Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T19:26:58.331Z Has data issue: false hasContentIssue false

Niche Evolution and Phylogenetic Community Paleoecology of Late Ordovician Crinoids

Published online by Cambridge University Press:  29 April 2022

Selina R. Cole
Affiliation:
National Museum of Natural History, Smithsonian Institution and American Museum of Natural History
David F. Wright
Affiliation:
National Museum of Natural History, Smithsonian Institution and American Museum of Natural History

Summary

Fossil crinoids are exceptionally suited to deep-time studies of community paleoecology and niche partitioning. By merging ecomorphological trait and phylogenetic data, this Element summarizes niche occupation and community paleoecology of crinoids from the Bromide fauna of Oklahoma (Sandbian, Upper Ordovician). Patterns of community structure and niche evolution are evaluated over a ~5 million-year period through comparison with the Brechin Lagerstätte (Katian, Upper Ordovician). The authors establish filtration fan density, food size selectivity, and body size as major axes defining niche differentiation, and niche occupation is strongly controlled by phylogeny. Ecological strategies were relatively static over the study interval at high taxonomic scales, but niche differentiation and specialization increased in most subclades. Changes in disparity and species richness indicate the transition between the early-middle Paleozoic Crinoid Evolutionary Faunas was already underway by the Katian due to ecological drivers and was not triggered by the Late Ordovician mass extinction.
Get access
Type
Element
Information
Online ISBN: 9781108893459
Publisher: Cambridge University Press
Print publication: 26 May 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. S. (2009). Biomechanics, functional patterns, and disparity in Late Devonian arthrodires. Paleobiology, 35(3), 321342.Google Scholar
Andrews, P., Lord, J. M., & Evans, E. M. N. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11(2), 177205.Google Scholar
Antell, G. S., Fenton, I. S., Valdes, P. J., & Saupe, E. E. (2021). Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proceedings of the National Academy of Sciences, 118(18), e2017105118.Google Scholar
Armstrong, D. K. (2000). Paleozoic geology of the northern Lake Simcoe area, south-central Ontario. Ontario Geological Survey, Open File Report, 6011, pp. 1–43.Google Scholar
Ausich, W. I. (1980). A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology, 54(2), 273288.Google Scholar
Ausich, W. I. (1983). Component concept for the study of the paleocommunities with an example from the Early Carboniferous of Southern Indiana (USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 44(3–4), 251282.Google Scholar
Ausich, W. I. (2001). Echinoderm taphonomy. In Jangoux, M. and Lawrence, J. M., eds., Echinoderm Studies 6. A. A. Balkema, Rotterdam, pp. 171227.Google Scholar
Ausich, W. I. (2016). Fossil species as data: a perspective from echinoderms. In Allmon, W. D. and Yacobucci, M. M., eds., Species and Speciation in the Fossil Record. University of Chicago Press, Chicago, pp. 301311.Google Scholar
Ausich, W. I. (2018). Morphological paradox of disparid crinoids (Echinodermata): phylogenetic analysis of a Paleozoic clade. Swiss Journal of Palaeontology, 137(2), 159176.CrossRefGoogle Scholar
Ausich, W. I. (2021). Disarticulation and Preservation of Fossil Echinoderms: Recognition of Ecological-Time Information in the Echinoderm Fossil Record. Elements of Paleontology. Cambridge University Press, Cambridge, UK.Google Scholar
Ausich, W. I., & Baumiller, T. K. (1993). Taphonomic method for determining muscular articulations in fossil crinoids. Palaios, 8(5), 477484.CrossRefGoogle Scholar
Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542), 173174.Google Scholar
Ausich, W. I., & Deline, B. (2012). Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 361–362, 3848.Google Scholar
Ausich, W. I., & Kammer, T. W. (2013). Mississippian crinoid biodiversity, biogeography and macroevolution. Palaeontology, 56(4), 727740.Google Scholar
Ausich, W. I., Kammer, T. W., & Baumiller, T. K. (1994). Demise of the Middle Paleozoic crinoid fauna: a single extinction event or rapid faunal turnover? Paleobiology, 20(3), 345361.CrossRefGoogle Scholar
Ausich, W. I., Kammer, T. W., Rhenberg, E. C., & Wright, D. F. (2015). Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology, 58(6), 937952.Google Scholar
Ausich, W. I., Wright, D. F., Cole, S. R., & Koniecki, J. M. (2018). Disparid and hybocrinid crinoids (Echinodermata) from the Upper Ordovician (lower Katian) Brechin Lagerstätte of Ontario. Journal of Paleontology, 92(5), 850871.Google Scholar
Bambach, R. K. (1983). Ecospace utilization and guilds in marine communities through the Phanerozoic. In Tevesz, M. J. S. and McCall, P. L., eds., Biotic Interactions in Recent and Fossil Benthic Communities. Springer, Boston, pp. 719746.Google Scholar
Bambach, R. K., Bush, A. M., & Erwin, D. H. (2007). Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50(1), 122.CrossRefGoogle Scholar
Bapst, D. W. (2012). paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution, 3(5), 803807.Google Scholar
Bapst, D. W. (2013). A stochastic rate‐calibrated method for time‐scaling phylogenies of fossil taxa. Methods in Ecology and Evolution, 4(8), 724733.Google Scholar
Barr, W. A. (2018). Ecomorphology. In Croft, D. A., Su, D. F., and Simpson, S. W., eds., Methods in Paleoecology. Springer, Dordrecht, 339349.Google Scholar
Baumiller, T. K. (1993). Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology, 19(3), 304321.CrossRefGoogle Scholar
Baumiller, T. K. (1997). Crinoid functional morphology. Paleontological Society Papers, 3, 4568.Google Scholar
Baumiller, T. K. (2008). Crinoid ecological morphology. Annual Review of Earth Planetary Sciences, 36(1), 221249.Google Scholar
Baumiller, T. K. (2020). Patterns of dominance and extinction in the record of Paleozoic crinoids. In B. David, A. Guille, J. P. Guille, and M. Roux, eds., Echinoderms Through Time. CRC Press, London, pp. 193–198.CrossRefGoogle Scholar
Baumiller, T. K., & Ausich, W. I. (1996). Crinoid stalk flexibility: theoretical predictions and fossil stalk postures. Lethaia, 29(1), 4759.Google Scholar
Baumiller, T. K., & Gahn, F. (2003). Predation on crinoids. In Kelley, P. H., Kowalewski, M., & Hansen, T. A., eds., Predator-Prey Interactions in the Fossil Record. Topics in Geobiology, Kluwer Academic/Plenum Publishers, Dordrecht, 20, 263278.Google Scholar
Benevento, G.L., Benson, R.B., & Friedman, M. (2019). Patterns of mammalian jaw ecomorphological disparity during the Mesozoic/Cenozoic transition. Proceedings of the Royal Society B, 286(1902), 20190347.Google Scholar
Bennington, J. B., & Bambach, R. K. (1996). Statistical testing for paleocommunity recurrence: are similar fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology, 127(1–4), 107133.CrossRefGoogle Scholar
Blake, D. B., & Koniecki, J. (2019). Two new Paleozoic Asteroidea (Echinodermata) and their taxonomic and evolutionary significance. Journal of Paleontology, 93(1), 105114.CrossRefGoogle Scholar
Blake, D. B., & Koniecki, J. (2020). Taxonomy and functional morphology of the Urasterellidae (Paleozoic Asteroidea, Echinodermata). Journal of Paleontology, 94(6), 11241147.Google Scholar
Blomberg, S. P., GarlandJr., T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717745.Google Scholar
Bock, W. J. (1994). Concepts and methods in ecomorphology. Journal of Biosciences, 19(4), 403413.CrossRefGoogle Scholar
Brame, H. M. R., & Stigall, A. L. (2014). Controls on niche stability in geologic time: congruent responses to biotic and abiotic environmental changes among Cincinnatian (Late Ordovician) marine invertebrates. Paleobiology, 40(1), 7090.CrossRefGoogle Scholar
Brett, C. E., & Liddell, W. D. (1978). Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4(3), 329348.CrossRefGoogle Scholar
Brett, C. E., Moffat, H. A., & Taylor, W. L. (1997). Echinoderm taphonomy, taphofacies, and Lagerstätten. Paleontological Society Papers, 3, 147190.Google Scholar
Brett, C. E., & Taylor, W. L. (1999). Middle Ordovician of the Lake Simcoe area of Ontario, Canada. In Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. H., eds., Fossil Crinoids. Cambridge University Press, Cambridge, UK, pp. 6874.CrossRefGoogle Scholar
Brower, J. C. (2007). The application of filtration theory to food gathering in Ordovician crinoids. Journal of Paleontology, 81(6), 12841300.Google Scholar
Brower, J. C. (2013). Paleoecology of echinoderm assemblages from the Upper Ordovician (Katian) Dunleith Formation of Northern Iowa and Southern Minnesota. Journal of Paleontology, 87(1), 1643.Google Scholar
Bush, A. M., & Bambach, R. K. (2011). Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences, 39(1), 241269.Google Scholar
Carlucci, J. R., Westrop, S. R., Brett, C. E., & Burkhalter, R. (2014). Facies architecture and sequence stratigraphy of the Ordovician Bromide Formation (Oklahoma): a new perspective on a mixed carbonate-siliciclastic ramp. Facies, 60(4), 9871012.Google Scholar
Carrano, M. T. (1997). Morphological indicators of foot posture in mammals: a statistical and biomechanical analysis. Zoological Journal of the Linnean Society, 121(1), 77104.Google Scholar
Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7), 693715.Google Scholar
Chang, L.M. & Skipwith, P.L. (2021). Relatedness and the composition of communities over time: evaluating phylogenetic community structure in the late Cenozoic record of bivalves. Paleobiology, 47(2), 301–313.Google Scholar
Ciampaglio, C. N. (2002). Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution & Development, 4(3), 170188.Google Scholar
Cole, S. R. (2017a). Phylogeny, Diversification, and Extinction Selectivity in Camerate Crinoids. The Ohio State University, doctoral dissertation.Google Scholar
Cole, S. R. (2017b). Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology, 91(4), 815828.Google Scholar
Cole, S. R. (2018). Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology, 62(3), 357373.CrossRefGoogle Scholar
Cole, S. R. (2019). Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny. Paleobiology, 47(2), 251270.Google Scholar
Cole, S. R., Ausich, W. I., Colmenar, J., & Zamora, S. (2017). Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain). Journal of Paleontology, 91(4), 715734.CrossRefGoogle Scholar
Cole, S. R., Ausich, W. I., Wright, D. F., & Koniecki, J. M. (2018). An echinoderm Lagerstätte from the Upper Ordovician (Katian), Ontario: taxonomic re-evaluation and description of new dicyclic camerate crinoids. Journal of Paleontology, 92(3), 488505.Google Scholar
Cole, S. R., & Hopkins, M. J. (2021). Selectivity and the effect of mass extinctions on disparity and functional ecology. Science Advances, 7(19), eabf4072.Google Scholar
Cole, S. R., Wright, D. F., & Ausich, W. I. (2019). Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 8298.Google Scholar
Cole, S. R., Wright, D. F., Ausich, W. I., & Koniecki, J. M. (2020). Paleocommunity composition, relative abundance, and new camerate crinoids from the Brechin Lagerstätte (Upper Ordovician). Journal of Paleontology, 94(6), 11031123.Google Scholar
Cooper, N., Jetz, W., & Freckleton, R. P. (2010). Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 23(12), 25292539.Google Scholar
Darroch, S. A., Laflamme, M., & Wagner, P. J. (2018). High ecological complexity in benthic Ediacaran communities. Nature Ecology & Evolution, 2(10), 15411547.Google Scholar
Deline, B. (2021). Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities. Elements of Paleontology. Cambridge University Press, Cambridge, UK.Google Scholar
Deline, B., & Ausich, W. I. (2011). Testing the plateau: a reexamination of disparity and morphologic constraints in early Paleozoic crinoids. Paleobiology, 37(2), 214236.Google Scholar
Deline, B., Greenwood, J. M., Clark, J. W. et al. (2018). Evolution of metazoan morphological disparity. Proceedings of the National Academy of Sciences, 115(38), E8909–E8918.CrossRefGoogle ScholarPubMed
Deline, B., & Thomka, J. R. (2017). The role of preservation on the quantification of morphology and patterns of disparity within Paleozoic echinoderms. Journal of Paleontology, 91(4), 618632.CrossRefGoogle Scholar
Deline, B., Thompson, J. R., Smith, N. S. et al. (2020). Evolution and development at the origin of a phylum. Current Biology, 30(9), 16721679.Google Scholar
Dineen, A. A., Fraiser, M. L., & Sheehan, P. M. (2014). Quantifying functional diversity in pre- and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews, 136, 339349.Google Scholar
Donovan, S. K. (1991). The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment. In Donovan, S. K., ed., The Processes of Fossilization. Belhaven Press, London, pp. 241269.Google Scholar
Erwin, D. H. (2008). Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology & Evolution, 23(6), 304310.Google Scholar
Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In Croft, D. A., Su, D. F., and Simpson, S. W., eds., Methods in Paleoecology. Springer, New York, 3751.Google Scholar
Feng, Z., Wang, J., Rößler, R., Ślipiński, A., & Labandeira, C. (2017). Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8(1), 556.Google Scholar
Fischer, V., Benson, R.B., Zverkov, N.G. et al. (2017). Plasticity and convergence in the evolution of short-necked plesiosaurs. Current Biology, 27(11), 16671676.Google Scholar
Foote, M. (1994). Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20(3), 320344.Google Scholar
Foote, M. (1997). Estimating taxonomic durations and preservation probability. Paleobiology, 23(3), 278300.CrossRefGoogle Scholar
Foote, M. (1999). Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology, 25(S2), 1115.Google Scholar
Fountain-Jones, N.M., Baker, S.C., & Jordan, G.J. (2014). Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40(1), 113.Google Scholar
Fraser, D., Gorelick, R., & Rybczynski, N. (2015). Macroevolution & climate change influence phylogenetic community assembly of North American hoofed mammals. Biological Journal of the Linnean Society, 114(3), 485494.Google Scholar
Fraser, D., & Lyons, S. K. (2017). Biotic interchange has structured Western Hemisphere mammal communities. Global Ecology and Biogeography, 26(12), 14081422.Google Scholar
Fraser, D., & Lyons, S. K. (2020). Mammal community structure through the Paleocene-Eocene thermal maximum. The American Naturalist, 196(3), 271290.Google Scholar
Gibson, B. M., Furbish, D. J., Rahman, I. A. et al. (2021). Ancient life and moving fluids. Biological Reviews, 96(1), 129152.CrossRefGoogle ScholarPubMed
Goldman, D., Sadler, P. M., Leslie, S. A. et al. (2020). The Ordovician Period. In Gradstein, F. M., Ogg, J. M., Schmitz, M. D., Ogg, G. M., eds., Geological Time Scale 2020. Elsevier, Amsterdam, vol. 2, pp. 631694.CrossRefGoogle Scholar
Gorzelak, P. & Zamora, S. (2016). Understanding form and function of the stem in early flattened echinoderms (pleurocystitids) using a microstructural approach. PeerJ, 4, e1820. doi: https://doi.org/10.7717/peerj.1820Google Scholar
Gould, S. J. (1985). The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11(1), 212.Google Scholar
Grossnickle, D.M. & Newham, E. (2016). Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proceedings of the Royal Society B, 283(1832), 20160256.CrossRefGoogle Scholar
Guensburg, T. E. (1991). The stem and holdfast of Amygdalocystites florealis Billings, 1854 (Paracrinoidea): lifestyle implications. Journal of Paleontology, 65(4), 693695.Google Scholar
Guensburg, T. E., & Sprinkle, J. (2003). The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, 364, 143.Google Scholar
Hadly, E. A., Spaeth, P. A. & Li, C. (2009). Niche conservatism above the species level. Proceedings of the National Academy of Sciences, 106(S2), 1970719714.Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics, 24(1), 129131.Google Scholar
Holland, S. M., & Zaffos, A. (2011). Niche conservatism along an onshore-offshore gradient. Paleobiology, 37(2), 270286.Google Scholar
Hopkins, M. J., & Gerber, S. (2017). Morphological disparity. In L. N. de la Rosa and G. Müller, eds., Evolutionary Developmental Biology. Springer International Publishing, New York, pp. 112.Google Scholar
Hutchinson, G. E. (1978). An Introduction to Population Biology. Yale University Press, New Haven and London.Google Scholar
Jablonski, D. (2007). Scale and hierarchy in macroevolution. Palaeontology, 50(1), 87109.CrossRefGoogle Scholar
Kammer, T. W. (1985). Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology, 59(3), 551560.Google Scholar
Kammer, T. W., & Ausich, W. I. (2006). The “Age of Crinoids”: A Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios, 21(3), 238248.Google Scholar
Kelley, P., Kowalewski, M., & Hansen, T. A. (Eds.). (2003). Predator-Prey Interactions in the Fossil Record, Topics in Geobiology 20, Kluwer Academic/Plenum Publishers, New York.Google Scholar
Kidwell, S. M., & Behrensmeyer, A. K. (Eds). (1993). Taphonomic Approaches to Time Resolution in the Fossil Assemblages, Short Courses in Paleontology, 6, Paleontological Society.Google Scholar
Kitazawa, K., Oji, T., & Sunamura, M. (2007). Food composition of crinoids (Crinoidea: Echinodermata) in relation to stalk length and fan density: their paleoecological implications. Marine Biology, 152(4), 959968.Google Scholar
Kolata, D. R. (1982). Camerates. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 170205.Google Scholar
Lamsdell, J.C., Congreve, C.R., Hopkins, M.J., Krug, A.Z., & Patzkowsky, M.E. (2017). Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology & Evolution, 32(6), 452–463.CrossRefGoogle Scholar
Liberty, B. A. (1969). Palaeozoic geology of the Lake Simcoe area, Ontario. Geological Survey of Canada Memoir, 355, pp. 1–201.Google Scholar
Lloyd, G. T. (2016). Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society, 118(1), 131151.Google Scholar
Longman, M. W. (1982). Depositional setting and regional characteristics. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 610.Google Scholar
Lyons, S. K., Behrensmeyer, A. K., & Wagner, P. J. (Eds.). (2019). Foundations of Paleoecology: Classic Papers with Commentaries. University of Chicago Press, Chicago.Google Scholar
Macurda, D. B., & Meyer, D. L. (1974). Feeding posture of modern stalked crinoids. Nature, 247(5440), 394396.Google Scholar
Maechler, M., Rousseeuw, P. R., Struyf, A., & Gonzalez, J. (2019). Finding Groups in Data: Cluster Analysis Extended Rousseeuw et al. R package version 2.1.2.Google Scholar
Mallon, J. C. (2019). Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Scientific Reports, 9(1), 118.Google Scholar
Messing, C. G., Hoggett, A. K., Vail, L. L., Rouse, G. W., & Rowe, F. W. E. (2017). 7: Class Crinoidea. In O’Hara, T. and Byrne, M., eds., Australian Echinoderms: Biology, Ecology and Evolution. Csiro Publishing, Clayton, Australia, pp. 167225.Google Scholar
Meyer, D. L. (1973). Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology, 22(2), 105129.Google Scholar
Meyer, D. L. (1979). Length and spacing of the tube feet in crinoids (Echinodermata) and their role in suspension-feeding. Marine Biology, 51(4), 361369.Google Scholar
Meyer, D. L., & Ausich, W. I. (1983). Biotic interactions among recent and among fossil crinoids. In Tevesz, M. J. S. & McCall, P. L., eds., Biotic Interactions in Recent and Fossil Benthic Communities. Topics in Geobiology, Kluwer Academic/Plenum Publishers, New York, pp. 377427.Google Scholar
Meyer, D. L., Miller, A. I., Holland, S. M., & Datillo, B. F. (2002). Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview formations, Upper Ordovician, Cincinnati Arch region. Journal of Paleontology, 76(4), 725732.Google Scholar
Meyer, D. L., Vietch, M., Messing, C. G., & Stevenson, A. (2021). Crinoid Feeding Strategies: New Insights From Subsea Video And Time-Lapse. Elements of Paleontology. Cambridge University Press, Cambridge, UK.Google Scholar
Mitchell, J.S. & Makovicky, P.J. (2014). Low ecological disparity in Early Cretaceous birds. Proceedings of the Royal Society B, 281(1787), 20140608.Google Scholar
Muscente, A. D., Prabhu, A., Zhong, H. et al. (2018). Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proceedings of the National Academy of Sciences, 115(20), 52175222.Google Scholar
Myers, C. E., Stigall, A. L., & Lieberman, B. S. (2015). PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology, 41(2), 226244.Google Scholar
Nanglu, K., Caron, J. B., & Gaines, R. R. (2020). The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 46(1), 5881.CrossRefGoogle Scholar
Novack-Gottshall, P. M. (2007). Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33(2), 273294.Google Scholar
Novack-Gottshall, P. M. (2016a). General models of ecological diversification. I. Conceptual synthesis. Paleobiology, 42(2), 185208.Google Scholar
Novack-Gottshall, P. M. (2016b). General models of ecological diversification. II. Simulations and empirical applications. Paleobiology, 42(2), 209239.CrossRefGoogle Scholar
Novack-Gottshall, P. M., Sultan, A., Smith, N. S., Purcell, J., Hanson, K. E., Lively, R., Ranjha, I., Collins, C., Parker, R., Sumrall, C. D., & Deline, B. (2022). Morphological volatility precedes ecological innovation in early echinoderms. Nature Ecology & Evolution, 6, pp. 1–10.Google Scholar
Oksanen, J., Blanchet, , F. G., Friendly M., et al. (2020). vegan: Community Ecology Package. R package version 2.57.Google Scholar
Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology, 48(3), 612622.Google Scholar
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289290.CrossRefGoogle ScholarPubMed
Parsley, R. L., 1982a. Paracrinoids. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 210223.Google Scholar
Parsley, R. L., 1982b. Eumorphocystis. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 280288.Google Scholar
Paton, T. R., & Brett, C. E. (2019). Revised stratigraphy of the middle Simcoe Group (Ordovician, upper Sandbian-Katian) in its type area: an integrated approach. Canadian Journal of Earth Sciences, 57(1), 184198.Google Scholar
Paton, T. R., Brett, C. E., & Kampouris, G. E. (2019). Genesis, modification, and preservation of complex Upper Ordovician hardgrounds: implications for sequence stratigraphy and the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 526, 5371.Google Scholar
Perera, S. N., & Stigall, A. L. (2018). Identifying hierarchical spatial patterns within paleocommunities: an example from the Upper Pennsylvanian Ames Limestone of the Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 111.Google Scholar
Peterman, D. J., Ritterbush, K. A., Ciampaglio, C. N. et al. (2021). Buoyancy control in ammonoid cephalopods refined by complex internal shell architecture. Scientific Reports, 11(1), 8055.CrossRefGoogle ScholarPubMed
Peters, S. E., & Ausich, W. I. (2008). A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology, 34(1), 104116.Google Scholar
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B., & Winemiller, K. O. (2017). Toward a periodic table of niches, or exploring the lizard niche hypervolume. American Naturalist, 190(5), 601616.Google Scholar
Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42(4), 659669.Google Scholar
Polly, P. D., Fuentes-Gonzalez, J., Lawing, A. M., Bormet, A.K., & Dundas, R. G. (2017). Clade sorting has a greater effect than local adaptation on ecometric patterns in Carnivora. Evolutionary Ecology Research, 18(1), 6195.Google Scholar
Qian, H., & Jiang, L., 2014. Phylogenetic community ecology: integrating community ecology and evolutionary biology. Journal of Plant Ecology, 7(2), 97100Google Scholar
Rahman, I. A., Darroch, S. A., Racicot, R. A., & Laflamme, M. (2015). Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neoproterozoic ecosystems. Science Advances, 1(10), e1500800.Google Scholar
Rahman, I. A., O’Shea, J., Lautenschlager, S., & Zamora, S. (2020). Potential evolutionary trade‐off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63(5), 689701.Google Scholar
Raia, P. (2010). Phylogenetic community assembly over time in Eurasian Plio-Pleistocene mammals. Palaios, 25(5), 327338.Google Scholar
Core Team, R. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org.Google Scholar
Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217223.Google Scholar
Ricklefs, R. E., & Miles, D. B. (1994). Ecological and evolutionary inferences from morphology: an ecological perspective. In Wainwright, P. C. and Reilly, S. M., eds., Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp. 1341.Google Scholar
Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1–2), 131147.Google Scholar
Sallan, L. C., Kammer, T. W., Ausich, W. I., & Cook, L. A. (2011). Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences, 108(20), 83358338.Google Scholar
Schliep, K., Paradis, E., de Oliveira Martins, L. et al. (2021). Package ‘phangorn’. R package version 2.7.0.Google Scholar
Schroeder, K., Lyons, S. K., & Smith, F. A. (2021). The influence of juvenile dinosaurs on community structure and diversity. Science, 371(6532), 941944.CrossRefGoogle ScholarPubMed
Schumm, M., Edie, S. M., Collins, K. S. et al. (2019). Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proceedings of the Royal Society B, 286(1908), 20190745.Google Scholar
Soul, L. C., & Wright, D. F. (2021). Phylogenetic Comparative Methods: A User’s Guide for Paleontologists. Elements of Paleontology. Cambridge University Press, Cambridge, UK.Google Scholar
Sprinkle, J., ed. (1982a). Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma, The University of Kansas Paleontological Contributions, Lawrence, Monograph 1.Google Scholar
Sprinkle, J., (1982b). Echinoderm Zones & Faunas. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 4656.Google Scholar
Sprinkle, J., (1982c). Astrocystites. In Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Lawrence, 1, pp. 307308.Google Scholar
Sprinkle, J., Theisen, L., & McKinzie, M. G. (2015). New camerate crinoid from the Late Ordovician (Sandbian) Bromide Formation, Arbuckle Mountains, southern Oklahoma. Geological Society of America Abstracts with Programs, 47(7), 764.Google Scholar
Sprinkle, J., Guensburg, T. E., Rushlau, W. et al. (2018). New or more complete echinoderms discovered since 1982 from the Bromide Formation (Sandbian) of southern Oklahoma. Geological Society of America Abstracts with Programs, 50(6), doi: https://doi.org/10.1130/abs/2018AM-319856.Google Scholar
Sproat, C. D., Jin, J., Zhan, R. B., & Rudkin, D. M. (2015). Morphological variability and paleoecology of the Late Ordovician Parastrophina from eastern Canada and the Tarim Basin, Northwest China. Palaeoworld, 24(1–2), 160175.Google Scholar
Stanley, S. M. (1970). Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoirs, 125, 1282.Google Scholar
Stigall, A. L. (2012). Using ecological niche modelling to evaluate niche stability in deep time. Journal of Biogeography, 39(4), 772781.CrossRefGoogle Scholar
Sumrall, C. D., & Gahn, F. J. (2006). Morphological and systematic reinterpretation of two enigmatic edrioasteroids (Echinodermata) from Canada. Canadian Journal of Earth Sciences, 43(4), 497507.Google Scholar
Sumrall, C. D., & Schumacher, G. A. (2002). Cheirocystis fultonensis, a new glyptocystitoid rhombiferan from the Upper Ordovician of the Cincinnati Arch – comments on cheirocrinid ontogeny. Journal of Paleontology, 76(5), 843851.Google Scholar
Taylor, P. D. (2016). Competition between encrusters on marine hard substrates and its fossil record. Palaeontology, 59(4), 481497.CrossRefGoogle Scholar
Taylor, W. L., & Brett, C. E. (1996). Taphonomy and paleoecology of echinoderm Lagerstätten from the Silurian (Wenlockian) Rochester Shale. Palaios, 11(2), 111140.Google Scholar
Ubaghs, G. (1978). Camerata. In Moore, R. C. and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T Echinodermata 2. Lawrence: Geological Society of America and University of Kansas Press, Boulder and Lawrence, pp. T409T519.Google Scholar
Van Valkenburgh, B. (1994). Ecomorphological analysis of fossil vertebrates and their paleocommunities. In Wainwright, P. C. and Reilly, S. M., eds., Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp. 140166.Google Scholar
Vermeij, G. J. (1987). Evolution and Escalation: an Ecological History of Life. Princeton University Press, Princeton.Google Scholar
Villéger, S., Novack‐Gottshall, P. M., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14(6), 561568.Google Scholar
Wagner, P. J., Kosnik, M. A., & Lidgard, S. (2006). Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science, 314(5803), 12891292.Google Scholar
Wainwright, P. C. (1991). Ecomorphology: experimental functional anatomy for ecological problems. American Zoologist, 31(4), 680693.CrossRefGoogle Scholar
Walker, K. R. & Laporte, L. F. (1970). Congruent fossil communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology, 44(5), 928944.Google Scholar
Walton, S. A., & Korn, D. (2018). An ecomorphospace for the Ammonoidea. Paleobiology, 44(2), 273289.CrossRefGoogle Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33(1), 475505.Google Scholar
Webby, B. D., Paris, F., Droser, M. L., & Percival, I. G., eds. (2004). The Great Ordovician Biodiversification Event. Columbia University Press, New York .CrossRefGoogle Scholar
Weiser, M. D., & Kaspari, M. (2006). Ecological morphospace of New World ants. Ecological Entomology, 31(2), 131142.Google Scholar
Whittle, R. J., Witts, J. D., Bowman, V. C. et al. (2019). Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction. Palaeontology, 62(6), 919934.Google Scholar
Winemiller, K. O. (1991). Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs, 61(4), 343365.Google Scholar
Wright, D. F. (2017a). Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Scientific Reports, 7(1), 13745.Google Scholar
Wright, D. F. (2017b). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91(4), 799814.Google Scholar
Wright, D. F., & Toom, U. (2017). New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology, 60(6), 893910.Google Scholar
Wright, D. F., Ausich, W. I., Cole, S. R., Rhenberg, E. C., & Peter, M. E. (2017). Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91(4), 829846.Google Scholar
Wright, D. F., Cole, S. R., & Ausich, W. I. (2019). Biodiversity, systematics, and new taxa of cladid crinoids from the Ordovician Brechin Lagerstätte. Journal of Paleontology, 94(2), 334357.Google Scholar
Zanno, L. E., & Mackovicky, P. J. (2011). Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proceedings of the National Academy of Science, 108(1), 232237.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Niche Evolution and Phylogenetic Community Paleoecology of Late Ordovician Crinoids
  • Selina R. Cole, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History, David F. Wright, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History
  • Online ISBN: 9781108893459
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Niche Evolution and Phylogenetic Community Paleoecology of Late Ordovician Crinoids
  • Selina R. Cole, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History, David F. Wright, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History
  • Online ISBN: 9781108893459
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Niche Evolution and Phylogenetic Community Paleoecology of Late Ordovician Crinoids
  • Selina R. Cole, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History, David F. Wright, National Museum of Natural History, Smithsonian Institution and American Museum of Natural History
  • Online ISBN: 9781108893459
Available formats
×