Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T07:24:23.014Z Has data issue: false hasContentIssue false

Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities

Published online by Cambridge University Press:  20 January 2021

Bradley Deline
Affiliation:
University of West Georgia

Summary

The quantification of morphology through time is a vital tool in elucidating macroevolutionary patterns. Studies of disparity require intense effort but can provide insights beyond those gained using other methodologies. Over the last several decades, studies of disparity have proliferated, often using echinoderms as a model organism. Echinoderms have been used to study the methodology of disparity analyses and potential biases as well as documenting the morphological patterns observed in clades through time. Combining morphological studies with phylogenetic analyses or other disparate data sets allows for the testing of detailed and far-reaching evolutionary hypotheses.
Get access
Type
Element
Information
Online ISBN: 9781108881883
Publisher: Cambridge University Press
Print publication: 11 February 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atwood, J. W., & Sumrall, C. D. (2012). Morphometric investigation of the Pentremites fauna from the Glen Dean Formation, Kentucky. Journal of Paleontology, 86(5), 813828.CrossRefGoogle Scholar
Ax, P. (1996). Multicellular Animals: a new approach to the phylogenetic order in nature, Berlin: Springer Press.CrossRefGoogle Scholar
Ax, P. (2000). Multicellular Animals: the phylogenetic system of the Metazoa, Berlin: Springer Press.CrossRefGoogle Scholar
Ax, P. (2003). Multicellular Animals: order in nature-system made by man. Berlin: Springer Press.CrossRefGoogle Scholar
Ausich, W. I. (1980). A model for niche differentiation in Lower Mississipian crinoid communities. Journal of Paleontology, 54(2), 273288.Google Scholar
Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542), 173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., & Deline, B. (2012). Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Paleoclimatology, Palaeoecology, 361–361, 3848.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., & Erwin, D. H. (2007). Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50(1), 122.CrossRefGoogle Scholar
Bauer, J. E., Waters, J. A., & Sumrall, C. D. (2019). Redescription of Macurdablastus and redefinition of Eublastoidea as a clad of Blastoidea (Echinodermata). Palaeontology, 62(6), 10031013.CrossRefGoogle Scholar
Baumiller, T. K., & Gahn, F. J. (2002). Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid-crinoid interaction. The Paleontological Society Papers, 8, 195210.CrossRefGoogle Scholar
Baumiller, T. K., & Gahn, F. J. (2004). Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science, 305(5689), 14531455.Google Scholar
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. The Paleontological Society Papers, 3, 147190.CrossRefGoogle Scholar
Briggs, D. E. G., Fortey, R. A., & Wills, M. A. (1992). Morphological Disparity in the Cambrian. Science, 256(5064), 16701673.Google Scholar
Brower, J. C. (1974). Ontogeny of camerate crinoids. University of Kansas Paleontological Contributions Papers, 72, 153.Google Scholar
Brusatte, S. L., Montanari, S., Yi, H. Y., & Norell, M. A. (2011). Phylogenetic corrections for morphological disparity analysis: new methodology and case studies. Paleobiology, 37(1), 122.CrossRefGoogle Scholar
Budd, G. E. (2006). On the origin and evolution of major morphological characters. Biological Reviews, 81(4), 157165.CrossRefGoogle ScholarPubMed
Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48(2), 305308.Google Scholar
Cherry, L. M., Case, S. M., Kunkel, J. G., Wyles, J. S., & Wilson, A. C. (1982). Body shape metrics and organismal evolution. Evolution, 36(5), 914933.Google Scholar
Ciampaglio, C. N. (2002). Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development, 4(3), 170188.Google Scholar
Ciampaglio., C. N., Kemp, M., & McShea, D. W. (2001). Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology, 27(4), 695715.2.0.CO;2>CrossRefGoogle Scholar
Cole, S. R. (2018). Phylogeny and evolutionary history od diplobathrid crinoids (Echinodermata). Palaeontology, 62(3), 357373.CrossRefGoogle Scholar
Cole, S. R., Wright, D. F., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 8298.CrossRefGoogle Scholar
Davidson, E. H., & Erwin, D. H. (2006). Gene regulation networks and the evolution of animal body plans. Science, 311(5762), 796800.CrossRefGoogle ScholarPubMed
Deline, B. (2009). The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology, 35(2), 175189.Google Scholar
Deline, B. (2015). Quantifying morphological diversity in early Paleozoic echinoderms. In Zamora, S. & Rabano, I., eds., Progress in Echinoderm Palaeobiology, Madrid: Instituto Geológico y Minero de España, pp. 4548.Google Scholar
Deline, B., & Ausich, W. I. (2017). Character selection and the quantification of morphological disparity. Paleobiology, 43(1), 6884.CrossRefGoogle Scholar
Deline, B., Ausich, W. I., & Brett, C. E. (2012). Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through Early Silurian Laurentian crinoids. Paleobiology, 38(4), 538553.CrossRefGoogle Scholar
Deline, B., Greenwood, J. M., Clark, J. W., Puttick, M. N., Peterson, K. J., & Donoghue, P. C. J. (2018). Evolution of metazoan morphological disparity. Proceedings of the National Academy of Sciences, 115(38), E8909E8918.CrossRefGoogle ScholarPubMed
Deline, B. & Thomka, J. R. (2017). The role of preservation on the quantification of morphology and patterns of disparity within Paleozoic echinoderms. Journal of Paleontology, 91(4), 618632.CrossRefGoogle Scholar
Deline, B., Thompson, J. R., Smith, N. S., et al. (2020). Evolution and development at the origin of a phylum. Current Biology, 30(9), 16721679.Google Scholar
Eble, G. J. (2000). Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic Atelostomate echinoids. Paleobiology, 26(1), 5679.2.0.CO;2>CrossRefGoogle Scholar
Erkenback, E. M., & Thompson, J. R. (2019). Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletonogenic cell identity. Nature Communications Biology, 2(1), 1012.Google Scholar
Erwin, D. H. (2007). Disparity: morphological pattern and developmental context. Palaeontology, 50(1), 5773.Google Scholar
Ferrón, H. G., Greenwood, J. M., Deline, B., et al. (2020) Categorical versus geometric morphometric approaches to characterizing the evolution of morphological disparity in Osteostraci (Vertebrata, Stem-Gnathostomata). Palaeontology, 63(5), 717–732.CrossRefGoogle Scholar
Foote, M. (1991). Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contributions from the University of Michigan Museum of Paleontology, 28(6), 101140.Google Scholar
Foote, M. (1992). Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, 89(16), 73257329.Google Scholar
Foote, M. (1993). Contributions of individual taxa to overall morphological diversity. Paleobiology, 19(4), 3013–419.CrossRefGoogle Scholar
Foote, M. (1994a). Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology, 20(3), 320344.CrossRefGoogle Scholar
Foote, M. (1994b). Morphology of Ordovician-Devonian crinoids. Contributions from the University of Michigan Museum of Paleontology, 29(1), 139.Google Scholar
Foote, M. (1995a). Morphological diversity of Paleozoic crinoids. Paleobiology, 21(3) 273299.Google Scholar
Foote, M. (1995b). Morphology of Carboniferous and Permian crinoids. Contributions from the University of Michigan Museum of Paleontology, 29(7), 135184.Google Scholar
Foote, M. (1996). Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science, 274(5292), 14921495.Google Scholar
Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28(1), 129152.Google Scholar
Foote, M. (1999). Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25(2) supplement, 1115.Google Scholar
Gerber, S. (2019). Use and misuse of discrete character data for morphospace and disparity analysis. Palaeontology, 62(2), 305319.CrossRefGoogle Scholar
Gerber, S., Eble, G. J., & Neige, P. (2011). Developmental aspects of morphological disparity dynamics: a simple analytical exploration. Paleobiology, 37(2), 237251.CrossRefGoogle Scholar
Gould, S. J. (1989). Wonderful Life: the Burgess Shale and the nature of history, New York: WW Norton & Company.Google Scholar
Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistics analysis: why we must strive to quantify morphospace. Paleobiology, 17(4), 411423.CrossRefGoogle Scholar
Guillerme, T., & Cooper, N. (2018). Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology, 61(4), 481493.CrossRefGoogle Scholar
Hetherington, A. J., Sherratt, E., Ruta, M., Wilkinson, M., Deline, B., & Donoghue, P. C. J. (2015). Do cladistic and morphometric data capture common patterns of morphological disparity? Palaeontology, 58(3), 393399.Google Scholar
Hopkins, M. J. (2017). How well does a part represent the while? A comparison of cranidial hape evolution with exoskeletal character evolution in the trilobite family Pterocephaliidae. Palaentology, 60(3), 309318.Google Scholar
Hopkins, M. J., & Gerber, S. (2017). Morphological disparity. In Nuño de la Rosa, L. & Müller, G.B. eds., Evolutionary Developmental Biology. New York: Springer International Publishing, pp. 112.Google Scholar
Hopkins, M. J., & Smith, A. B. (2015). Dynamics evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences, 112(12), 37583763.Google Scholar
Hoyal Cuthill, J. F., & Hunter, A. W. (2020). Fullerene-like structures of Cretaceous crinoids reveal topologically limited skeletal possibilities. Palaeontology, 63(3), 513524.CrossRefGoogle Scholar
Huelsenbeck, J. P., Nielsen, R., & Bollback, J. P. (2003). Stochastic mapping of morphological characters. Systematic Biology, 52(2), 131158.CrossRefGoogle ScholarPubMed
Hughes, M., Gerber, S., & Wills, M. A. (2013). Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Science, 110(3), 1387513879.Google Scholar
Huttegger, S. M., & Mitteroecker, P. (2011). Invariance and meaningfulness in phenotype spaces. Evolutionary Biology, 38(3), 335351.Google Scholar
Jaanusson, V. (1981). Functional thresholds in evolutionary progress. Lethaia, 14(3), 251260.Google Scholar
Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I., Deline, B. (2013). Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PloS one, 8(11), e77989.Google Scholar
Lam, A. R., & Stigall, A. L. (2015). Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica. Estonian Journal of Earth Sciences, 64(1), 6267.Google Scholar
Lefebvre, B., Eble, G. J., Navarro, N., & David, B. (2006). Diversification of atypical Paleozoic echinoderms: a quantitative survey of patterns of stylophoran disparity, diversity, and geography. Paleobiology, 32(3), 483510.Google Scholar
Lloyd, G. T. (2016). Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society. 118, 131151.CrossRefGoogle Scholar
Lloyd, G. T. (2018). Journeys through discrete-character morphospace: synthesizing phylogeny, tempo, and disparity. Palaeontology, 61(50), 637646.CrossRefGoogle Scholar
MacLeod, N. (2015). Use of landmark and outline morphometrics to investigate thecal form variation in crushed godiid echinoderms. Palaeoworld, 24(4), 408429.Google Scholar
Mitteroecker, P., & Huttegger, S. M. (2009). The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biological Theory, 4(1), 5467.Google Scholar
Mongiardino Koch, N., Ceccarelli, F. S., Ojanguren-Affilastro, A. A., & Ramirez, M. J. (2017). Discrete and morphometric traits reveal contrasting patterns and processes in the macroevolutionary history of a clade of scorpions. Journal of Evolutionary Biology, 30, 814825.CrossRefGoogle ScholarPubMed
Mooi, R., & David, B. (1997). Skeletal homologies of echinoderms. The Paleontological Society Papers, 3, 305335.Google Scholar
Novack-Gottshall, P. M. (2007). Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33(2), 273294.CrossRefGoogle Scholar
Paul, C. R. C., & Smith, A. B. (1984). The early radiation and phylogeny of echinoderms. Biological Reviews, 59(4), 443481.CrossRefGoogle Scholar
Raup, D. M. (1962). Computer as aid in describing form in gastropod shells. Science, 138(3537), 150152.Google Scholar
Raup, D. M. (1966). Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40(5), 11781190.Google Scholar
Raup, D. M. (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41(1), 4365.Google Scholar
Raup, D. M., & Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147(3663), 12941295.CrossRefGoogle ScholarPubMed
Riedl, R. (1977). A systems-analytical approach to macro-evolutionary phenomena. The Quarterly Review of Biology, 52(4), 351370.CrossRefGoogle ScholarPubMed
Romano, M., Brocklehurst, N., Manni, R., & Nicosia, U. (2018). Multiphase morphospace saturation in cyrtocrinid crinoids. Lethaia, 51, 538546.Google Scholar
Runnegar, B. (1987). Rates and modes of evolution in the Mollusca. In Campbell, K. S. W. & Day, M. F., eds., Rates of evolution. London: Allen and Unwin, pp.3960.Google Scholar
Salazar-Ciudad, I. (2006). On the origins of morphological disparity and its diverse developmental bases. Bioessays, 28(11), 11121122.Google Scholar
Sallan, L. C., Kammer, T. W., Ausich, W. I., & Cook, L. A. (2011). Persistent predator-prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences, 108(20), 83358338.Google Scholar
Schaeffer, J., Benton, M. J., Rayfield, E. J., & Stubbs, T. L. (2019). Morphological disparity in theropods jaws: comparing discrete characters and geometric morphometrics. Palaeontology, 63(2), 283299.CrossRefGoogle Scholar
Sheffield, S. L., & Sumrall, C. D. (2019). The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology, 93(4), 740752.Google Scholar
Sheffield, S. L., Zachos, L. G., & Lewis, R. D. (2012). A morphometric study of Erisocrinus(Crinoidea) using ArcGIS. Geological Society of America Abstracts with Programs, 44, 232.Google Scholar
Sidlauskas, B., (2008). Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution, 62(12), 31353156.CrossRefGoogle ScholarPubMed
Smith, A. B., & Savill, J. J. (2001). Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 92(2), 137147.Google Scholar
Smith, A. J., Rosario, M. V., Eiting, T. P., & Dumont, E. R. (2014). Joined at the hip: linked characters and the problem of missing data in studies of disparity. Evolution, 68(8), 23862400.Google Scholar
Sprinkle, J., & Collins, D. (2006). New eocrinoids from the Burgess Shale, southern British Columbia, Canada, and the Spence Shale, northern Utah, USA. Canadian Journal of Earth Sciences, 43(3), 303322.CrossRefGoogle Scholar
Stigall, A. L. (2019). The invasion hierarchy: ecological and evolutionary consequences of invasions in the fossil record. Annual Reviews of Ecology, Evolution, and Systematics, 50, 355380.CrossRefGoogle Scholar
Stigall, A. L., Bauer, J. E., Lam, A. R., & Wright, D. F. (2017). Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Global and Planetary Change. 148, 242257.Google Scholar
Sumrall, C. D., & Waters, J. A. (2012). Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoa. Journal of Paleontology, 86(6), 956972.CrossRefGoogle Scholar
Sumrall, C. D., & Wray, G. A. (2007). Ontogeny in the fossil record: diversification of body plans and the evolution of ‘aberrant’ symmetry in Paleozoic echinoderms. Paleobiology, 33(1), 149163.Google Scholar
Thompson, D’A. W. (1917). On growth and form, London: Cambridge University Press.CrossRefGoogle Scholar
Thompson, D’A. W. (1942). On growth and form, London: Cambridge University Press.Google Scholar
Valentine, J. W. (1969). Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology, 12(4), 684709.Google Scholar
Villier, L., & Eble., G. J. (2004). Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids. Paleobiology, 30(4), 652665.2.0.CO;2>CrossRefGoogle Scholar
Waters, J. A., Horowitz, A. S., & Macurda, D. B. Jr. (1985). Ontogeny and phylogeny of the Carboniferous blastoid. Pentremites. Journal of Paleontology, 59(3), 701712.Google Scholar
Webster, M., & Sheets, H. D. (2010). A practical introduction to landmark-based geometric morphometrics. The Paleontology Society Papers, 16, 163188.Google Scholar
Wills, M. A. (1998). Cambrian and recent disparity: the picture from priapulids. Paleobiology, 24(2), 177199.CrossRefGoogle Scholar
Wright, D. F. (2017a). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids. Journal of Paleontology, 91(4), 799814.Google Scholar
Wright, D. F. (2017b). Phenotypic innovation and adaptive constrains in the evolutionary radiation of Palaeozoic crinoids. Scientific Reports, 7(1), 110.CrossRefGoogle Scholar
Yochelson, E. L. (1978). An alternative approach to the interpretation of the phylogeny of ancient mollusks. Malacologia, 17(2), 165191.Google Scholar
Yochelson, E. L. (1979). Early radiation of Mollusca and mollusc-like groups. In House, M. R., ed., The Origin of Major Invertebrate Groups, Vol. 12, New York: Academic Press, pp.323358.Google Scholar
Zachos, L. G., & Sprinkle, J. (2011). Computational model of growth and development in Paleozoic echinoids. In Elewa, A. M. T., ed., Computational Paleontology. Berlin: Springer, pp.7593.Google Scholar
Zamora, S., Rahman, I. A., & Smith., A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One, 7(6), e38296.CrossRefGoogle ScholarPubMed
Zamora, S., Sumrall, C. D. & Vizcaϊno, D. (2013). Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana. Acta Palaeontologica Polonica, 58(3), 545559.Google Scholar
Zhao, Y., Sumrall, C. D., Parsley, R. L. & Peng., J. (2010). Kalidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili Biota of Guizhou Province, China. Journal of Paleontology, 84(4), 668680.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities
  • Bradley Deline, University of West Georgia
  • Online ISBN: 9781108881883
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities
  • Bradley Deline, University of West Georgia
  • Online ISBN: 9781108881883
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities
  • Bradley Deline, University of West Georgia
  • Online ISBN: 9781108881883
Available formats
×