Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T20:42:00.789Z Has data issue: false hasContentIssue false

Metamaterials and Negative Refraction

Published online by Cambridge University Press:  11 November 2020

Rujiang Li
Affiliation:
Zhejiang University, China
Zuojia Wang
Affiliation:
Shandong University, People's Republic of China
Hongsheng Chen
Affiliation:
Zhejiang University, China

Summary

The discovery of artificial electromagnetic materials, called metamaterials, not only redefines the human perception of constitutive parameters in electromagnetic theory, but also brings forward new phenomena, such as negative refraction. We provide a comprehensive introduction to the unique characteristics of metamaterials, starting with Maxwell's equations and the kDB coordinate system, and moving through to theoretical concepts and design principles of negative refraction in metamaterials. For each kind of media, including isotropic, anisotropic and bianisotropic metamaterials, we discuss the characteristic waves and their properties. We show examples of negative refraction both theoretically and experimentally.
Get access
Type
Element
Information
Online ISBN: 9781108782371
Publisher: Cambridge University Press
Print publication: 10 December 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maxwell, JC. A treatise on electricity and magnetism. London: Constable and Company; 1873.Google Scholar
Marder, MP. Condensed matter physics. 2nd ed. New Jersey: John Wiley & Sons, Inc; 2010.Google Scholar
Rothwell, EJ, Cloud, MJ. Electromagnetics. New York: CRC Press; 2008.Google Scholar
Kong, JA. Electromagnetic wave theory. Cambridge: Wiley and Sons, EMW Publishing; 2008.Google Scholar
Cui, TJ, Smith, DR, Liu, R. Metamaterials – theory, design, and applications. New York: Springer; 2010.Google Scholar
Pendry, JB, Holden, AJ, Stewart, WJ, Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996 Jun;76:47734776.CrossRefGoogle ScholarPubMed
Maslovski, SI, Tretyakov, SA, Belov, PA. Wire media with negative effective permittivity: A quasi-static model. Microwave and Optical Technology Letters. 2002;35(1):4751.CrossRefGoogle Scholar
Pendry, JB, Holden, AJ, Robbins, DJ, Stewart, WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques. 1999 Nov;47(11):20752084.Google Scholar
O’Brien, S, Pendry, JB. Magnetic activity at infrared frequencies in structured metallic photonic crystals. Journal of Physics: Condensed Matter. 2002;14(25):6383.Google Scholar
Shelby, RA, Smith, DR, Schultz, S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):7779.Google Scholar
Smith, DR, Padilla, WJ, Vier, DC, Nemat-Nasser, SC, Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000 May;84:41844187.Google Scholar
Chen, H, Wang, Z, Zhang, R, Wang, H, Lin, S, Yu, F, et al. A meta-substrate to enhance the bandwidth of metamaterials. Scientific Reports. 2014;4:5264.Google Scholar
Yen, TJ, Padilla, WJ, Fang, N, Vier, DC, Smith, DR, Pendry, JB, et al. Terahertz magnetic response from artificial materials. Science. 2004;303(5663):14941496.Google Scholar
Linden, S, Enkrich, C, Wegener, M, Zhou, J, Koschny, T, Soukoulis, CM. Magnetic response of metamaterials at 100 terahertz. Science. 2004;306(5700):13511353.Google Scholar
Zhou, J, Koschny, T, Kafesaki, M, Economou, EN, Pendry, JB, Soukoulis, CM. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett. 2005 Nov;95:223902.CrossRefGoogle ScholarPubMed
Zhang, S, Fan, W, Malloy, KJ, Brueck, SRJ, Panoiu, NC, Osgood, RM. Near-infrared double negative metamaterials. Opt Express. 2005 Jun;13(13):49224930.Google Scholar
Valentine, J, Zhang, S, Zentgra, T, Ulin-Avila, E, Genov, DA, Bartal, G, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature. 2008;455:376.Google Scholar
Marqués, R, Medina, F, Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B. 2002 Apr;65:144440.Google Scholar
Chen, X, Wu, BI, Kong, JA, Grzegorczyk, TM. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys Rev E. 2005 Apr;71:046610.Google Scholar
Smith, DR, Gollub, J, Mock, JJ, Padilla, WJ, Schurig, D. Calculation and measurement of bianisotropy in a split ring resonator metamaterial. Journal of Applied Physics. 2006;100(2):024507.Google Scholar
Xu, X, Quan, B, Gu, C, Wang, L. Bianisotropic response of microfabricated metamaterials in the terahertz region. J Opt Soc Am B. 2006 Jun;23(6):11741180.Google Scholar
Rill, MS, Plet, C, Thiel, M, Staude, I, von Freymann, G, Linden, S, et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature Materials. 2008;7:543546.Google Scholar
Rill, MS, Kriegler, CE, Thiel, M, von Freymann, G, Linden, S, Wegener, M. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation. Opt Lett. 2009 Jan;34(1):1921.CrossRefGoogle ScholarPubMed
Kraft, M, Braun, A, Luo, Y, Maier, SA, Pendry, JB. Bianisotropy and magnetism in plasmonic gratings. ACS Photonics. 2016;3(5):764769.Google Scholar
Kriegler, CE, Rill, MS, Linden, S, Wegener, M. Bianisotropic photonic metamaterials. IEEE Journal of Selected Topics in Quantum Electronics. 2010 March;16(2):367375.Google Scholar
Falcone, F, Lopetegi, T, Laso, MAG, Baena, JD, Bonache, J, Beruete, M, et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett. 2004 Nov;93:197401.Google Scholar
Wang, Z, Yao, K, Chen, M, Chen, H, Liu, Y. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys Rev Lett. 2016 Oct;117:157401.Google Scholar
Li, Z, Aydin, K, Ozbay, E. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Phys Rev E. 2009 Feb;79:026610.Google Scholar
Hasar, UC, Barroso, JJ, Bute, M, Muratoglu, A, Ertugrul, M. Boundary effects on the determination of electromagnetic properties of bianisotropic metamaterials from scattering parameters. IEEE Transactions on Antennas and Propagation. 2016 Aug;64(8):34593469.Google Scholar
Hasar, UC, Barroso, JJ. Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials. Progress In Electromagnetics Research. 2011;112:109124.Google Scholar
Ouchetto, O, Qiu, CW, Zouhdi, S, Li, LW, Razek, A. Homogenization of 3-D periodic bianisotropic metamaterials. IEEE Transactions on Microwave Theory and Techniques. 2006 Nov;54(11):38933898.Google Scholar
Smith, DR, Schultz, S, Markoš, P, Soukoulis, CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002 Apr;65:195104.Google Scholar
Chen, X, Grzegorczyk, TM, Wu, BI, Pacheco, J, Kong, JA. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E. 2004 Jul;70:016608.Google Scholar
Tretyakov, S, Nefedov, I, Sihvola, A, Maslovski, S, Simovski, C. Waves and energy in chiral nihility. Journal of Electromagnetic Waves and Applications. 2003;17(5):695706.CrossRefGoogle Scholar
Pendry, JB. A chiral route to negative refraction. Science. 2004;306(5700):13531355.Google Scholar
Monzon, C, Forester, DW. Negative refraction and focusing of circularly polarized waves in optically active media. Phys Rev Lett. 2005 Sep;95:123904.Google Scholar
Rogacheva, AV, Fedotov, VA, Schwanecke, AS, Zheludev, NI. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett. 2006 Oct;97:177401.Google Scholar
Plum, E, Zhou, J, Dong, J, Fedotov, VA, Koschny, T, Soukoulis, CM, et al. Metamaterial with negative index due to chirality. Phys Rev B. 2009 Jan;79:035407.Google Scholar
Zhou, J, Dong, J, Wang, B, Koschny, T, Kafesaki, M, Soukoulis, CM. Negative refractive index due to chirality. Phys Rev B. 2009 Mar;79:121104.Google Scholar
Zhang, S, Park, YS, Li, J, Lu, X, Zhang, W, Zhang, X. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009 Jan;102:023901.Google Scholar
Plum, E, Fedotov, VA, Schwanecke, AS, Zheludev, NI, Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Applied Physics Letters. 2007;90(22):223113.Google Scholar
Decker, M, Klein, MW, Wegener, M, Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt Lett. 2007 Apr;32(7):856858.Google Scholar
Kuwata-Gonokami, M, Saito, N, Ino, Y, Kauranen, M, Jefimovs, K, Vallius, T, et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett. 2005 Nov;95:227401.Google Scholar
Gansel, JK, Thiel, M, Rill, MS, Decker, M, Bade, K, Saile, V, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325(5947):15131515.Google Scholar
Menzel, C, Helgert, C, Rockstuhl, C, Kley, EB, Tünnermann, A, Pertsch, T, et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett. 2010 Jun;104:253902.Google Scholar
Fedotov, VA, Mladyonov, PL, Prosvirnin, SL, Rogacheva, AV, Chen, Y, Zheludev, NI. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett. 2006 Oct;97:167401.Google Scholar
Hendry, E, Carpy, T, Johnston, J, Popland, M, Mikhaylovskiy, RV, Lapthorn, AJ, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology. 2010;5:783787.Google Scholar
Schäferling, M, Dregely, D, Hentschel, M, Giessen, H. Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys Rev X. 2012 Aug;2:031010.Google Scholar
Wang, Z, Cheng, F, Winsor, T, Liu, Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology. 2016;27(41):412001.Google Scholar
Liu, N, Liu, H, Zhu, S, Giessen, H. Stereometamaterials. Nature Photonics. 2009;3:157162.Google Scholar
Hentschel, M, Schäferling, M, Weiss, T, Liu, N, Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Letters. 2012;12(5):25422547.Google Scholar
Helgert, C, Pshenay-Severin, E, Falkner, M, Menzel, C, Rockstuhl, C, Kley, EB, et al. Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Letters. 2011;11(10):44004404.Google Scholar
Cui, Y, Kang, L, Lan, S, Rodrigues, S, Cai, W. Giant chiral optical response from a twisted-arc metamaterial. Nano Letters. 2014;14(2):10211025.Google Scholar
Menzel, C, Paul, T, Rockstuhl, C, Pertsch, T, Tretyakov, S, Lederer, F. Validity of effective material parameters for optical fishnet metamaterials. Phys Rev B. 2010 Jan;81:035320.Google Scholar
Simovski, CR, Tretyakov, SA. On effective electromagnetic parameters of artificial nanostructured magnetic materials. Photonics and Nanostructures – Fundamentals and Applications. 2010;8(4):254263.Google Scholar
Jones, RC. A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J Opt Soc Am. 1941 Jul;31(7):488493.Google Scholar
Menzel, C, Rockstuhl, C, Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A. 2010 Nov;82:053811.Google Scholar
Potton, RJ. Reciprocity in optics. Reports on Progress in Physics. 2004;67(5):717.Google Scholar
Kaschke, J, Gansel, JK, Wegener, M. On metamaterial circular polarizers based on metal N-helices. Opt Express. 2012 Nov;20(23):2601226020.Google Scholar
Kaschke, J, Blome, M, Burger, S, Wegener, M. Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers. Opt Express. 2014 Aug;22(17):1993619946.Google Scholar
Kwon, DH, Werner, DH, Kildishev, AV, Shalaev, VM. Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. Opt Express. 2008 Aug;16(16):1182211829.Google Scholar
Zhao, R, Koschny, T, Soukoulis, CM. Chiral metamaterials: Retrieval of the effective parameters with and without substrate. Opt Express. 2010 Jul;18(14):1455314567.Google Scholar
Saba, M, Turner, MD, Mecke, K, Gu, M, Schröder-Turk, GE. Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets. Phys Rev B. 2013 Dec;88:245116.Google Scholar
Wang, B, Zhou, J, Koschny, T, Kafesaki, M, Soukoulis, CM. Chiral metamaterials: Simulations and experiments. Journal of Optics A: Pure and Applied Optics. 2009;11(11):114003.Google Scholar
Wang, Z, Jia, H, Yao, K, Cai, W, Chen, H, Liu, Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics. 2016;3(11):20962101.Google Scholar
Koschny, T, Zhang, L, Soukoulis, CM. Isotropic three-dimensional left-handed metamaterials. Phys Rev B. 2005 Mar;71:121103.Google Scholar
Gay-Balmaz, P, Martin, OJF. Efficient isotropic magnetic resonators. Applied Physics Letters. 2002;81(5):939941.Google Scholar
Simovski, CR, He, S. Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles. Physics Letters A. 2003;311(23):254263.Google Scholar
Verney, E, Sauviac, B, Simovski, CR. Isotropic metamaterial electromagnetic lens. Physics Letters A. 2004;331(3–4):244247.Google Scholar
Baena, JD, Jelinek, L, Marqués, R, Zehentner, J. Electrically small isotropic three-dimensional magnetic resonators for metamaterial design. Applied Physics Letters. 2006;88(13):134108.Google Scholar
Holloway, CL, Kuester, EF, Baker-Jarvis, J, Kabos, P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Transactions on Antennas and Propagation. 2003 Oct;51(10):25962603.Google Scholar
Vendik, I, Vendik, O, Kolmakov, I, Odit, M. Modelling of isotropic double negative media for microwave applications. Opto-Electronics Review. 2006;14(3):179.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metamaterials and Negative Refraction
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Metamaterials and Negative Refraction
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Metamaterials and Negative Refraction
Available formats
×