Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T05:58:39.118Z Has data issue: false hasContentIssue false

Computational Fluid Dynamics and its Applications in Echinoderm Palaeobiology

Published online by Cambridge University Press:  30 October 2020

Summary

Computational fluid dynamics (CFD), which involves using computers to simulate fluid flow, is emerging as a powerful approach for elucidating the palaeobiology of ancient organisms. Here, Imran A. Rahman describes its applications for studying fossil echinoderms. When properly configured, CFD simulations can be used to test functional hypotheses in extinct species, informing on aspects such as feeding and stability. They also show great promise for addressing ecological questions related to the interaction between organisms and their environment. CFD has the potential to become an important tool in echinoderm palaeobiology over the coming years.
Get access
Type
Element
Information
Online ISBN: 9781108893473
Publisher: Cambridge University Press
Print publication: 19 November 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, D. E. & Ghiold, J. (1980). The functional significance of the lunules in the sand dollar, Mellita quinquiesperforata. The Biological Bulletin, 159(3), 561–70.CrossRefGoogle Scholar
Álvaro, J. J. & Vennin, E. (1997). Episodic development of Cambrian eocrinoid-sponge meadows in the Iberian Chains (NE Spain). Facies, 37(1), 4963.Google Scholar
Ausich, W. I., Brett, C. E., Hess, H. & Simms, M. J. (1999). Crinoid form and function. In Hess, H., Ausich, W. I., Brett, C. E. & Simms, M. J., eds., Fossil Crinoids. Cambridge: Cambridge University Press, pp. 3–30.Google Scholar
Bauer, J. E., Waters, J. A. & Sumrall, C. D. (2019). Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata). Palaeontology, 62(6), 1003–13.Google Scholar
Baumiller, T. K. (1990). Physical modeling of the batocrinid anal tube: Functional analysis and multiple hypothesis testing. Lethaia, 23(4), 399408.Google Scholar
Baumiller, T. K. (2008). Crinoid ecological morphology. Annual Review of Earth and Planetary Science, 36, 221–49.CrossRefGoogle Scholar
Baumiller, T. K., LaBarbera, M. & Woodley, J. D. (1991). Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): In situ and laboratory experiments and observations. Bulletin of Marine Science, 48(3), 731–48.Google Scholar
Baumiller, T. K. & Plotnick, R. E. (1989). Rotational stability in stalked crinoids and the function of wing plates in Pterotocrinus depressus. Lethaia, 22(3), 317–26.Google Scholar
Bottjer, D. J. & Ausich, W. I. (1986). Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12(4), 400–20.Google Scholar
Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. (2000). The Cambrian substrate revolution. GSA Today, 10(9), 17.Google Scholar
Bourke, J. M., Porter, W. R., Ridgely, R. C., Lyson, T. R., Schachner, E. R., Bell, P. R. & Witmer, L. M. (2014). Breathing life into dinosaurs: Tackling challenges of soft-tissue restoration and nasal airflow in extinct species. The Anatomical Record, 297(11), 2148–86.CrossRefGoogle ScholarPubMed
Bourke, J. M., Porter, W. R. & Witmer, L. M. (2018). Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora). PLoS ONE, 13(12), e0207381.Google Scholar
Breimer, A. & Macurda, D. B. Jr. (1972). The phylogeny of the fissiculate blastoids. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde. Eerste Reeks, 26(3), 1390.Google Scholar
Briggs, D. E. G., Siveter, D. J., Siveter, D. J., Sutton, M. D. & Rahman, I. A. (2017). An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm. Proceedings of the Royal Society B, 284(1862), 20171189.Google Scholar
Clark, E. G., Bhullar, B.-A. S., Darroch, S. A. F. & Briggs, D. E. G. (2017). Water vascular system architecture in an Ordovician ophiuroid. Biology Letters, 13(12), 20170635.CrossRefGoogle Scholar
Cohen-Rengifo, M., Agüera, A., Detrain, C., Bouma, T. J., Dubois, P. & Flammang, P. (2018). Biomechanics and behaviour in the sea urchin Paracentrotus lividus (Lamarck, 1816) when facing gradually increasing water flows. Journal of Experimental Marine Biology and Ecology, 506, 6171.CrossRefGoogle Scholar
Daley, P. E. J. (1996). The first solute which is attached as an adult: A Mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zoological Journal of the Linnean Society, 117(4), 405–40.Google Scholar
Darroch, S. A. F., Rahman, I. A., Gibson, B., Racicot, R. A. & Laflamme, M. (2017). Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina. Biology Letters, 13(5), 20170033.Google Scholar
David, B., Lefebvre, B., Mooi, R. & Parsley, R. (2000). Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26(4), 529–55.Google Scholar
Dec, M. (2019). Hydrodynamic performance of psammosteids: New insights from computational fluid dynamics simulations. Acta Palaeontologica Polonica, 64(4), 679–84.Google Scholar
Dornbos, S. Q. (2006). Evolutionary palaeoecology of early epifaunal echinoderms: Response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2–4), 225–39.Google Scholar
Dornbos, S. Q. (2008). Tiering history of early epifaunal suspension-feeding echinoderms. In Ausich, W. I. & Webster, G. D., eds., Echinoderm Paleobiology. Bloomington: Indiana University Press, pp. 13343.Google Scholar
Dynowski, J. F., Nebelsick, J. H., Klein, A. & Roth-Nebelsick, A. (2016). Computational fluid dynamics analysis of the fossil crinoid Encrinus liliiformis (Echinodermata: Crinoidea). PLoS ONE, 11(5), e0156408.Google Scholar
Emelyanov, E. M. (2005). The Barrier Zones in the Ocean. New York: Springer.Google Scholar
Evans, M. W. & Harlow, F. H. (1957). The particle-in-cell method for hydrodynamic calculations. Los Alamos Scientific Laboratory Report, LA- 2139, 176.Google Scholar
Friedrich, W.-P. (1993). Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria, 7, 3190.Google Scholar
Gibson, B. M., Rahman, I. A., Maloney, K. M., Racicot, R. A., Mocke, H., Laflamme, M. & Darroch, S. A. F. (2019). Gregarious suspension feeding in a modular Ediacaran organism. Science Advances, 5(6), eaaw0260.CrossRefGoogle Scholar
Gutarra, S., Moon, B. C., Rahman, I. A., Palmer, C., Lautenschlager, S., Brimacombe, A. J. & Benton, M. J. (2019). Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proceedings of the Royal Society B, 286(1898), 20182786.Google Scholar
Hagdorn, H. (1999). Triassic Muschelkalk of Central Europe. In Hess, H., Ausich, W. I., Brett, C. E. & Simms, M. J., eds., Fossil Crinoids. Cambridge: Cambridge University Press, pp. 164–176.Google Scholar
Harlow, F. H. & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Physics of Fluids, 8(12), 2182–9.CrossRefGoogle Scholar
Hebdon, N., Ritterbush, K. A. & Choi, Y. (2020). Computational fluid dynamics modeling of fossil ammonoid shells. Palaeontologia Electronica, 23(1), a21.Google Scholar
Hess, J. L. & Smith, A. M. O. (1967). Calculation of potential flow around arbitrary bodies. Progress in Aerospace Sciences, 8, 1138.Google Scholar
Holtz, E. H. & MacDonald, B. A. (2009). Feeding behaviour of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea) in the laboratory and the field: Relationships between tentacle insertion rate, flow speed, and ingestion. Marine Biology, 156(7), 1389–98.CrossRefGoogle Scholar
Huynh, T. L., Evangelista, D. & Marshall, C. R. (2015). Visualizing the fluid flow through the complex skeletonized respiratory structures of a blastoid echinoderm. Palaeontologia Electronica, 18(1), 14A.Google Scholar
Kogan, I., Pacholak, S., Licht, N., Schneider, J. W., Brücker, C. & Brandt, S. (2015). The invisible fish: Hydrodynamic constraints for predator–prey interaction in fossil fish Saurichthys compared to recent actinopterygians. Biology Open, 4, 1715–26.Google Scholar
Lautenschlager, S. (2016). Reconstructing the past: Methods and techniques for the digital restoration of fossils. Royal Society Open Science, 3(10), 160342.Google Scholar
Lefebvre, B. (2007). Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(1–2), 156–99.CrossRefGoogle Scholar
Liu, S., Smith, A. S., Gu, Y., Tan, J., Liu, K. & Turk, G. (2015). Computer simulations imply forelimb-dominated underwater flight in plesiosaurs. PLoS Computational Biology, 11(12), e1004605.Google Scholar
Loo, L.-O., Jonsson, P. R., Sköld, M. & Karlsson, Ö. (1996). Passive suspension feeding in Amphiura filiformis (Echinodermata: Ophiuroidea): Feeding behaviour in flume flow and potential feeding rate of field populations. Marine Ecology Progress Series, 139, 143–55.Google Scholar
Macurda, D. B., Jr. & Meyer, D. L. (1974). Feeding posture of modern stalked crinoids. Nature, 247(5440), 394–6.Google Scholar
Messing, C. G., RoseSmyth, M. C., Mailer, S. R. & Miller, J. E. (1988). Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science, 42(3), 480–7.Google Scholar
Parsley, R. L. (1990). Aristocystites, a recumbent diploporid (Echinodermata) from the Middle and Late Ordovician of Bohemia, ČSSR. Journal of Paleontology, 64(2), 278–93.CrossRefGoogle Scholar
Parsley, R. L. (1999). The Cincta (Homostelea) as blastozoans. In Candia Carnevali, M. D. & Bonasoro, F., eds., Echinoderm Research 1998. Rotterdam: Balkema, pp. 369–75.Google Scholar
Parsley, R. L. (2015). Flume studies using 1:1 scale models of Series 2 and basal Series 3 Cambrian gogiid eocrinoids from Guizhou Province, China to determine feeding posture and mode of attachment. Palaeoworld, 24(4), 400–7.Google Scholar
Rahman, I. A. (2017). Computational fluid dynamics as a tool for testing functional and ecological hypotheses in fossil taxa. Palaeontology, 60(4), 451–9.Google Scholar
Rahman, I. A., Darroch, S. A. F., Racicot, R. A. & Laflamme, M. (2015a). Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances, 1(10), e1500800.Google Scholar
Rahman, I. A. & Lautenschlager, S. (2017). Applications of three-dimensional box modeling to paleontological functional analysis. In Tapanila, L. & Rahman, I. A., eds., Virtual Paleontology: The Paleontological Society Papers, 22, 119–32.Google Scholar
Rahman, I. A., O’Shea, J., Lautenschlager, S. & Zamora, S. (2020). Potential evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63(5), 689–701.Google Scholar
Rahman, I. A., Thompson, J. R., Briggs, D. E. G., Siveter, D. J., Siveter, D. J. & Sutton, M. D. (2019). A new ophiocistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan. Proceedings of the Royal Society B, 286(1900), 20182792.Google Scholar
Rahman, I. A. & Zamora, S. (2009). The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157(2), 420–32.Google Scholar
Rahman, I. A., Zamora, S., Falkingham, P. L. & Phillips, J. C. (2015b). Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society B, 282(1818), 20151964.Google Scholar
Reich, M., Sprinkle, J., Lefebvre, B., Rössner, G. E. & Zamora, S. (2017). The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography. Journal of Paleontology, 91(4), 735–54.Google Scholar
Riddle, S. (1989). Functional morphology and paleoecological implications of the platycrinitid column (Echinodermata, Crinoidea). Journal of Paleontology, 63(6), 889–97.Google Scholar
Rigby, S. & Tabor, G. (2006). The use of computational fluid dynamics in reconstructing the hydrodynamic properties of graptolites. GFF, 128(2), 189–94.Google Scholar
Saulsbury, J. & Zamora, S. (2019). The nervous and circulatory systems of a Cretaceous crinoid: Preservation, palaeobiology and evolutionary significance. Palaeontology, 63(2), 243–53.Google Scholar
Schmidtling, R. C., II, & Marshall, C. R. (2010). Three dimensional structure and fluid flow through the hydrospires of the blastoid echinoderm, Pentremites rusticus. Journal of Paleontology, 84(1), 109–17.Google Scholar
Shiino, Y. & Kuwazuru, O. (2010). Functional adaptation of spiriferide brachiopod morphology. Journal of Evolutionary Biology, 23(7), 1547–57.Google Scholar
Shiino, Y. & Kuwazuru, O. (2011). Comparative experimental and simulation study on passive feeding flow generation in Cyrtospirifer. Memoirs of the Association of Australasian Palaeontologists, 41, 18.Google Scholar
Shiino, Y., Kuwazuru, O., Suzuki, Y. & Ono, S. (2012). Swimming capability of the remopleuridid trilobite Hypodicranotus striatus: Hydrodynamic functions of the exoskeleton and the long, forked hypostome. Journal of Theoretical Biology, 300, 2938.Google Scholar
Shiino, Y., Kuwazuru, O., Suzuki, Y., Ono, S. & Masuda, C. (2014). Pelagic or benthic? Mode of life of the remopleuridid trilobite Hypodicranotus striatulus. Bulletin of Geosciences, 89(2), 207–18.Google Scholar
Shiino, Y., Kuwazuru, O. & Yoshikawa, N. (2009). Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): Generating mechanism of passive feeding flows. Journal of Theoretical Biology, 259(1), 132–41.Google Scholar
Siedler, G., Griffies, S. M., Gould, J. & Church, J. A., eds. (2013). Ocean Circulation and Climate: A 21st Century Perspective. Oxford: Academic Press.Google Scholar
Smith, A. B. (2005). The pre-radial history of echinoderms. Geological Journal, 40(3), 255–80.Google Scholar
Souza, A. & Friedrichs, C. (2005). Near-bottom boundary layers. In Baumert, H. Z., Simpson, J. & Sündermann, J., eds., Marine Turbulence: Theories, Observations, and Models. Cambridge: Cambridge University Press, pp. 283–296.Google Scholar
Stow, D. A. V., Hernández-Molina, F. J., Llave, E., Sayago-Gil, M., Díaz del Río, V. & Branson, A. (2009). Bedform-velocity matrix: The estimation of bottom current velocity from bedform observations. Geology, 37(4), 327–30.Google Scholar
Telford, M. (1983). An experimental analysis of lunule function in the sand dollar Mellita quinquiesperforata. Marine Biology, 76(2), 125–34.Google Scholar
Thompson, M., Drolet, D. & Himmelman, J. H. (2005). Localization of infaunal prey by the sea star Leptasterias polaris. Marine Biology, 146(5), 887–94.CrossRefGoogle Scholar
Troelsen, P. V., Wilkinson, D. M., Seddighi, M., Allanson, D. R. & Falkingham, P. L. (2019). Functional morphology and hydrodynamics of plesiosaur necks: Does size matter? Journal of Vertebrate Paleontology, 39(2), e1594850.Google Scholar
Waters, J. A., Sumrall, C. D., White, L. E., & Nguyen, B. K. (2015). Advancing phylogenetic inference in the Blastoidea (Echinodermata): Virtual 3D reconstructions of the internal anatomy. In Zamora, S. & Rábano, I., eds., Progress in Echinoderm Palaeobiology. Cuadernos del Museo Geominero, 19, 193–7.Google Scholar
Waters, J. A., White, L. E., Sumrall, C. D. & Nguyen, B. K. (2017).A new model of respiration in blastoid (Echinodermata) hydrospires based on computational fluid dynamic simulations of virtual 3D models. Journal of Paleontology, 91(4), 662–71.Google Scholar
Welch, J. R. (1978). Flume study of simulated feeding and hydrodynamics of a Paleozoic stalked crinoid. Paleobiology, 4(1), 8995.Google Scholar
Wroe, S., Parr, W. C. H., Ledogar, J. A., Bourke, J., Evans, S. P., Fiorenza, L., Benazzi, S., Hublin, J.-J., Stringer, C., Kullmer, O., Curry, M., Rae, T. C. & Yokley, T. R. (2018). Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proceedings of the Royal Society B, 282(1876), 20180085.CrossRefGoogle Scholar
Zamora, S., Rahman, I. A. & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7(6), e38296.Google Scholar
Zamora, S. & Smith, A. B. (2008). A new Middle Cambrian stem-group echinoderm from Spain: Palaeobiological implications of a highly asymmetric cinctan. Acta Palaeontologica Polonica, 53(2), 207–20.Google Scholar
Zamora, S. & Smith, A. B. (2012). Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society B, 279(1727), 293–8.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Computational Fluid Dynamics and its Applications in Echinoderm Palaeobiology
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Computational Fluid Dynamics and its Applications in Echinoderm Palaeobiology
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Computational Fluid Dynamics and its Applications in Echinoderm Palaeobiology
Available formats
×