Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T21:59:45.011Z Has data issue: false hasContentIssue false

Barium Isotopes

Drivers, Dependencies, and Distributions through Space and Time

Published online by Cambridge University Press:  30 March 2021

Tristan J. Horner
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Peter W. Crockford
Affiliation:
Weizmann Institute of Science, Israel

Summary

In the modern marine environment, barium isotope (δ138Ba) variations are primarily driven by barite cycling—barite incorporates 'light' Ba isotopes from solution, rendering the residual Ba reservoir enriched in 'heavy' Ba isotopes by a complementary amount. Since the processes of barite precipitation and dissolution are vertically segregated and spatially heterogeneous, barite cycling drives systematic variations in the barium isotope composition of seawater and sediments. This Element examines these variations; evaluates their global, regional, local, and geological controls; and, explores how δ138Ba can be exploited to constrain the origin of enigmatic sedimentary sulfates and to study marine biogeochemistry over Earth's history.
Get access
Type
Element
Information
Online ISBN: 9781108865845
Publisher: Cambridge University Press
Print publication: 22 April 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bao, H. (2019). Triple Oxygen Isotopes (Elements in Geochemical Tracers in Earth System Science). Cambridge: Cambridge University Press.Google Scholar
Bao, H., Lyons, J. R., and Zhou, C. (2008). Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 453(7194), 504–6.Google Scholar
Bates, S. L., Hendry, K. R., Pryer, H. V. et al. (2017). Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic. Geochimica et Cosmochimica Acta, 204, 286299.Google Scholar
Blättler, C.L. and Higgins, J.A., (2014). Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca. Geology, 42(8), 711–14.Google Scholar
Böttcher, M. E., Neubert, N., Von Allmen, K., Samankassou, E. and Nägler, T. F. (2018). Barium isotope fractionation during the experimental transformation of aragonite to witherite and of gypsum to barite, and the effect of ion (de) solvation. Isotopes in Environmental and Health Studies, 54(3), 324–35.Google Scholar
Breit, G. N., Simmons, E. C., and Goldhaber, M. B. (1985). Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate. Chemical Geology: Isotope Geoscience Section, 52(3–4), 333–6.Google Scholar
Bridgestock, L., Hsieh, Y. T., Porcelli, D. et al. (2018). Controls on the barium isotope compositions of marine sediments. Earth and Planetary Science Letters, 481, 101–10.Google Scholar
Bullen, T. and Chadwick, O. (2016). Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence in Hawaii. Chemical Geology, 422, 2545.Google Scholar
Cao, Z., Li, Y., Rao, X. et al. (2020a). Constraining barium isotope fractionation in the upper water column of the South China Sea. Geochimica et Cosmochimica Acta, 288, 120–37.CrossRefGoogle Scholar
Cao, Z., Siebert, C., Hathorne, E. C., Dai, M., and Frank, M. (2020b). Corrigendum to “Constraining the oceanic barium cycle with stable barium isotopes” [Earth Planet. Sci. Lett. 434 (2016) 1–9], Earth and Planetary Science Letters, 530, 116003.Google Scholar
Chan, L. H., Drummond, D., Edmond, J. M., and Grant, B. (1977). On the barium data from the Atlantic GEOSECS expedition. Deep Sea Research, 24(7), 613–49.Google Scholar
Charbonnier, Q., Bouchez, J., Gaillardet, J., and Gayer, É. (2020). Barium stable isotopes as a fingerprint of biological cycling in the Amazon River Basin. Biogeosciences, 17(23), 59896015.Google Scholar
Chow, T. J. and Goldberg, E. D. (1960). On the marine geochemistry of barium. Geochimica et Cosmochimica Acta, 20(3–4), 192–8.Google Scholar
Church, T. M. and Wolgemuth, K. (1972). Marine barite saturation. Earth and Planetary Science Letters, 15(1), 3544.Google Scholar
Crockford, P. W., Hayles, J. A., Bao, H. et al. (2018a). Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature, 559(7715), 613–16.Google Scholar
Crockford, P. W., Hodgskiss, M. S. W., Uhlein, G. J. et al. (2018b). Linking paleocontinents through triple oxygen isotope anomalies. Geology, 46(2), 179–82.Google Scholar
Crockford, P. W., Kunzmann, M., Bekker, A. et al. (2019b). Claypool continued: Extending the isotopic record of sedimentary sulfate. Chemical Geology, 513, 200–25.Google Scholar
Dempster, A. J. (1936). The Isotopic Constitution of Barium and Cerium. Physical Review, 49(12), 947.CrossRefGoogle Scholar
Deng, N., Stack, A. G., Weber, J., Cao, B., De Yoreo, J. J., and Hu, Y. (2019). Organic–mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich (Bax, Sr1−x)SO4 from undersaturated solution. Proceedings of the National Academy of Sciences, 116(27), 13221–6.Google Scholar
Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., and Murray, R. W. (2003). A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18(1).Google Scholar
Eugster, O., Tera, F., and Wasserburg, G. J. (1969). Isotopic analyses of barium in meteorites and in terrestrial samples. Journal of Geophysical Research, 74(15), 3897–908.Google Scholar
Falkner, K. K., Bowers, T. S., Todd, J. F. et al. (1993). The behavior of barium in anoxic marine waters. Geochimica et Cosmochimica Acta, 57(3), 537–54.Google Scholar
Froelich, P., Klinkhammer, G. P., Bender, M. L. et al. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7), 1075–90.Google Scholar
Ganeshram, R. S., François, R., Commeau, J., and Brown-Leger, S. L. (2003). An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67(14), 2599–605.Google Scholar
Geyman, B. M., Ptacek, J. L., LaVigne, M., and Horner, T. J., (2019). Barium in deep-sea bamboo corals: Phase associations, barium stable isotopes, & prospects for paleoceanography. Earth and Planetary Science Letters, 525, 115751.Google Scholar
Gong, Y., Zeng, Z., Cheng, W. et al. (2020). Barium isotopic fractionation during strong weathering of basalt in a tropical climate. Environment International, 143, 105896.Google Scholar
Gou, L. F., Jin, Z., Galy, A. et al. (2020). Seasonal riverine barium isotopic variation in the middle Yellow River: Sources and fractionation. Earth and Planetary Science Letters, 531, 115990.Google Scholar
Gou, H., Li, W. Y., Nan, X., and Huang, F. Experimental evidence for light Ba isotopes favouring aqueous fluids over silicate melts. Geochemical Perspectives Letters, 16, 6–11.Google Scholar
Hemsing, F., Hsieh, Y. T., Bridgestock, L. et al. (2018). Barium isotopes in cold-water corals. Earth and Planetary Science Letters, 491, 183–92.Google Scholar
Hodgskiss, M. S., Crockford, P. W., Peng, Y., Wing, B. A., and Horner, T. J. (2019). A productivity collapse to end Earth’s Great Oxidation. Proceedings of the National Academy of Sciences, 116(35), 17207–12.Google Scholar
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y. et al. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11), e1600983.CrossRefGoogle ScholarPubMed
Hoppema, M., Dehairs, F., Navez, J. et al. (2010). Distribution of barium in the Weddell Gyre: Impact of circulation and biogeochemical processes. Marine Chemistry, 122(14), 118–29.Google Scholar
Horner, T. J., Pryer, H. V., Nielsen, S. G. et al. (2017). Pelagic barite precipitation at micromolar ambient sulfate. Nature Communications, 8(1), 1342.Google Scholar
Horner, T. J., Rickaby, R.E., and Henderson, G.M. (2011). Isotopic fractionation of cadmium into calcite. Earth and Planetary Science Letters, 312(1–2), 243–53.Google Scholar
Hsieh, Y. T., Bridgestock, L., Scheuermann, P. P., Seyfried, W. E. Jr, and Henderson, G. M. (2021). Barium isotopes in mid-ocean ridge hydrothermal vent fluids: A source of isotopically heavy Ba to the ocean. Geochimica et Cosmochimica Acta, 292, 348–63.Google Scholar
Hsieh, Y. T., and Henderson, G. M. (2017). Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization. Earth and Planetary Science Letters, 473, 269–78.Google Scholar
Jacquet, S. H., Dehairs, F., Elskens, M., Savoye, N., and Cardinal, D., (2007). Barium cycling along WOCE SR3 line in the Southern Ocean. Marine Chemistry, 106(1–2), 3345.Google Scholar
Li, W. Y., Yu, H. M., Xu, J. et al. (2020). Barium isotopic composition of the mantle: Constraints from carbonatites. Geochimica et Cosmochimica Acta, 278, 235–43.Google Scholar
Li, Y. H., and Chan, L. H. (1979). Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary. Earth and Planetary Science Letters, 43(3), 343–50.Google Scholar
Liu, Y., Li, X., Zeng, Z. et al. (2019). Annually-resolved coral skeletal δ138/134Ba records: A new proxy for oceanic Ba cycling. Geochimica et Cosmochimica Acta, 247, 2739.CrossRefGoogle Scholar
Martínez-Ruiz, F., Paytan, A., Gonzalez-Muñoz, M. T. et al. (2019). Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chemical Geology, 511, 441–51.CrossRefGoogle Scholar
Martínez-Ruiz, F., Paytan, A., Gonzalez-Muñoz, M. T. et al. (2020). Barite precipitation on suspended organic matter in the mesopelagic zone. Frontiers in Earth Science: Biogeosciences, 8, 499515.Google Scholar
Mavromatis, V., van Zuilen, K., Blanchard, M et al. (2020). Experimental and theoretical modelling of kinetic and equilibrium Ba isotope fractionation during calcite and aragonite precipitation. Geochimica et Cosmochimica Acta, 269, 566–80.CrossRefGoogle Scholar
Mayfield, K. K., Eisenhauer, A., Santiago Ramos, D., et al. (2021) Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba, Nature Communications, 12, 148.Google Scholar
McManus, J., Berelson, W. M., Klinkhammer, G. P., Kilgore, T. E., and Hammond, D. E. (1994). Remobilization of barium in continental margin sediments. Geochimica et Cosmochimica Acta, 58(22), 4899–907.Google Scholar
McManus, J., Berelson, W. M., Klinkhammer, G. P. et al. (1998). Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochimica et Cosmochimica Acta, 62(21–2), 3453–73.Google Scholar
Monnin, C., Jeandel, C., Cattaldo, T., and Dehairs, F. (1999). The marine barite saturation state of the world’s oceans. Marine Chemistry, 65(3–4), 253–61.Google Scholar
Nan, X. Y., Yu, H. M., Rudnick, R. L. et al. (2018). Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233, 3349.Google Scholar
Nancollas, G. H. and Purdie, N. (1963). Crystallization of barium sulphate in aqueous solution. Transactions of the Faraday Society, 59, 735–40.Google Scholar
Nielsen, S. G., Horner, T. J., Pryer, H. V. et al. (2018). Barium isotope evidence for pervasive sediment recycling in the upper mantle. Science Advances, 4 (7), eaas8675.CrossRefGoogle ScholarPubMed
Nielsen, S. G., Shu, Y., Auro, M. et al. (2020). Barium isotope systematics of subduction zones. Geochimica et Cosmochimica Acta, 275, 118.Google Scholar
Parkhurst, D. L. and Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report, 99(4259), 312.Google Scholar
Paytan, A. and Griffith, E. M. (2007). Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5–7), 687705.Google Scholar
Paytan, A. and Kastner, M. (1996). Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle. Earth and Planetary Science Letters, 142(3–4), 439–50.Google Scholar
Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D., and Herbert, T. (1993). Marine barite as a monitor of seawater strontium isotope composition. Nature, 366(6454), 445–9.Google Scholar
Paytan, A., Mearon, S., Cobb, K., and Kastner, M. (2002). Origin of marine barite deposits: Sr and S isotope characterization. Geology, 30(8), 747–50.Google Scholar
Rushdi, A. I., McManus, J., and Collier, R. W. (2000). Marine barite and celestite saturation in seawater. Marine Chemistry, 69(1–2), 1931.CrossRefGoogle Scholar
Serno, S., Winckler, G., Anderson, R. F. et al. (2014). Using the natural spatial pattern of marine productivity in the Subarctic North Pacific to evaluate paleoproductivity proxies. Paleoceanography, 29(5), 438–53.Google Scholar
Talley, L. D. (2013). Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26(1), 8097.Google Scholar
Tian, L. L., Gong, Y. Z., Wei, W. et al. (2020). Rapid determination of Ba isotope compositions for barites using a H2O-extraction method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(8), 1566–73.Google Scholar
Tieman, Z. G., Stewart, B. W., Capo, R. C. et al. (2020). Barium isotopes track the source of dissolved solids in produced water from the unconventional Marcellus Shale Gas Play. Environmental Science & Technology, 54(7), 4275–85.Google Scholar
Torres, M. E., Bohrmann, G., Dubé, T. E., and Poole, F. G. (2003). Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology, 31(10), 897900.Google Scholar
Torres, M. E., Brumsack, H. J., Bohrmann, G., and Emeis, K. C. (1996). Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127(1–3), 125–39.Google Scholar
van Beek, P., Francois, R., Conte, M. et al. (2007). 228Ra/226Ra and 226Ra/Ba ratios in seawater and particles at the OFP site in the western Sargasso Sea near Bermuda. Geochimica et cosmochimica Acta, 71, 7186.Google Scholar
van Zuilen, K., Müller, T., Nägler, T. F., Dietzel, M., and Küsters, T. (2016a). Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures. Geochimica et Cosmochimica Acta, 186, 226–41.Google Scholar
van Zuilen, K., Nägler, T. F., and Bullen, T.D. (2016b). Barium isotopic compositions of geological reference materials. Geostandards and Geoanalytical Research, 40(4), 543–58.Google Scholar
Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–32.Google Scholar
Yao, W., Griffith, E., and Paytan, A. (2020). Pelagic Barite: Tracer of Ocean Productivity and a Recorder of Isotopic Compositions of Seawater S, O, Sr, Ca and Ba (Elements in Geochemical Tracers in Earth System Science). Cambridge: Cambridge University Press.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Barium Isotopes
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Barium Isotopes
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Barium Isotopes
Available formats
×