Scholar
Kawagucci, S., Tsunogai, U., Kudo, S., Nakagawa, F., Honda, H., Aoki, S., Nakazawa, T., Tsutsumi, M. and Gamo, T. (2008) Long-term observation of mass-independent oxygen isotope anomaly in stratospheric CO2. Atmospheric Chemistry and Physics 8, 61896197.CrossRefGoogle Scholar
Killingsworth, B.A., Bao, H.M. and Kohl, I.E. (2018) Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data. Environmental Science & Technology 52, 61266136.Google Scholar
Killingsworth, B.A., Hayles, J.A., Zhou, C.M. and Bao, H. (2013) Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event. Proceedings of the National Academy of Sciences of the United States of America 110, 1768617690.CrossRefGoogle ScholarPubMed
Krankowsky, D., Lammerzahl, P., Mauersberger, K., Janssen, C., Tuzson, B. and Rockmann, T. (2007) Stratospheric ozone isotope fractionations derived from collected samples. Journal of Geophysical Research-Atmospheres 112.Google Scholar
Levin, N.E., Raub, T.D., Dauphas, N. and Eiler, J.M. (2014) Triple oxygen isotope variations in sedimentary rocks. Geochimica et Cosmochimica Acta 139, 173189.Google Scholar
Liang, M.C., Mahata, S., Laskar, A.H., Thiemens, M.H. and Newman, S. (2017) Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity. Scientific Reports 7, 12.Google Scholar
Lyons, J.R. (2001) Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophysical Research Letters 28, 32313234.Google Scholar
Luz, B. and Barkan, E. (2010) Variations of 17O/16O and 18O/16O in meteoric waters. Geochimica et Cosmochimica Acta 74, 62766286.Google Scholar
Luz, B., Barkan, E., Bender, M. L., Thiemens, M. H. and Boering, K. A. (1999) Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400, 547550.Google Scholar
Mahata, S., Bhattacharya, S.K. and Liang, M.C. (2016) An improved method of high-precision determination of ∆17O of CO2 by catalyzed exchange with O2 using hot platinum. Rapid Communications in Mass Spectrometry 30, 119131.CrossRefGoogle Scholar
Matsuhisa, Y., Goldsmith, J. R. and Clayton, R. N. (1978) Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kilobars. Geochimica et Cosmochimica Acta 42(2), 173182.Google Scholar
Michalski, G., Savarino, J., Bohlke, J.K. and Thiemens, M. (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a ∆17O nitrate reference material. Analytical Chemistry 74, 49894993.Google Scholar
Michalski, G., Scott, Z., Kabiling, M. and Thiemens, M.H. (2003) First measurements and modeling of ∆17O in atmospheric nitrate. Geophysical Research Letters 30, 1870; 1810.1029/2003GL017015.Google Scholar
Murphey, B.F. (1941) Relative abundances of the oxygen isotopes. Physical Review 59, 320320.Google Scholar
Pack, A. and Herwartz, D. (2014) The triple oxygen isotope composition of the Earth mantle and understanding ∆17O variations in terrestrial rocks and minerals. Earth and Planetary Science Letters 390, 138145.Google Scholar
Passey, B.H., Hu, H.T., Ji, H.Y., Montanari, S., Li, S.N., Henkes, G.A. and Levin, N.E. (2014) Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta 141, 125.Google Scholar
Peng, Y.B., Bao, H., Zhou, C.M. and Yuan, X.L. (2011) 17O-depleted barite from two Marinoan cap dolostone sections, South China. Earth and Planetary Science Letters 305, 2131.CrossRefGoogle Scholar
Rumble, D. (2018) The third isotope of the third element on the third planet. American Mineralogist 103, 110.Google Scholar
Savarino, J., Lee, C.C.W. and Thiemens, M.H. (2000) Laboratory oxygen isotopic study of sulfur (IV) oxidation: Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth. Journal of Geophysical Research-Atmospheres 105, 2907929088.CrossRefGoogle Scholar
Sharp, Z.D., Gibbons, J.A., Maltsev, O., Atudorei, V., Pack, A., Sengupta, S., Shock, E.L. and Knauth, L.P. (2016) A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples. Geochimica et Cosmochimica Acta 186 105119.Google Scholar
Sun, T., Bao, H.M., Reich, M. and Hemming, S.R. (2018) More than ten million years of hyper-aridity recorded in the Atacama Gravels. Geochimica et Cosmochimica Acta 227, 123132.Google Scholar
Tarasicka, D.W., Carey-Smith, T.K., Hocking, W.K. Moeini, O., He, H., Liu, J., Osman, M.K., Thompson, A.M., Johnson, B.J., Oltmans, S.J. and Merrilli, J.T. (2019) Quantifying stratosphere-troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and trajectory models. Atmospheric Environment 198, 496509.Google Scholar
Thiemens, M.H. (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341345.CrossRefGoogle ScholarPubMed
Thiemens, M.H., and Heidenreich, J. E., III (1983) The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications: Science 219 (4588), 10731075.CrossRefGoogle ScholarPubMed
Thiemens, M.H., Jackson, T., Zipf, E.C., Erdman, P.W. and Vanegmond, C. (1995) Carbon Dioxide and Oxygen Isotope Anomalies in the Mesosphere and Stratosphere. Science 270, 969972.Google Scholar
Thompson, J.J. (1913) Bakerian Lecture: Rays of Positive Electricity. Proceedings of the Royal Society A 89, 120.Google Scholar
Urey, H.C. (1947) The thermodynamic properties of isotopic substances. Journal of the Chemical Society 562581.Google Scholar
Vicars, W.C. and Savarino, J. (2014) Quantitative constraints on the O17-excess (∆17O) signature of surface ozone: Ambient measurements from 50 degrees N to 50 degrees S using the nitrite-coated filter technique. Geochimica et Cosmochimica Acta 135, 270287.Google Scholar
Wostbrock, J.A.G., Sharp, Z.D., Sanchez-Yanez, C., Reich, M., van den Heuvel, D.B. and Benning, L.G. (2018) Calibration and application of silica-water triple oxygen isotope thermometry to geothermal systems in Iceland and Chile. Geochimica et Cosmochimica Acta 234, 8497.Google Scholar
Young, E. D., Galy, A., and Nagahara, H. (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66(6), 10951104.CrossRefGoogle Scholar
Yung, Y.L., Lee, A.Y.T., Irion, F.W., DeMore, W.B. and Wen, J. (1997) Carbon dioxide in the atmosphere: Isotopic exchange with ozone and its use as a tracer in the middle atmosphere. Journal of Geophysical Research-Atmospheres 102, 1085710866.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Triple Oxygen Isotopes
  • Huiming Bao, Louisiana State University
  • Online ISBN: 9781108688543
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Triple Oxygen Isotopes
  • Huiming Bao, Louisiana State University
  • Online ISBN: 9781108688543
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Triple Oxygen Isotopes
  • Huiming Bao, Louisiana State University
  • Online ISBN: 9781108688543
Available formats
×