Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T12:48:10.498Z Has data issue: false hasContentIssue false

Distinct Aerodynamics of Insect-Scale Flight

Published online by Cambridge University Press:  27 April 2021

Csaba Hefler
Affiliation:
Hong Kong University of Science and Technology
Chang-kwon Kang
Affiliation:
University of Alabama, Huntsville
Huihe Qiu
Affiliation:
Hong Kong University of Science and Technology
Wei Shyy
Affiliation:
Hong Kong University of Science and Technology

Summary

Insect-scale flapping wing flight vehicles can conduct environmental monitoring, disaster assessment, mapping, positioning and security in complex and challenging surroundings. To develop bio-inspired flight vehicles, systematic probing based on the particular category of flight vehicles is needed. This Element addresses the aerodynamics, aeroelasticity, geometry, stability and dynamics of flexible flapping wings in the insect flight regime. The authors highlight distinct features and issues, contrast aerodynamic stability between rigid and flexible wings, present the implications of the wing-aspect ratio, and use canonical models and dragonflies to elucidate scientific insight as well as technical capabilities of bio-inspired design.
Get access
Type
Element
Information
Online ISBN: 9781108874229
Publisher: Cambridge University Press
Print publication: 27 May 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åke Norberg, R. (1972). The pterostigma of insect wings as an inertial regulator of wing pitch. Journal of Comparative Physiology. https://doi:10.1007/BF00693547Google Scholar
Alben, S., & Shelley, M. (2005). Coherent locomotion as an attracting state for a free flapping body. Proceedings of the National Academy of Sciences of the United States of America, 102, 1116311166.Google Scholar
Alben, S., Shelley, M., & Zhang, J. (2002). Drag reduction through self-similar bending of a flexible body. Nature, 420(6915), 479481.Google Scholar
Alexander, D. E. (1984). Unusual phase relationships between the forewings and hindwings in flying dragonflies. Journal of Experimental Biology, 109, 379383.CrossRefGoogle Scholar
Alexander, D. E. (2002). Nature’s flyers: Birds, insects, and the biomechanics of flight, 1st ed., Baltimore, MD: Johns Hopkins University Press.Google Scholar
Alexander, D. E. (2015). On the wing: Insects, pterosaurs, birds, bats and the evolution of animal flight, 1st ed., Oxford: Oxford University Press.Google Scholar
Alexander, R. D., & BrownJr, W. L. (1963). Mating behavior and the origin of insect wings. Occasional Papers of the Museum of Zoology, 628, 119.Google Scholar
Altshuler, D. L., Dickson, W. B., Vance, J. T., Roberts, S. P. & Dickinson, M. H. (2005). Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 1821318218.Google Scholar
Anderson, J. D. (2011). Fundamentals of aerodynamics, 5th ed., New York: McGraw Hill. https://doi:10.2514/152157Google Scholar
Aono, H., Liang, F., & Liu, H. (2008). Near- and far-field aerodynamics in insect hovering flight: An integrated computational study. Journal of Experimental Biology. https://doi:10.1242/jeb.008649Google Scholar
Aono, H., Shyy, W., & Liu, H. (2009). Near wake vortex dynamics of a hovering hawkmoth. Acta Mechanica Sinica. https://doi:10.1007/s10409-008-0210-xGoogle Scholar
Azuma, A. (2006). The biokinetics of flying and swimming, 2nd ed., Reston, VA: American Institute of Aeronautics and Astronautics. https://doi:10.2514/4.862502Google Scholar
Azuma, A., & Watanabe, T. (1988). Flight performance of a dragonfly. Journal of Experimental Biology, 137, 221252.Google Scholar
Babinsky, H. (2003). How do wings work? Physics Education. https://doi:10.1088/0031-9120/38/6/001Google Scholar
Barret, C. (2000). Aerobots and hydrobots for planetary exploration. In 38th Aerospace Sciences Meeting and Exhibit, Reston, VA: American Institute of Aeronautics and Astronautics. https://doi:10.2514/6.2000-633Google Scholar
Bäumler, F., Gorb, S. N. & Büsse, S. (2018). Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus. Arthropod Structure and Development. https://doi:10.1016/j.asd.2018.04.003Google Scholar
Beem, H. R., Rival, D. E. & Triantafyllou, M. S. (2012). On the stabilization of leading-edge vortices with spanwise flow. Experiments in Fluids. https://doi:10.1007/s00348-011-1241-9Google Scholar
Bergou, A. J., Xu, S. & Wang, Z. J. (2007). Passive wing pitch reversal in insect flight. Journal of Fluid Mechanics. https://doi:10.1017/22112007008440CrossRefGoogle Scholar
Berman, G. J., & Wang, Z. J. (2007). Energy-minimizing kinematics in hovering insect flight. Journal of Fluid Mechanics, 582, 153.Google Scholar
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature. https://doi:10.1038/35089071Google Scholar
Birch, J. M., & Dickinson, M. H. (2003). The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. Journal of Experimental Biology, 206(13), 22572272.Google Scholar
Birch, J. M., Dickson, W. B. & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology. https://doi:10.1242/jeb.00848Google Scholar
Bluman, J. E., & Kang, C. (2017a). Achieving hover equilibrium in free flight with a flexible flapping wing. Journal of Fluids and Structures, 75, 117139.Google Scholar
Bluman, J. E., & Kang, C. (2017b). Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing. Bioinspiration & Biomimetics, 12(4), 046004.Google Scholar
Bluman, J. E., Sridhar, M. K., & Kang, C. (2018). Chordwise wing flexibility may passively stabilize hovering insects. Journal of the Royal Society Interface, 15(147), 20180409.Google Scholar
Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2018). Flying in reverse: Kinematics and aerodynamics of a dragonfly in backward free flight. Journal of the Royal Society Interface. doi: 10.1098/rsif.2018.0102CrossRefGoogle Scholar
Bomphrey, R. J. (2005). The aerodynamics of Manduca sexta: Digital particle image velocimetry analysis of the leading-edge vortex. Journal of Experimental Biology. doi: 10.1242/jeb.01471Google Scholar
Bomphrey, R. J., Nakata, T., Henningsson, P., & Lin, H. T. (2016). Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.2015.0389Google Scholar
Brackenbury, J. H. (1994). Wing folding and free‐flight kinematics in Coleoptera (Insecta): A comparative study. Journal of Zoology. doi: 10.1111/j.1469-7998.1994.tb01572.xGoogle Scholar
Broering, T. M., Lian, Y., & Henshaw, W. (2012). Numerical investigation of energy extraction in a tandem flapping wing configuration. AIAA Journal. doi: 10.2514/1.J051104Google Scholar
Bushnell, D. M., & Moore, K. J. (1991). Drag reduction in nature. Annual Review of Fluid Mechanics, 23(1), 6579.Google Scholar
Büsse, S., Helmker, B. & Hörnschemeyer, T. (2015). The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs: Including remarks on ontogenesis and evolution. Scientific Reports. doi: 10.1038/srep12835Google Scholar
Cadell, C. (2018, May). Flight of imagination: Chinese firm breaks record with 1,374 dancing drones. Reuters. Retrieved from www.reuters.com/article/us-china-drones/flight-of-imagination-chinese-firm-breaks-record-with-1374-dancing-drones-idUSKBN1I3189.Google Scholar
Carr, Z. R., Chen, C. & Ringuette, M. J. (2013). Finite-span rotating wings: Three-dimensional vortex formation and variations with aspect ratio. Experiments in Fluids, 54(2), 1444.Google Scholar
Carr, Z. R., DeVoria, A. C. & Ringuette, M. J. (2015). Aspect-ratio effects on rotating wings: Circulation and forces. Journal of Fluid Mechanics, 767, 497525.CrossRefGoogle Scholar
Chechetka, S. A., Yu, Y., Tange, M. & Miyako, E. (2017). Materially engineered artificial pollinators. Chem, 2(2), 224239.CrossRefGoogle Scholar
Chen, Y. H., Skote, M., Zhao, Y. & Huang, W. M. (2013). Dragonfly (Sympetrum flaveolum) flight: Kinematic measurement and modelling. Journal of Fluids and Structures. doi: 10.1016/j.jfluidstructs.2013.04.003Google Scholar
Chen, Y., Wang, H., Helbling, E. F. et al. (2017). A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2(11), eaao5619.Google Scholar
Cheng, B., & Deng, X. (2011). Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Transactions on Robotics, 27(5), 849864.Google Scholar
Cheng, B., Deng, X. & Hedrick, T. L. (2011). The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta). Journal of Experimental Biology, 214(24), 40924106.Google Scholar
Cheng, B., Roll, J., Liu, Y., Troolin, D. R. & Deng, X. (2014). Three-dimensional vortex wake structure of flapping wings in hovering flight. Journal of the Royal Society Interface. doi: 10.1098/rsif.2013.0984Google Scholar
Cherney, M. (2019, April). Drone racing fans have some questions: Where’s the drone? Who’s winning? Wall Street Journal. Retrieved from www.wsj.com/articles/drone-racing-fans-have-some-questions-wheres-the-drone-whos-winning–11554305405.Google Scholar
Chew, C.-M., Lim, Q.-Y. & Yeo, K. S. (2015). Development of propulsion mechanism for robot manta ray. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Washington, DC: Institute of Electrical and Electronics Engineers, pp. 19181923.Google Scholar
Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: From insects to vertebrates. Journal of Experimental Biology. doi: 10.1242/jeb.042317Google Scholar
Chowdhury, J., Cook, L. & Ringuette, M. J. (2019). The vortex formation of an unsteady translating plate with a rotating tip. In AIAA Scitech 2019 Forum, Reston, VA: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2019-0348Google Scholar
Coleman, D., & Benedict, M. (2015). Design, development and flight-testing of a robotic hummingbird. In 71st Annual Forum of the American Helicopter Society, Virginia Beach, VA, pp. 118.Google Scholar
Combes, S. A. (2010). Materials, structure, and dynamics of insect wings as bioinspiration for MAVs. In Blockley, R. & Shyy, W., eds., Encyclopedia of Aerospace Engineering, Hoboken, NJ: Wiley, pp. 110.Google Scholar
Combes, S. A., Crall, J. D. & Mukherjee, S. (2010). Dynamics of animal movement in an ecological context: Dragonfly wing damage reduces flight performance and predation success. Biology Letters, 6(3), 426429.Google Scholar
Combes, S. A., & Daniel, T. L. (2003a). Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology. doi: 10.1242/jeb.00524Google Scholar
Combes, S. A., & Daniel, T. L. (2003b). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 29792987.Google Scholar
Combes, S. A., Rundle, D. E., Iwasaki, J. M. & Crall, J. D. (2012). Linking biomechanics and ecology through predator-prey interactions: Flight performance of dragonflies and their prey. Journal of Experimental Biology, 215(6), 903913.Google Scholar
Cooter, R. J., & Baker, P. S. (1977). Weis-Fogh clap and fling mechanism in Locusta. Nature. doi: 10.1038/269053a0CrossRefGoogle Scholar
Darwin, C. (1859). On the origin of the species.Google Scholar
Davis, W. R. J., Kosicki, B. B., Boroson, D. M. & Kostishack, D. F. (1996). Micro air vehicles for optical surveillance. Lincoln Laboratory Journal.Google Scholar
Deng, S., Percin, M. & Van Oudheusden, B. (2015). Aerodynamic characterization of ‘delfly micro’ in forward flight configuration by force measurements and flow field visualization. Procedia Engineering, 99, 925929.Google Scholar
Deora, T., Gundiah, N. & Sane, S. P. (2017). Mechanics of the thorax in flies. Journal of Experimental Biology. doi: 10.1242/jeb.128363Google Scholar
Desbiens, A. L., Chen, Y. & Wood, R. J. (2013). A wing characterization method for flapping-wing robotic insects. IEEE International Conference on Intelligent Robots and Systems, Washington, DC: Institute of Electrical and Electronics Engineers, pp. 13671373.Google Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. (2013). Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 732, 2946.Google Scholar
Dickinson, M. H. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.1999.0442Google Scholar
Dickinson, M. H., & Gotz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 174(1), 4564.Google Scholar
Dickinson, M. H., Lehmann, F. O. & Gotz, K. G. (1993). The active control of wing rotation by Drosophila. Journal of Experimental Biology.Google Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect right. Science. doi: 10.1126/science.284.5422.1954Google Scholar
Dudley, R. (2000). The biomechanics of insect flight: Form, function, evolution, Princeton, NJ: Princeton University Press.Google Scholar
Eldredge, J. D., Toomey, J. & Medina, A. (2010). On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. Journal of Fluid Mechanics, 659, 94115.Google Scholar
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 305(1122), 115.Google Scholar
Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society B: Biological Sciences, 305(1122), 1740.Google Scholar
Ellington, C. P. (1984c). The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society B: Biological Sciences, 305(1122), 4178.Google Scholar
Ellington, C. P., Van Berg, C., Den Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature. doi: 10.1038/384626a0Google Scholar
Ennos, A. R. R. (1988). The inertial cause of wing rotation in Diptera. Journal of Experimental Biology, 140(1), 161169.Google Scholar
Ennos, A. R. R. (1989). Inertial and aerodynamic torques on the wings of diptera in flight. Journal of Experimental Biology, 142, 8795.Google Scholar
Faruque, I., & Humbert, J. S. (2010). Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. Journal of Theoretical Biology, 264(2), 538552.Google Scholar
Fédrigo, O., & Wray, G. A. (2010). Developmental evolution: How beetles evolved their shields. Current Biology. doi: 10.1016/j.cub.2009.12.012Google Scholar
Forbes, W. T. M. (1943). The origin of wings and venational types in insects. American Midland Naturalist, 29(2), 381.Google Scholar
Frame, J., Lopez, N., Curet, O. & Engeberg, E. D. (2018). Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration & Biomimetics, 13(6), 064001.Google Scholar
Fry, S. N., Sayaman, R. & Dickinson, M. H. (2005). The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology, 208(12), 23032318.Google Scholar
Fu, J., Hefler, C., Qiu, H. H. & Shyy, W. (2014). Effects of aspect ratio on flapping wing aerodynamics in animal flight. Acta Mechanica Sinica, 30(6), 776786.Google Scholar
Fu, J., Liu, X., Shyy, W. & Qiu, H. H. (2018). Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Bioinspiration & Biomimetics. doi: 10.1088/1748-3190/aaaac1Google Scholar
Fu, J., Shyy, W. & Qiu, H. H. (2017). Effects of aspect ratio on vortex dynamics of a rotating wing. AIAA Journal. doi: 10.2514/1.j055764Google Scholar
Garmann, D. J., & Visbal, M. R. (2014). Dynamics of revolving wings for various aspect ratios. Journal of Fluid Mechanics, 748, 932956.Google Scholar
Gegenbaur, C., Bell, F. J. & Lankester, E. R. (1878). Elements of comparative anatomy, 2nd ed., London: Macmillan.Google Scholar
Ghiradella, H. (1994). Structure of butterfly scales: Patterning in an insect cuticle. Microscopy Research and Technique. doi: 10.1002/jemt.1070270509Google Scholar
Ghiradella, H. (1998). Hairs, bristles, and scales. In Microscopic anatomy of invertebrates, Volume 11A, Insecta.Google Scholar
Gordnier, R. E., & Attar, P. J. (2014). Impact of flexibility on the aerodynamics of an aspect ratio two membrane wing. Journal of Fluids and Structures, 45(February), 138152.Google Scholar
Gordnier, R. E., Kumar Chimakurthi, S., Cesnik, C. E. S. et al. (2013). High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility. Journal of Fluids and Structures, 40(July), 86104.Google Scholar
Guizzo, E. (2011, April). Robotic aerial vehicle captures dramatic footage of Fukushima reactors. IEEE Spectrum. Retrieved from https://spectrum.ieee.org/automaton/robotics/industrial-robots/robotic-aerial-vehicle-at-fukushima-reactorsGoogle Scholar
Gunnell, G. F., & Simmons, N. B., eds. (2012). Evolutionary history of bats, Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139045599Google Scholar
Haas, F., & Wootton, R. J. (1996). Two basic mechanisms in insect wing folding. Proceedings of the Royal Society B: Biological Sciences. doi: 10.1098/rspb.1996.0241CrossRefGoogle Scholar
Habib, M. B. (2013). Capacity for the cretaceous pterosaur Anhanguera to launch from water. FASEB Journal.Google Scholar
Han, J.-S., Chang, J. W. & Cho, H.-K. (2015). Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover. Experiments in Fluids, 56(9), 181.Google Scholar
Harbig, R. R., Sheridan, J. & Thompson, M. C. (2014). The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. Journal of Fluid Mechanics, 751, 71105.CrossRefGoogle Scholar
Hassanalian, M., Rice, D. & Abdelkefi, A. (2018). Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 97, 61105.Google Scholar
Heathcote, S., & Gursul, I. (2007). Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA Journal, 45(5), 10661079.Google Scholar
Heathcote, S., Martin, D. & Gursul, I. (2004). Flexible flapping airfoil propulsion at zero freestream velocity. AIAA Journal. doi: 10.2514/1.5299Google Scholar
Heathcote, S., Wang, Z. & Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures. doi: 10.1016/j.jfluidstructs.2007.08.003Google Scholar
Hedenström, A., & Johansson, L. C. (2015). Bat flight. Current Biology. doi: 10.1016/j.cub.2015.04.002Google Scholar
Hedrick, T. L. (2011). Damping in flapping flight and its implications for manoeuvring, scaling and evolution. Journal of Experimental Biology, 214(24), 40734081.Google Scholar
Hedrick, T. L., Cheng, B. & Deng, X. (2009). Wingbeat time and the scaling of passive rotational damping in flapping flight. Science, 324(5924), 252.Google Scholar
Hedrick, T. L., Combes, S. A. & Miller, L. A. (2015). Recent developments in the study of insect flight. Canadian Journal of Zoology, 93(12), 925943.Google Scholar
Hefler, C., Noda, R., Qiu, H. H. & Shyy, W. (2020). Aerodynamic performance of a free-flying dragonfly: A span-resolved investigation. Physics of Fluids. doi: 10.1063/1.5145199Google Scholar
Hefler, C., Qiu, H. H. & Shyy, W. (2018). Aerodynamic characteristics along the wing span of a dragonfly Pantala flavescens. Journal of Experimental Biology, 221(19). doi: 10.1242/jeb.171199Google Scholar
Holmes, K. (2015, December). A self-organizing drone army dances with humans. VICE. Retrieved from www.vice.com/en_us/article/pgqxj9/collmot-robotics-drone-danceGoogle Scholar
Hone, D. W. E., Van Rooijen, M. K. & Habib, M. B. (2015). The wingtips of the pterosaurs: anatomy, aeronautical function and ecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2015.08.046Google Scholar
Hsieh, C. T., Kung, C. F., Chang, C. C. & Chu, C. C. (2010). Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. Journal of Fluid Mechanics. doi: 10.1017/S0022112010003484Google Scholar
Hu, Z., & Deng, X. Y. (2014). Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mechanica Sinica. doi: 10.1007/s10409-014-0118-6Google Scholar
Huang, H., & Sun, M. (2007). Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing. AIAA Journal. doi: 10.2514/1.24666Google Scholar
Ishihara, D., Horie, T. & Denda, M. (2009a). A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. Journal of Experimental Biology. doi: 10.1242/jeb.020404Google Scholar
Ishihara, D., Yamashita, Y., Horie, T., Yoshida, S. & Niho, T. (2009b). Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. Journal of Experimental Biology, 212(23), 38823891.Google Scholar
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. (2019). Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570(7762), 491495.Google Scholar
Jones, K. D., Lund, T. C. & Platzer, M. F. (2002). Experimental and computational investigation of flapping wing propulsion for micro air vehicles. Progress in Astronautics and Aeronautics, 195, 307340.Google Scholar
Kang, C., Aono, H., Cesnik, C. E. S. & Shyy, W. (2011). Effects of flexibility on the aerodynamic performance of flapping wings. Journal of Fluid Mechanics, 689, 3274.Google Scholar
Kang, C., Cranford, J., Sridhar, M. K., Kodali, D., Landrum, D. B. & Slegers, N. (2018). Experimental characterization of a butterfly in climbing flight. AIAA Journal, 56(1), 1524.Google Scholar
Kang, C., & Shyy, W. (2013). Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Journal of the Royal Society Interface, 10(85), 20130361.Google Scholar
Kang, C., & Shyy, W. (2014). Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. Journal of the Royal Society Interface, 11(101), 20140933.Google Scholar
Karásek, M., Muijres, F. T., De Wagter, C., Remes, B. D. W. & de Croon, G. C. H. E. (2018). A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 361(6407), 10891094.Google Scholar
Katz, J., & Weihs, D. (1978). Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. Journal of Fluid Mechanics. doi: 10.1017/S0022112078002220Google Scholar
Keennon, M., Klingebiel, K., Won, H. & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In 50th AIAA Aerospace Sciences Meeting AIAA 2012–0588, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-588Google Scholar
Kodali, D., Medina, C., Kang, C. & Aono, H. (2017). Effects of spanwise flexibility on the performance of flapping flyers in forward flight. Journal of the Royal Society Interface, 14(136), 20170725.Google Scholar
Kruyt, J. W., Quicazán-Rubio, E. M., Van Heijst, G. F., Altshuler, D. L. & Lentink, D. (2014). Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors. Journal of the Royal Society Interface, 11(99), 20140585.Google Scholar
Kruyt, J. W., van Heijst, G. F., Altshuler, D. L. & Lentink, D. (2015). Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface, 12(105), 20150051.Google Scholar
Kumar, A., Kumar, N., Das, R., Lakhani, P. & Bhushan, B. (2019). In vivo structural dynamic analysis of the dragonfly wing: The effect of stigma as its modulator. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi: 10.1098/rsta.2019.0132Google Scholar
Lai, G., & Shen, G. (2012). Experimental investigation on the wing-wake interaction at the mid stroke in hovering flight of dragonfly. Science China: Physics, Mechanics and Astronomy. doi: 10.1007/s11433-012-4907-2Google Scholar
Lan, S., & Sun, M. (2001). Aerodynamic force and flow structures of two airfoils in flapping motions. Acta Mechanica Sinica, 17(4), 310331.Google Scholar
Lee, Y. J., Lua, K. B. & Lim, T. T. (2016). Aspect ratio effects on revolving wings with Rossby number consideration. Bioinspiration & Biomimetics, 11(5). doi: 10.1088/1748-3190/11/5/056013Google Scholar
Lehmann, F. O. (2004). The mechanisms of lift enhancement in insect flight. Naturwissenschaften. doi: 10.1007/s00114-004-0502-3Google Scholar
Lehmann, F.-O. (2008). When wings touch wakes: Understanding locomotor force control by wake-wing interference in insect wings. Journal of Experimental Biology. doi: 10.1242/jeb.007575Google Scholar
Lehmann, F.-O., & Dickinson, M. H. (1997). The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 200(7), 11331143.Google Scholar
Lehmann, F.-O., Sane, S. P. & Michael, D. (2005). The aerodynamic effects of wing-wing interaction in flapping insect wings. Journal of Experimental Biology, 208(16), 30753092.Google Scholar
Lentink, D., & Dickinson, M. H. (2009). Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology. doi: 10.1242/jeb.022269Google Scholar
Lentink, D., Jongerius, S. R. & Bradshaw, N. L. (2010). The scalable design of flapping micro-air vehicles inspired by insect flight. Flying Insects and Robots. doi: 10.1007/978-3-540-89393-6_14Google Scholar
Lian, Y., Broering, T., Hord, K. & Prater, R. (2014). The characterization of tandem and corrugated wings. Progress in Aerospace Sciences. doi: 10.1016/j.paerosci.2013.08.001Google Scholar
Liang, B., & Sun, M. (2013). Nonlinear flight dynamics and stability of hovering model insects. Journal of the Royal Society Interface, 10(85), 20130269.Google Scholar
Liu, H., Ravi, S., Kolomenskiy, D. & Tanaka, H. (2016). Biomechanics and biomimetics in insect-inspired flight systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704), 20150390.Google Scholar
Lu, C., Warchol, K. M. & Callahan, R. A. (2014). Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bulletin of Insectology, 67(1), 125130.Google Scholar
Lucas, K. N., Thornycroft, P. J. M., Gemmell, B. J., Colin, S. P., Costello, J. H. & Lauder, G. V. (2015). Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model. Bioinspiration & Biomimetics, 10(5), 056019.Google Scholar
Luo, G., & Sun, M. (2005). Effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mechanica Sinica, 21, 531541.Google Scholar
Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603607.Google Scholar
MacRae, M. (2016). 5 new applications for drones . ASME. Retrieved August 3, 2019, from www.asme.org/topics-resources/content/5-new-applications-for-dronesGoogle Scholar
Mahardika, N., Viet, N. Q. & Park, H. C. (2011). Effect of outer wing separation on lift and thrust generation in a flapping wing system. Bioinspiration & Biomimetics. doi: 10.1088/1748-3182/6/3/036006Google Scholar
Marden, J. H. (1987). Maximum lift production during takeoff in flying animals. Journal of Experimental Biology.Google Scholar
Maybury, W. J., & Lehmann, F.-O. (2004). The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology. doi: 10.1242/jeb.01319Google Scholar
Mcmichael, J. M., & Francis, M. S. (1997). Micro air vehicles: Toward a new dimension in flight. Unmanned Systems.Google Scholar
Michelin, S., & Smith, S. G. L. (2009). Resonance and propulsion performance of a heaving flexible wing. Physics of Fluids, 21, 71902.Google Scholar
Miller, L. A., & Peskin, C. S. (2005). A computational fluid dynamics of ‘clap and fling’ in the smallest insects. Journal of Experimental Biology. doi: 10.1242/jeb.01376Google Scholar
Misof, B., Liu, S., Meusemann, K. et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763767.Google Scholar
Mountcastle, A. M., & Combes, S. A. (2013). Wing flexibility enhances load-lifting capacity in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 280(1759), 20130531.Google Scholar
Mountcastle, A. M., & Combes, S. A. (2014). Biomechanical strategies for mitigating collision damage in insect wings: Structural design versus embedded elastic materials. Journal of Experimental Biology, 217(7), 11081115.Google Scholar
Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R. & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science. doi: 10.1126/science.1153019Google Scholar
Müller, F. (1877). Ueber haarpinsel, filzflecke und ähnliche gebilde auf den flügeln männlicher schmetterlinge. Jenaische Zeitschrift Für Naturwissenschaft, 11, 99114.Google Scholar
Muniappan, A., Baskar, V. & Duriyanandhan, V. (2005). Lift and thrust characteristics of flapping wing micro air vehicle (MAV). In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reston, VA: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2005-1055Google Scholar
Munson, B. R., Rothmayer, A. P., Okiishi, T. H. & Huebsch, W. W. (2012). Fundamentals of fluid mechanics, 7th ed., Hoboken, NJ: Wiley.Google Scholar
Nakata, T., & Liu, H. (2012). Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proceedings. Biological Sciences / The Royal Society, 279(1729), 722731.Google Scholar
National University of Singapore. (2017, November). NUS-developed manta ray robot swims faster and operates up to 10 hours. NUS News: NUS Media Relations Team. Retrieved from https://phys.org/news/2017–11-nus-developed-manta-ray-robot-faster.html.Google Scholar
Neville, A. C. (1960). Aspects of flight mechanics in anisopterous dragonflies. Journal of Experimental Biology.Google Scholar
Norberg, R. Å. (1975). Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. Swimming and Flying in Nature. doi: 10.1007/978-1-4757-1326-8_19Google Scholar
Norberg, U. M. (1990). Vertebrate flight: Mechanics, physiology, morphology, ecology and evolution, Berlin: Springer.Google Scholar
Norberg, U. M. (2002). Evolution of vertebrate flight: An aerodynamic model for the transition from gliding to active flight. American Naturalist. doi: 10.1086/284419Google Scholar
Novacek, M. J. (1985). Evidence for echolocation in the oldest known bats. Nature. doi: 10.1038/315140a0Google Scholar
Orlowski, C. T., & Girard, A. R. (2012a). Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Progress in Aerospace Sciences, 51, 1830.Google Scholar
Orlowski, C. T., & Girard, A. R. (2012b). Longitudinal flight dynamics of flapping-wing micro air vehicles. Journal of Guidance, Control, and Dynamics, 35(4), 11151131.Google Scholar
Ozen, C., & Rockwell, D. (2013). Flow structure on a rotating wing: Effect of wing aspect ratio and shape. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Reston, Virginia, 7 – 10 January 2013, Grapevine, TX: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2013-676Google Scholar
Park, H., & Choi, H. (2012). Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspiration and Biomimetics. doi: 10.1088/1748-3182/7/1/016008Google Scholar
Park, J. H., & Yoon, K. J. (2008). Designing a biomimetic ornithopter capable of sustained and controlled flight. Journal of Bionic Engineering. doi: 10.1016/S1672-6529(08)60005-0Google Scholar
Parle, E., Dirks, J. H. & Taylor, D. (2017). Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future. Arthropod Structure and Development. doi: 10.1016/j.asd.2016.11.008Google Scholar
Pass, G. (2018). Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Structure and Development. doi: 10.1016/j.asd.2018.05.004Google Scholar
Pennycuick, C. J. (2008). Modelling the flying bird. Theoretical Ecology Series. Burlington, MA: Academic Press. doi: 10.1007/s13398-014-0173-7.2Google Scholar
Percin, M., Hu, Y., Van Oudheusden, B. W., Remes, B. & Scarano, F. (2011). Wing flexibility effects in clap-and-fling. International Journal of Micro Air Vehicles, 3(4), 217227.Google Scholar
Phillips, N., Knowles, K. & Bomphrey, R. J. (2015). The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspiration & Biomimetics, 10(5), 056020.Google Scholar
Platzer, M. F., Jones, K. D., Young, J. & Lai, J. C. S. (2008). Flapping-wing aerodynamics: Progress and challenges. AIAA Journal. doi: 10.2514/1.29263Google Scholar
Pornsin-Sirirak, T. N., Tai, Y.-C., Ho, C.-M. & Keennon, M. (2001). Microbat: A palm-sized electrically powered ornithopter. Proceedings of NASA/JPL Workshop on Biomorphic Robotics.Google Scholar
Rajabi, H., Rezasefat, M., Darvizeh, A. et al. (2016). A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings. Applied Physics A: Materials Science and Processing. doi: 10.1007/s00339-015-9557-6Google Scholar
Ramamurti, R., & Sandberg, W. (2001). Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA Journal, 39(2), 253260.Google Scholar
Ramamurti, R., & Sandberg, W. (2007). A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. Journal of Experimental Biology. doi: 10.1242/jeb.02704Google Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. (2011). Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 59645969.Google Scholar
Reavis, M., & Luttges, M. (1988). Aerodynamic forces produced by a dragonfly. In 26th Aerospace Sciences Meeting, Reston, VA: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.1988-330Google Scholar
Richardson, P. L. (2011). How do albatrosses fly around the world without flapping their wings? Progress in Oceanography. doi: 10.1016/j.pocean.2010.08.001Google Scholar
Riggs, P., Bowyer, A. & Vincent, J. (2010). Advantages of a biomimetic stiffness profile in pitching flexible fin propulsion. Journal of Bionic Engineering. doi: 10.1016/S1672-6529(09)60203-1Google Scholar
Ristroph, L., & Childress, S. (2014). Stable hovering of a jellyfish-like flying machine. Journal of the Royal Society Interface. doi: 10.1098/rsif.2013.0992Google Scholar
Rival, D., Schönweitz, D. & Tropea, C. (2011). Vortex interaction of tandem pitching and plunging plates: A two-dimensional model of hovering dragonfly-like flight. Bioinspiration & Biomimetics, 6(1), 016008.Google Scholar
Roccia, B. A., Preidikman, S., Verstraete, M. L. & Mook, D. T. (2017). Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings. Journal of Aerospace Engineering, 30(1), 04016079.Google Scholar
Rudolph, R. (1976a). Preflight behaviour and the initiation of flight in tethered and unrestrained dragonfly, Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 5(1), 5964.Google Scholar
Rudolph, R. (1976b). Some aspects of wing kinematics in Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 5(2), 119127.Google Scholar
Rüppel, G. (1989). Kinematic analysis of symmetrical flight manoeuvres of Odonata. Journal of Experimental Biology, 144(1).Google Scholar
Ryu, Y., Chang, J. W. & Chung, J. (2016). Aerodynamic force and vortex structures of flapping flexible hawkmoth-like wings. Aerospace Science and Technology, 56, 183196.Google Scholar
Salami, E., Ward, T. A., Montazer, E. & Ghazali, N. N. N. (2019). A review of aerodynamic studies on dragonfly flight. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. doi: 10.1177/0954406219861133Google Scholar
Salumäe, T., & Kruusmaa, M. (2011). A flexible fin with bio-inspired stiffness profile and geometry. Journal of Bionic Engineering. doi: 10.1016/S1672-6529(11)60047-4Google Scholar
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 41914208.Google Scholar
Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. Journal of Experimental Biology.Google Scholar
Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology.Google Scholar
Santhanakrishnan, A., Robinson, A. K., Jones, S. et al. (2014). Clap and fling mechanism with interacting porous wings in tiny insect flight. Journal of Experimental Biology. doi: 10.1242/jeb.084897Google Scholar
Schmidt, J., O’Neill, M., Dirks, J. H. & Taylor, D. (2020). An investigation of crack propagation in an insect wing using the theory of critical distances. Engineering Fracture Mechanics. doi: 10.1016/j.engfracmech.2020.107052Google Scholar
Shang, J. K., Combes, S. A., Finio, B. M. & Wood, R. J. (2009). Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspiration & Biomimetics, 4(3), 36002.Google Scholar
Shelley, M. J., & Zhang, J. (2011). Flapping and bending bodies interacting with fluid flows. Annual Review of Fluid Mechanics, 43(1), 449465.Google Scholar
Shyy, W., Aono, H., Chimakurthi, S. K. et al. (2010). Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46(7), 284327.Google Scholar
Shyy, W., Aono, H., Kang, C., & Liu, H. (2013). An introduction to flapping wing aerodynamics, Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139583916Google Scholar
Shyy, W., Berg, M. & Ljungqvist, D. (1999). Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35(5), 455505.Google Scholar
Shyy, W., Ifju, P. & Viieru, D. (2005). Membrane wing-based micro air vehicles. Applied Mechanics Reviews, 58(4), 283301.Google Scholar
Shyy, W., Kang, C. K., Chirarattananon, P., Ravi, S. & Liu, H. (2016). Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi: 10.1098/rspa.2015.0712Google Scholar
Shyy, W., Lian, Y., Tang, J. et al. (2008). Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mechanica Sinica/Lixue Xuebao. doi: 10.1007/s10409-008-0164-zGoogle Scholar
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2007). Aerodynamics of low Reynolds number flyers, Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511551154Google Scholar
Shyy, W., & Liu, H. (2007). Flapping wings and aerodynamic lift: The role of leading-edge vortices. AIAA Journal, 45(12), 28172819.Google Scholar
Shyy, W., Trizila, P., Kang, C.-K. & Aono, H. (2009). Can tip vortices enhance lift of a flapping wing? AIAA Journal. doi: 10.2514/1.41732Google Scholar
Somps, C., & Luttges, M. (1985). Dragonfly flight: Novel uses of unsteady separated flows. Science. doi: 10.1126/science.228.4705.1326Google Scholar
Somps, C., & Luttges, M. (1986). Response: Dragonfly aerodynamics. Science, 231(4733), 10.Google Scholar
Spagnolie, S., Moret, L., Shelley, M. J. & Zhang, J. (2010). Surprising behaviors in flapping locomotion with passive pitching. Physics of Fluids, 22, 41903.Google Scholar
Spector, D. (2014, July). Harvard robobees closer to pollinating crops instead of real bees. Business Insider. Retrieved from www.businessinsider.com/harvard-robobees-closer-to-pollinating-crops-2014–6Google Scholar
Sridhar, M. K., & Kang, C. (2015). Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight. Bioinspiration & Biomimetics, 10(3), 036007.Google Scholar
Srygley, R. B., & Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature. doi: 10.1038/nature01223Google Scholar
Su, W., & Cesnik, C. E. S. (2011). Flight dynamic stability of a flapping wing micro air vehicle in hover. In Collection of Technical Papers: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO.Google Scholar
Sullivan, T. N., Wang, B., Espinosa, H. D., & Meyers, M. A. (2017). Extreme lightweight structures: Avian feathers and bones. Materials Today. doi: 10.1016/j.mattod.2017.02.004Google Scholar
Sun, M. (2014). Insect flight dynamics: Stability and control. Reviews of Modern Physics, 86(2), 615646.Google Scholar
Sun, M., & Lan, S. L. (2004). A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. Journal of Experimental Biology. doi: 10.1242/jeb.00969Google Scholar
Sun, M., & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology.Google Scholar
Sun, M., Wang, J. K. & Xiong, Y. (2007). Dynamic flight stability of hovering insects. Acta Mechanica Sinica, 23(3), 231246.Google Scholar
Sun, M., & Xiong, Y. (2005). Dynamic flight stability of a hovering bumblebee. Journal of Experimental Biology, 208(3), 447459.Google Scholar
Sunada, S., Zeng, L. & Kawachi, K. (1998). The relationship between dragonfly wing structure and torsional deformation. Journal of Theoretical Biology, 193(1), 3945.Google Scholar
Sutherland, B., ed. (2011). The economist: Modern warfare, intelligence and deterrence, London: Economist Group Press. Retrieved from https://profilebooks.com/the-economist-modern-warfare-intelligence-and-deterrence-ebook.html.Google Scholar
Taha, H. E., Hajj, M. R. & Nayfeh, A. H. (2012). Flight dynamics and control of flapping-wing MAVs: A review. Nonlinear Dynamics, 70(2), 907939.Google Scholar
Taha, H. E., Hajj, M. R. & Nayfeh, A. H. (2014). Longitudinal flight dynamics of hovering MAVs/insects. Journal of Guidance, Control, and Dynamics, 37(3), 970979.Google Scholar
Taha, H. E., Tahmasian, S., Woolsey, C. A., Nayfeh, A. H. & Hajj, M. R. (2015). The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight. Bioinspiration & Biomimetics, 10(1), 016002.Google Scholar
Taira, K., & Colonius, T. (2009). Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. Journal of Fluid Mechanics. doi: 10.1017/S0022112008005314Google Scholar
Tay, W. B., Van Oudheusden, B. W. & Bijl, H. (2015). Numerical simulation of a flapping four-wing micro-aerial vehicle. Journal of Fluids and Structures, 55, 237261.Google Scholar
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature. doi: 10.1038/nature02000Google Scholar
Taylor, G. K., & Thomas, A. L. R. (2002). Animal flight dynamics. II. Longitudinal stability in flapping flight. Journal of Theoretical Biology, 214, 351370.Google Scholar
Thiria, B., & Godoy-Diana, R. (2010). How wing compliance drives the efficiency of self-propelled flapping flyers. Physical Review E, 82(1), 15303.Google Scholar
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology. doi: 10.1242/jeb.01262Google Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics. doi: 10.1146/annurev.fluid.32.1.33Google Scholar
Trizila, P., Kang, C., Aono, H., Shyy, W. & Visbal, M. (2011). Low-Reynolds-number aerodynamics of a flapping rigid flat plate. AIAA Journal, 49(4), 806823.Google Scholar
Tu, Z., Fei, F. & Deng, X. (2020a). Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings. IEEE Robotics and Automation Letters, 5(3), 41944201.Google Scholar
Tu, Z., Fei, F., Zhang, J. & Deng, X. (2020b). An at-scale tailless flapping-wing hummingbird robot. I. Design, optimization, and experimental validation. IEEE Transactions on Robotics, 36(5), 15111525.Google Scholar
Usherwood, J. R., & Ellington, C. P. (2002). The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of Experimental Biology, 205(11), 1565–76.Google Scholar
Usherwood, J. R., & Lehmann, F.-O. (2008). Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society Interface. doi: 10.1098/rsif.2008.0124Google Scholar
Van den Berg, C., & Ellington, C. P. (1997). The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.1997.0024Google Scholar
Van der Schaft, P. (2018, March). Pollination drones seen as assistants for ailing bees. Robotics Business Review. Retrieved from www.roboticsbusinessreview.com/agriculture/pollination-drones-assist-ailing-bees/.Google Scholar
Van Hemert, K. (2015, March). The shadow ballet where drones dance with humans. WIRED. Retrieved from www.wired.com/2015/03/shadow-ballet-drones-dance-humans/.Google Scholar
Vanella, M., Fitzgerald, T., Preidikman, S., Balaras, E. & Balachandran, B. (2009). Influence of flexibility on the aerodynamic performance of a hovering wing. Journal of Experimental Biology, 212(1), 95105.Google Scholar
Vargas, A., Mittal, R. & Dong, H. (2008). A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration & Biomimetics, 3(2), 026004.Google Scholar
Viscor, G., & Fuster, J. F. (1987). Relationships between morphological parameters in birds with different flying habits. Comparative Biochemistry and Physiology – Part A: Physiology. doi: 10.1016/0300-9629(87)90118-6Google Scholar
Vukusic, P., & Sambles, J. R. (2001). Shedding light on butterfly wings. Physics, Theory, and Applications of Periodic Structures in Optics. doi: 10.1117/12.451481Google Scholar
Wakeling, J., & Ellington, C. (1997). Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. Journal of Experimental Biology, 200(3), 557582.Google Scholar
Walker, S. M., Thomas, A. L. R. & Taylor, G. K. (2009). Deformable wing kinematics in the desert locust: How and why do camber, twist and topography vary through the stroke? Journal of the Royal Society Interface, 6(38), 735747.Google Scholar
Wang, H., Zeng, L., Liu, H. & Yin, C. (2003). Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. Journal of Experimental Biology. doi: 10.1242/jeb.00183Google Scholar
Wang, S., Zhang, X., He, G. & Liu, T. (2014). Lift enhancement by dynamically changing wingspan in forward flapping flight. Physics of Fluids. doi: 10.1063/1.4884130Google Scholar
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight. Journal of Fluid Mechanics. doi: 10.1017/S0022112099008071Google Scholar
Wang, Z. J. (2005). Dissecting insect flight. Annual Review of Fluid Mechanics, 37(1), 183210.Google Scholar
Wang, Z. J., Birch, J. M. & Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology, 207, 449460.Google Scholar
Wang, Z. J., & Russell, D. (2007). Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Physical Review Letters. doi: 10.1103/PhysRevLett.99.148101Google Scholar
Warrick, D. R., Tobalske, B. W. & Powers, D. R. (2005). Aerodynamics of the hovering hummingbird. Nature. doi: 10.1038/nature03647Google Scholar
Weis-fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production. Journal of Experimental Biology.Google Scholar
Windsor, S. P., Bomphrey, R. J. & Taylor, G. K. (2014). Vision-based flight control in the hawkmoth Hyles lineata. Journal of the Royal Society Interface, 11(91), 20130921.Google Scholar
Witton, M. P., & Habib, M. B. (2010). On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PLoS ONE. doi: 10.1371/journal.pone.0013982Google Scholar
Wodinsky, S. (2018, October). This robotic jellyfish could help save our reefs from climate change. NBC News. Retrieved from www.nbcnews.com/mach/science/robotic-jellyfish-could-help-save-our-reefs-climate-change-ncna913111.Google Scholar
Wood, R. J. (2007). Liftoff of a 60 mg flapping-wing MAV. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Washington, DC: Institute of Electrical and Electronics Engineers, pp. 18891894.Google Scholar
Wootton, R. J. (1979). Function, homology and terminology in insect wings. Systematic Entomology, 4(1), 8193.Google Scholar
Wootton, R. J. (1981). Support and deformability in insect wings. Journal of Zoology. doi: 10.1111/j.1469-7998.1981.tb01497.xGoogle Scholar
Wootton, R. J. (1992). Functional morphology of insect wings. Annual Review of Entomology. doi: 10.1146/annurev.ento.37.1.113Google Scholar
Wu, J. H., & Sun, M. (2012). Floquet stability analysis of the longitudinal dynamics of two hovering model insects. Journal of the Royal Society Interface, 9(74), 20332046.Google Scholar
Wu, J. H., Zhang, Y.-L. L. & Sun, M. (2009). Hovering of model insects: Simulation by coupling equations of motion with Navier-Stokes equations. Journal of Experimental Biology, 212(20), 33133329.Google Scholar
Wu, P., Stanford, B. K., Sällström, E., Ukeiley, L. & Ifju, P. (2011). Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings. Bioinspiration & Biomimetics, 6(1), 016009.Google Scholar
Xie, C. M., & Huang, W. X. (2015). Vortex interactions between forewing and hindwing of dragonfly in hovering flight. Theoretical and Applied Mechanics Letters. doi: 10.1016/j.taml.2015.01.007Google Scholar
Yates, G. T. (1986). Dragonfly aerodynamics. Science, 231(4733), 10.Google Scholar
Yin, B., & Luo, H. (2010). Effect of wing inertia on hovering performance of flexible flapping wings. Physics of Fluids, 22, 111902.Google Scholar
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 15491552.Google Scholar
Yu, Y., & Guan, Z. (2015). Learning from bat: Aerodynamics of actively morphing wing. Theoretical and Applied Mechanics Letters. doi: 10.1016/j.taml.2015.01.009Google Scholar
Zhang, Y.-L., & Sun, M. (2010). Dynamic flight stability of hovering model insects: Theory versus simulation using equations of motion coupled with Navier-Stokes equations. Acta Mechanica Sinica, 26(4), 509520.Google Scholar
Zhao, L., Huang, Q., Deng, X. & Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society, 7(44), 485497.Google Scholar
Zheng, Y., Wu, Y. & Tang, H. (2015). Force measurements of flexible tandem wings in hovering and forward flights. Bioinspiration & Biomimetics. doi: 10.1088/1748-3190/10/1/016021Google Scholar
Zheng, Y., Wu, Y. & Tang, H. (2016a). A time-resolved PIV study on the force dynamics of flexible tandem wings in hovering flight. Journal of Fluids and Structures. doi: 10.1016/j.jfluidstructs.2015.12.008Google Scholar
Zheng, Y., Wu, Y. & Tang, H. (2016b). An experimental study on the forewing-hindwing interactions in hovering and forward flights. International Journal of Heat and Fluid Flow. doi: 10.1016/j.ijheatfluidflow.2015.12.006Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. (1999). Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353396.Google Scholar
Zussman, E., Yarin, A. & Weihs, D. (2002). A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats. Experiments in Fluids. doi: 10.1007/s00348-002-0435-6Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Distinct Aerodynamics of Insect-Scale Flight
  • Csaba Hefler, Hong Kong University of Science and Technology, Chang-kwon Kang, University of Alabama, Huntsville, Huihe Qiu, Hong Kong University of Science and Technology, Wei Shyy, Hong Kong University of Science and Technology
  • Online ISBN: 9781108874229
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Distinct Aerodynamics of Insect-Scale Flight
  • Csaba Hefler, Hong Kong University of Science and Technology, Chang-kwon Kang, University of Alabama, Huntsville, Huihe Qiu, Hong Kong University of Science and Technology, Wei Shyy, Hong Kong University of Science and Technology
  • Online ISBN: 9781108874229
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Distinct Aerodynamics of Insect-Scale Flight
  • Csaba Hefler, Hong Kong University of Science and Technology, Chang-kwon Kang, University of Alabama, Huntsville, Huihe Qiu, Hong Kong University of Science and Technology, Wei Shyy, Hong Kong University of Science and Technology
  • Online ISBN: 9781108874229
Available formats
×