Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T23:21:14.376Z Has data issue: false hasContentIssue false

Relevance Logic

Published online by Cambridge University Press:  28 March 2024

Shay Allen Logan
Affiliation:
Kansas State University

Summary

Relevance logics are a misunderstood lot. Despite being the subject of intense study for nearly a century, they remain maligned as too complicated, too abstruse, or too silly to be worth learning much about. This Element aims to dispel these misunderstandings. By focusing on the weak relevant logic B, the discussion provides an entry point into a rich and diverse family of logics. Also, it contains the first-ever textbook treatment of quantification in relevance logics, as well as an overview of the cutting edge on variable sharing results and a guide to further topics in the field.
Get access
Type
Element
Information
Online ISBN: 9781009227773
Publisher: Cambridge University Press
Print publication: 18 April 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity, vol. I. Princeton University Press.Google Scholar
Anderson, A. R., Belnap, N. D., & Dunn, J. M. (1992). Entailment: The logic of relevance and necessity, vol. II. Princeton University Press.Google Scholar
Atwood, M. (2006). The handmaid’s tale. Everyman’s Library.Google Scholar
Barrio, E. A., Pailos, F., & Szmuc, D. (2020). A hierarchy of classical and paraconsistent logics. Journal of Philosophical Logic, 49(1), 93120.CrossRefGoogle Scholar
Beall, J. (2017). There is no logical negation: True, false, both, and neither. Australasian Journal of Logic, 14(1), Article no. 1.CrossRefGoogle Scholar
Beall, J. (2018). The simple argument for subclassical logic. Philosophical Issues, 28(1), 3054.CrossRefGoogle Scholar
Beall, J. (2019). FDE as the one true logic. In New essays on Belnap–Dunn logic (pp. 115125). Springer.CrossRefGoogle Scholar
Beall, J., & Logan, S. A. (2017). Logic: The basics (2nd edition). Routledge.CrossRefGoogle Scholar
Beall, J., & Restall, G. (2005). Logical pluralism. Oxford University Press.CrossRefGoogle Scholar
Belnap, N. D. (1960). Entailment and relevance. The Journal of Symbolic Logic, 25(2), 144146.CrossRefGoogle Scholar
Belnap, N. D. (1982). Display logic. Journal of Philosophical Logic, 11(4), 375417. doi: https://doi.org/10.1007/bf00284976.CrossRefGoogle Scholar
Bennett, J. (1969). Entailment. The Philosophical Review, 78(2), 197236.CrossRefGoogle Scholar
Berto, F., & Restall, G. (2019). Negation on the Australian plan. Journal of Philosophical Logic, 48(6), 11191144. doi: https://doi.org/10.1007/s10992-019-09510-2.CrossRefGoogle Scholar
Bimbó, K. (2007). Relevance logics. In Jacquette, D. (Ed.), Handbook of the philosophy of science: Philosophy of logic. North-Holland Academic Publishers.Google Scholar
Bimbó, K., & Dunn, J. M. (2008). Generalized Galois logics: Relational semantics of nonclassical logical calculi. Center for the Study of Language and Information.Google Scholar
Brady, R. T. (1984a). Depth relevance of some paraconsistent logics. Studia Logica, 43(1), 6373.CrossRefGoogle Scholar
Brady, R. T. (1984b). Natural deduction systems for some quantified relevant logics. Logique et Analyse, 27(108), 355378.Google Scholar
Brady, R. T. (1988). A content semantics for quantified relevant logics I. Studia Logica, 47(2), 111127.CrossRefGoogle Scholar
Brady, R. T. (1989). A content semantics for quantified relevant logics II. Studia Logica, 48(2), 243257.CrossRefGoogle Scholar
Brady, R. T. (2006). Universal logic. CSLI Publications.Google Scholar
Brady, R. T. (2017a). Metavaluations. Bulletin of Symbolic Logic, 23(3), 296323.CrossRefGoogle Scholar
Brady, R. T. (2017b). Some concerns regarding ternary-relation semantics and truth-theoretic semantics in general. IfCoLog Journal of Logics and Their Applications, 4(3), 755781.Google Scholar
Brauer, E. (2020). Relevance for the classical logician. The Review of Symbolic Logic, 13(2), 436457.CrossRefGoogle Scholar
Carroll, L. (1895). What the tortoise said to Achilles. Mind, 4(14), 278280.CrossRefGoogle Scholar
Copeland, B. J. (1979). On when a semantics is not a semantics: Some reasons for disliking the Routley-Meyer semantics for relevance logic. Journal of Philosophical Logic, 8(1), 399413.CrossRefGoogle Scholar
Copeland, B. J. (1980). The trouble Anderson and Belnap have with relevance. Philosophical Studies, 37(4), 325334.CrossRefGoogle Scholar
Dunn, J. M. (1970). Algebraic completeness results for R-mingle and its extensions. The Journal of Symbolic Logic, 35(1), 113.CrossRefGoogle Scholar
Dunn, J. M. (1976). A Kripke-style semantics for R-mingle using a binary accessibility relation. Studia Logica: An International Journal for Symbolic Logic, 35(2), 163172.CrossRefGoogle Scholar
Dunn, J. M. (1987). Relevant predication 1: The formal theory. Journal of Philosophical Logic, 16(4), 347381.CrossRefGoogle Scholar
Dunn, J. M. (1990a). The frame problem and relevant predication. In Knowledge representation and defeasible reasoning (pp. 8995). Springer.CrossRefGoogle Scholar
Dunn, J. M. (1990b). Relevant predication 2: Intrinsic properties and internal relations. Philosophical Studies, 60(3), 177206.CrossRefGoogle Scholar
Dunn, J. M. (1990c). Relevant predication 3: Essential properties. In Truth or consequences (pp. 7795). Springer.CrossRefGoogle ScholarPubMed
Dunn, J. M. (1993). Star and perp: Two treatments of negation. Philosophical Perspectives, 7, 331357.CrossRefGoogle Scholar
Dunn, J. M. (2021). R-Mingle is nice, and so is Arnon Avron. In Arnon Avron on semantics and proof theory of non-classical logics (pp. 141165). Springer.CrossRefGoogle Scholar
Ferenz, N. (2022). Quantified modal relevant logics. The Review of Symbolic Logic, 16(1), 210240.CrossRefGoogle Scholar
Ferenz, N., & Tedder, A. (2022). Neighbourhood semantics for modal relevant logics. Journal of Philosophical Logic, 52, 145181.CrossRefGoogle Scholar
Ferguson, T. M., & Priest, G. (Eds.). (2021). Special issue on Robert Meyer and relevant arithmetic. The Australasian Journal of Logic, 18(5).Google Scholar
Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3(4), 347372.CrossRefGoogle Scholar
Fine, K. (1988). Semantics for quantified relevance logic. Journal of Philosophical Logic, 17(1), 2759.CrossRefGoogle Scholar
Fine, K. (1989). Incompleteness for quantified relevance logics. In Directions in relevant logic (pp. 205225). Springer.CrossRefGoogle Scholar
Fitting, M., & Mendelsohn, R. L. (2012). First-order modal logic (Vol. 277). Springer Science & Business Media.Google Scholar
French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, an Open Access Journal of Philosophy, 3. doi: http://doi.org/10.3998/ergo.12405314.0003.005CrossRefGoogle Scholar
Friedman, H., & Meyer, R. (1992). Whither relevant arithmetic? The Journal of Symbolic Logic, 57(3), 824831.CrossRefGoogle Scholar
Goble, L. (2003). Neighborhoods for entailment. Journal of Philosophical Logic, 32(5), 483529. doi: https://doi.org/10.1023/a:1025638012192.CrossRefGoogle Scholar
Gödel, K. (1932). Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, 69, 6566.Google Scholar
Goldblatt, R., & Kane, M. (2010). An admissible semantics for propositionally quantified relevant logics. Journal of Philosophical Logic, 39(1), 73100.CrossRefGoogle Scholar
Hanson, W. H. (1989). Two kinds of deviance. History and Philosophy of Logic, 10(1), 1528. doi: https://doi.org/10.1080/01445348908837139.CrossRefGoogle Scholar
Harrop, R. (1960). Concerning formulas of the types , in intuitionistic formal systems. The Journal of Symbolic Logic, 25(1), 2732.CrossRefGoogle Scholar
Humberstone, I. (1988). Operational semantics for positive R. Notre Dame Journal of Formal Logic, 29(1), 6180.Google Scholar
Kerr, A. D. (2021). A plea for KR. Synthese, 198(4), 30473071.CrossRefGoogle Scholar
Kremer, P. (1989). Relevant predication: Grammatical characterisations. Journal of Philosophical Logic, 18(4), 349382.CrossRefGoogle Scholar
Kremer, P. (1993). Quantifying over propositions in relevance logic: Nonaxiomatisability of primary interpretations of and . The Journal of Symbolic Logic, 58(1), 334349.CrossRefGoogle Scholar
Kremer, P. (1997). Dunn’s relevant predication, real properties and identity. Erkenntnis, 47(1), 3765.CrossRefGoogle Scholar
Kremer, P. (1999). Relevant identity. Journal of Philosophical Logic, 28(2), 199222.CrossRefGoogle Scholar
Kripke, S. A. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica, 16, 8394.Google Scholar
Lavers, P. (1985). Generating intensional logics (unpublished master’s thesis). University of Adelaide.Google Scholar
Lavers, P. (1994). Generalising tautological entailment. Logique et Analyse, 37(147/148), 367377.Google Scholar
Logan, S. A. (2019). Notes on stratified semantics. Journal of Philosophical Logic, 48(4), 749786.CrossRefGoogle Scholar
Logan, S. A. (2021). Strong depth relevance. Australasian Journal of Logic, 18(6), 645656.CrossRefGoogle Scholar
Logan, S. A. (2022a). Deep fried logic. Erkenntnis, 87(1), 257286. doi: https://doi.org/10.1007/s10670-019-00194-3.CrossRefGoogle Scholar
Logan, S. A. (2022b). Depth relevance and hyperformalism. Journal of Philosophical Logic, 51(4):721737.CrossRefGoogle Scholar
Logan, S. A., & Leach-Krouse, G. (2021). On not saying what we shouldn’t have to say. The Australasian Journal of Logic, 18(5), 524568.CrossRefGoogle ScholarPubMed
Mares, E. D. (1992). Semantics for relevance logic with identity. Studia Logica, 51(1), 120.CrossRefGoogle Scholar
Mares, E. D. (2004). Relevant logic: A philosophical interpretation. Cambridge University Press.CrossRefGoogle Scholar
Mares, E. D., & Goldblatt, R. (2006). An alternative semantics for quantified relevant logic. The Journal of Symbolic Logic, 71(1), 163187.CrossRefGoogle Scholar
Méndez, J. M., & Robles, G. (2012). A general characterization of the variable-sharing property by means of logical matrices. Notre Dame Journal of Formal Logic, 53(2), 223244.CrossRefGoogle Scholar
Meyer, R. (2021a). Arithmetic formulated relevantly. The Australasian Journal of Logic, 18(5), 154288.CrossRefGoogle Scholar
Meyer, R. (2021b). The consistency of arithmetic. The Australasian Journal of Logic, 18(5), 289379.CrossRefGoogle Scholar
Meyer, R. (2021c). Relevant arithmetic. The Australasian Journal of Logic, 18(5), 150153.CrossRefGoogle Scholar
Meyer, R., & Mortensen, C. (202a). Alien intruders in relevant arithmetic. The Australasian Journal of Logic, 18(5), 401425.CrossRefGoogle Scholar
Meyer, R., & Mortensen, C. (2021b). Inconsistent models for relevant arithmetics. The Australasian Journal of Logic, 18(5), 380400.CrossRefGoogle Scholar
Meyer, R. K. (1976). Metacompleteness. Notre Dame Journal of Formal Logic, 17(4), 501516.CrossRefGoogle Scholar
Mortensen, C. (2021). Remark on relevant arithmetic. The Australasian Journal of Logic, 18(5), 426427.CrossRefGoogle Scholar
Padro, R. (2015). What the tortoise said to Kripke: The adoption problem and the epistemology of logic (unpublished doctoral dissertation). City University of New York.Google Scholar
Pym, D. (2013). The semantics and proof theory of the logic of bunched implications. Springer Netherlands.Google Scholar
Read, S. (1988). Relevant logic: A philosophical examination of inference. Blackwell.Google Scholar
Read, S. (1993). Formal and material consequence, disjunctive syllogism and gamma. In Argumentationstheorie (pp. 233259). Brill.CrossRefGoogle Scholar
Restall, G. (1995). Display logic and gaggle theory. Reports on Mathematical Logic, 133146.Google Scholar
Restall, G. (1998). Displaying and deciding substructural logics 1: Logics with contraposition. Journal of Philosophical Logic, 27(2), 179216. doi: https://doi.org/10.1023/a:1017998605966.CrossRefGoogle Scholar
Restall, G. (1999). Negation in relevant logics (how I stopped worrying and learned to love the Routley star). In Gabbay, D. M. & Wansing, H. (Eds.), What is negation? (pp. 5376). Kluwer Academic Publishers.CrossRefGoogle Scholar
Restall, G. (2000). An introduction to substructural logics. Routledge.CrossRefGoogle Scholar
Restall, G., & Standefer, S. (2022). Collection frames for distributive substructural logics. The Review of Symbolic Logic, 16(4):11201157CrossRefGoogle Scholar
Robles, G., & Méndez, J. M. (2014). Generalizing the depth relevance condition: Deep relevant logics not included in R-mingle. Notre Dame Journal of Formal Logic, 55(1), 107127.CrossRefGoogle Scholar
Robles, G., & Méndez, J. M. (2018). Routley-Meyer ternary relational semantics for intuitionistic-type negations. Academic Press.Google Scholar
Routley, R., & Meyer, R. K. (1972a). The semantics of entailment. In Leblanc, H. (Ed.), (pp. 199243). North-Holland Publishing Company.Google Scholar
Routley, R., & Meyer, R. K. (1972b). The semantics of entailment II. Journal of Philosophical Logic, 1(1), 5373.CrossRefGoogle Scholar
Routley, R., & Meyer, R. K. (1972c). The semantics of entailment III. Journal of Philosophical Logic, 1(2), 192208.CrossRefGoogle Scholar
Routley, R., & Meyer, R. K. (1975a). Towards a general semantical theory of implication and conditionals. II. Systems with normal conjunctions and disjunctions and aberrant and normal negations. Reports on Mathematical Logic (9), 4762.Google Scholar
Routley, R., & Meyer, R. K. (1975b). Towards a general semantical theory of implication and conditionals. I. Systems with normal conjunctions and disjunctions and aberrant and normal negations. Reports on Mathematical Logic (4), 6789.Google Scholar
Routley, R., Plumwood, V., Meyer, R. K., & Brady, R. T. (1982). In Sylvan, R. & Brady, R. (Eds.), Relevant logics and their rivals. Ridgeview.Google Scholar
Routley, R., & Routley, V. (1972). The semantics of first degree entailment. Noús, 335359.Google Scholar
Savic, N., & Studer, T. (2019). Relevant justification logic. Journal of Applied Logics, 6(2), 395410.Google Scholar
Slaney, J. (1984). A metacompleteness theorem for contraction-free relevant logics. Studia Logica, 43(1), 159168.CrossRefGoogle Scholar
Slaney, J. (1990). A general logic. Australasian Journal of Philosophy, 68(1), 7488.CrossRefGoogle Scholar
Slaney, J. (1995). MaGIC: Matrix generator for implication connectives ( Tech. Rep.). Tech. Report TR-ARP-11-95, Research School of Information Science.Google Scholar
Standefer, S. (2019). Tracking reasons with extensions of relevant logics. Logic Journal of the IGPL, 27(4), 543569. doi: https://doi.org/10.1093/jigpal/jzz018.CrossRefGoogle Scholar
Standefer, S. (2021). Identity in Mares–Goldblatt models for quantified relevant logic. Journal of Philosophical Logic, 50(6), 13891415.CrossRefGoogle Scholar
Standefer, S. (2022a). Weak relevant justification logics. Journal of Logic and Computation, 33(7):16651683.CrossRefGoogle Scholar
Standefer, S. (2022b). What is a relevant connective? Journal of Philosophical Logic, 51(4), 919950. doi: https://doi.org/10.1007/s10992-022-09655-7.CrossRefGoogle Scholar
Sylvan, R. (1992). Process and action: Relevant theory and logics. Studia Logica, 51(3), 379437.CrossRefGoogle Scholar
Szmuc, D. E. (2021). The (greatest) fragment of classical logic that respects the variable-sharing principle (in the FMLA-FMLA framework). Bulletin of the Section of Logic, 50(4), 421453.CrossRefGoogle Scholar
Tedder, A. (2021). Information flow in logics in the vicinity of BB. The Australasian Journal of Logic, 18(1), 124.CrossRefGoogle Scholar
Tedder, A., & Bilková, M. (2022). Relevant propositional dynamic logic. Synthese, 200(3), 142.CrossRefGoogle Scholar
Tedder, A., & Ferenz, N. (2022). Neighbourhood semantics for quantified relevant logics. Journal of Philosophical Logic, 51(3), 457484.CrossRefGoogle Scholar
Urquhart, A. (1972). Semantics for relevant logics. Journal of Symbolic Logic, 37(1), 159169. doi: https://doi.org/10.2307/2272559.CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Relevance Logic
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Relevance Logic
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Relevance Logic
Available formats
×