Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T21:46:06.253Z Has data issue: false hasContentIssue false

The Role of Symmetry in the Development of the Standard Model

Published online by Cambridge University Press:  12 January 2024

Sherwin T. Love
Affiliation:
Purdue University

Summary

Symmetry and its various realizations have played a pivotal role in the development of the extremely well tested Standard Model of the strong, weak and electromagnetic interactions. In this Element, the author traces the development of the model through the interplay of the different symmetries realized in the various components of the model as well as in other sub-fields of physics.
Get access
Type
Element
Information
Online ISBN: 9781009238427
Publisher: Cambridge University Press
Print publication: 08 February 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atlas Collaboration: Aad, G., Abajyan, T., Abbott, B. et al., Phys. Lett. B716 (2012) 129. e-Print: 1207.7214 [hep-ex].Google Scholar
CMS Collaboration: Chatrchyan, S., Khachatryan, V., Sirunyan, A. M. et al. Phys. Lett. B716 (2012) 3061. e-Print: 1207.7235 [hep-ex].Google Scholar
Einstein, A., Preussische Akademie der Wissenschaften, Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Part 2 (in German) (1915) 844847.Google Scholar
Einstein, A., Annalen der Physik (in German) 354 (1916) 769.Google Scholar
Peskin, M. E. and Schroeder, D. V., An Introduction to Quantum Field Theory (Westview Press, Nashville, 1995).Google Scholar
Stueckelberg, E. C. G. and Petermann, A., , Helv. Phys. Acta (in French) 26 (1953) 499520.Google Scholar
Gell-Mann, M. and Low, F. E., Phys. Rev. 95 (1954) 13001312.Google Scholar
Wilson, K., Phys. Rev. 179 (1969) 1499.Google Scholar
Wilson, K. and Kogut, J., Phys. Rept. 12 (1974) 75200.Google Scholar
Wigner, E., Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, Cambridge, MA, 1959).Google Scholar
Georgi, H., Lie Algebras in Particle Physics (Benjamin/Cummings Publishing Company, San Francisco, 1982).Google Scholar
Noether, E., Mathematisch-Physikalische Klasse (in German) (1918) 236257.Google Scholar
Wigner, E. P., Proc. Nat. Acad. Sci. 38 (1952) 449.Google Scholar
Weyl, H., , Z. Phys. (in German) 56 (1929) 330.Google Scholar
Lehmann, H., Symanzik, K. and Zimmermann, W., Nuovo Cimento 1 (1955) 1425.Google Scholar
Selected Papers on Quantum Electrodynamics, edited by Schwinger, J. (Dover, Mineola, NY, 1958).Google Scholar
Morel, L., Yao, Z., Cladé, P. and Guellati-Khélifa, S., Nature 588 (2020) 6165.Google Scholar
Schwinger, J., Phys. Rev. 73 (1948) 416417.Google Scholar
Laporta, S. and Remiddi, E., Phys. Lett. B 379 (1996) 283291, e-Print: 9602417 [hep-ph].Google Scholar
Aoyama, T., Kinoshita, T. and Nio, M., Atoms 7 (2019) 28.Google Scholar
Hanneke, D., Fogwell Hoogerheide, S. and Gabrielse, G., Phys. Rev. A83 (2011) 052122, e-Print: 1009.4831 [atom-ph].Google Scholar
Chadwick, J., Nature 129 (1932) 312.Google Scholar
Heisenberg, W., , Z. Physik (in German) 77 (1932) 111.Google Scholar
Gell-Mann, M., Phys. Rev. 125 (1962) 1067.Google Scholar
Ne’eman, Y., Nucl. Phys. 26 (1961) 222229.Google Scholar
Gell-Mann, M., Phys. Rev. 125 (1962) 1067.Google Scholar
Fermi, E., Ric. sci. prog. tec. econ. naz. (in Italian) 2 (1933).Google Scholar
Fermi, E., Il Nuovo Cimento (in Italian) 11 (1934) 119.Google Scholar
Fermi, E., , Z. Physik (in German) 88 (1934) 161.Google Scholar
Yang, C. N. and Lee, T. D., Phys. Rev. 104 (1956) 254.Google Scholar
Wu, C. S., Ambler, E., Hayward, R., Hoppes, D. D. and Hudson, R. P., Phys. Rev. 105 (1957) 14131415.Google Scholar
Feynman, R. P. and Gell-Mann, M., Phys. Rev. 109 (1958) 193198.Google Scholar
Marshak, R. and Sudarshan, E. C. G., Phys. Rev. 109 (1958) 18601862.Google Scholar
Gershtein, S. S. and Zeldovich, J. B., , Zh. Eksperim. i Teor. Fis. 29 (1955) 698 [English transl.: Soviet Phys.—J. Exp. Theor. Phys. 2 (1955) 576].Google Scholar
Klein, O., Nature 4101 (1948) 897.Google Scholar
Bardeen, J., Cooper, L. N. and Schrieffer, J. R., Phys. Rev. 106 (1957) 162164.CrossRefGoogle Scholar
Bardeen, J., Cooper, L. N. and Schrieffer, J. R., Phys. Rev. 108 (1957) 11751204.Google Scholar
Nambu, Y., Phys. Rev. 117 (1960) 648663.Google Scholar
Nambu, Y. and Jona-Lasinio, G., Phys. Rev. 122 (1961) 345358; Phys. Rev. 124 (1961) 246–254.Google Scholar
Schwinger, J., Ann. Phys. 2 (1957) 407.Google Scholar
Glashow, S. and Baker, M., Phys. Rev. 128 (1962) 2462.Google Scholar
Coleman, S. in Aspects of Symmetry: Selected Erice Lectures, Chapter 5 (Cambridge University Press, Cambridge, 1988).Google Scholar
Ginzburg, V. L. and Landau, L. D., Zh. Eksp. Teor. Fiz. (in Russian) 20 (1950), 1064 [English translation appears in L. D. Landau, Collected Papers (Pergamon Press, Oxford, 1965) p. 546].Google Scholar
Heisenberg, W., Zeitschrift für Physik (in German) 49 (1928) 619636.Google Scholar
Gell-Mann, M. and Levy, M., Il Nuovo Cimento 16 (1960) 705726.Google Scholar
Goldstone, J., Nuovo Cimento, 19 (1961) 154164.Google Scholar
Goldstone, J., Salam, A. and Weinberg, S., Phys. Rev. 127 (1962) 965970.Google Scholar
Yang, C. N. and Mills, R. L., Phys. Rev. 96 (1954) 191.Google Scholar
Gell-Mann, M., lectures at the 1972 Schladming Winter School, CERN TH.1543 Acta Phys. Austriaca Suppl. (1972).Google Scholar
Fritzsch, H. and Gell-Mann, M. in Proceedings of the XVI International Conference on High Energy Physics, edited by Jackson, J. D. and Roberts, A. (NAL, Batavia, IL, 1972).Google Scholar
Bardeen, W. A., Fritzsch, H. and Gell-Mann, M. in Scale and Conformal Invariance in Hadron Physics, edited by , R. Gatto (Wiley, New York, 1973).Google Scholar
Fritzsch, H., Gell-Mann, M. and Leutwyler, H., Phys. Lett. B47 (1973) 365368.Google Scholar
Greenberg, O. W., Phys. Rev. Lett. 13 (1964) 598.Google Scholar
Nambu, Y., in Proceedings of the 2nd Coral Gables Conference on Symmetry Principles at High Energy, 274–285, edited by Kursumoglu, B., Perlmutter, A., and Sanmar, I. (Freeman, New York, 1965).Google Scholar
Nambu, Y., in Preludes in Theoretical Physics in Honor of V. F. Weisskopf, 133142 edited by De-Shalit, A., Feshbach, H., and Van Hove, L. (North-Holland, Amsterdam, 1965).Google Scholar
Han, Y. and Nambu, Y., Phys. Rev. 139B (1965) 1006.Google Scholar
Gross, D. J. and Wilczek, F., Phys. Rev. Lett. 30 (1973) 13431346.Google Scholar
Politzer, H. D., Phys. Rev. Lett. 30 (1973) 13461349.Google Scholar
Vanyashin, V. S. and Terent’ev, M. V., J. Exp. Theor. Phys. 21 (1965) 375380.Google Scholar
Khriplovich, I. B., Sov. J. Nucl. Phys. 10 (1970) 235242.Google Scholar
, G. ’t Hooft, unpublished talk at the Marseille conference on renormalization of Yang–Mills fields and applications to particle physics (1972).Google Scholar
Zyla, P. A., Barnett, R. M., Beringer, J. et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01.Google Scholar
Bloom, E. D., Coward, D. H., DeStaebler, H. C. et al., Phys. Rev. Lett. 23 (1969) 930934.Google Scholar
Breidenbach, M., Friedman, J. I., Kendall, H. W. et al. Phys. Rev. Lett. 23 (1969) 935939.Google Scholar
Friedman, J. I. and Kendall, H. W., Ann. Rev. Nucl. Par. Sci. 22 (1972) 203254.Google Scholar
Bjorken, J. D., Phys. Rev. 148 (1966) 1467; 179 (1969) 1547.Google Scholar
Feynman, R. P., Phys. Rev. Lett. 23 (1969) 1415.Google Scholar
Feynman, R. P., Photon-Hadron Interactions (Addison-Wesley, Boston, 1988).Google Scholar
Gell-Mann, M., Phys. Lett. 8 (1964) 214215.Google Scholar
Zweig, G., CERN Report No.8182/TH.401; CERN Report No.8419/TH.412.Google Scholar
Bjorken, J. D. and Paschos, E. A., Phys. Rev. 185 (1969) 1975.Google Scholar
Chang, C., Chen, K., Fox, D. et al., Phys. Rev. Lett. 35 (1975) 9.Google Scholar
Ellis, R. K., Adv. Ser. Direct. High Energy Phys. 26 (2016) 6178.Google Scholar
Landau, L. D., Abrikosov, A. A. and Khalatnikov, I. M., Dokl. Akad. Nauk SSSR 95 (1954) 497.Google Scholar
Kolb, E. W. and Turner, M. S., The Early Universe, Frontiers in Physics 69 (Addison-Wesley, Boston, 1990).Google Scholar
Marino, E. C., Quantum Field Theory Approach to Condensed Matter Physics (Cambridge University Press, Cambridge, 2017).Google Scholar
Wilson, K., Phys. Rev. D 10 (1974) 2445.Google Scholar
Gattringer, C. and Lang, C. B., Quantum Chromodynamics on the Lattice (Springer, 2009).Google Scholar
Degrand, T. and DeTar, C., Lattice Methods for Quantum Chromodynamics (World Scientific, 2006).Google Scholar
Montvay, I. and Münster, G., Quantum Fields on a Lattice (Cambridge University Press, 1997).Google Scholar
Kronfeld, A., , Ann. Rev. Nucl. Part. Sci., 62 (2012) 265, e-Print: 1203.1204 [hep-lat].Google Scholar
Schwinger, J., Phys. Rev. Phys. Rev. 128 (1962) 24252429.Google Scholar
Anderson, P. W., Phys. Rev. 130 (1963) 439442.Google Scholar
Meissner, W. and Ochsenfeld, R., Naturwissenschaften (in German) 21 (1933) 787788.Google Scholar
Stueckelberg, E., Helvetica Physica Acta 11 (1938) 299312.Google Scholar
Källén, G., Elementary Particle Physics (Addison Wesley, 1964).Google Scholar
Pontecorvo, B., Phys. Rev. 72 (1947) 246.Google Scholar
Puppi, G., Nuovo Cimento 5 (1948) 505.Google Scholar
Glashow, S. L., Nucl. Phys. 2 (1961) 579.Google Scholar
Salam, A. and Ward, J. C., Novo Cim. 11 (1959) 568; 19 (1961) 165.Google Scholar
Glashow, S. L., Iliopoulos, J. and Maiani, L., Physical Review D2 (1970) 1285.Google Scholar
Christenson, J. H., Cronin, J., Fitch, V. L. and Turlay, R., Phys. Rev. Lett. 13 (1964) 138.Google Scholar
Cabibbo, N., Phys. Rev. Lett. 10 (1963) 531533.Google Scholar
Aubert, J. J. M., Becker, U., Biggs, P. J. et al., Phys. Rev. Lett. 33 (1974) 14041406.Google Scholar
Augustin, J.-E., Boyarski, A. M., Breidenbach, M., et al., Phys. Rev. Lett. 33 (1974) 14061408.Google Scholar
Kobayashi, M. and Maskawa, T., Progress of Theoretical Physics 49 (1973) 652657.Google Scholar
Brout, R. and Englert, F., Phys. Rev. Lett., 13 (1964) 321.Google Scholar
Higgs, P., Phys. Lett. 12 (1964) 132; Phys. Rev. Lett. 13 (1964) 508.Google Scholar
Guralnik, G., Hagen, C. R. and Kibble, T., Phys. Rev. Lett. 13 (1964) 585.Google Scholar
Migdal, A. and Polyakov, A., Sov. Phys. J. Exp. Theor. Phys. 24 (1967) 9198, Zh. Eksp. Teor. Fiz. 51 (1966) 135–146.Google Scholar
Weinberg, S., Phys. Rev. Lett. 19 (1967) 1264.Google Scholar
Salam, A., in Elementary Particle Theory, ed. by Svartholm, N. (Almquist and Wiksell, Stockholm 1968).Google Scholar
Sikivie, P., Susskind, L., Voloshin, M. B. and Zakharov, V. I., Nucl. Phys. B173 (1980) 189.Google Scholar
’t Hooft, G., Nucl. Phys. B33 (1971) 173177; Nucl. Phys. B35 (1971) 167–188.Google Scholar
Veltman, M. J. G., Nucl. Phys. B 7 (1968), 637650.Google Scholar
Veltman, M. J. G., Nucl. Phys. B 21 (1970), 288302.Google Scholar
’t Hooft, G. and Veltman, M., Nucl. Phys. B 44 (1972) 189219.Google Scholar
’t Hooft, G. and Veltman, M., DIAGRAMMAR, NATO Adv. Study Inst. Ser. B Phys. 4 (1974) 177322.Google Scholar
Lee, B. W., Phys. Rev. D 6 (1972) 1188; B. W. Lee and J. Zinn Justin, Phys. Rev. D 5 (1972) 3132, 3137, 3155.Google Scholar
Gargamelle Collaboration, F. J. Hasert, Faissner, H., Krenz, W. et al., Phys. Lett. B46 (1973) 121.Google Scholar
Gargamelle Collaboration, F. J. Hasert, Kabe, S., Krenz, W. et al., Nucl. Phys. B73 (1974) 1.Google Scholar
Zel’dovich, Ya. B., Exp, J.. Theor. Phys. 33 (1957) 1531, Ya. B. Zel’dovich, J. Exp. Theor. Phys. 2 (1959) 682.Google Scholar
Prescott, C. Y., Atwood, W. B, Cottrell, R. L. A. et al., Phys. Lett. 77B (1978) 347.Google Scholar
Prescott, C. Y., Atwood, W. B, Cottrell, R. L. A. et al., Phys. Lett. 84B (1979) 524.Google Scholar
Khriplovich, I. B., Parity Non-conservation in Atomic Phenomena (Gordon and Breach, New York, 1991).Google Scholar
Bouchiat, M. A. and Bouchiat, C., Phys. Lett. B48 (1974) 111.Google Scholar
Barkov, L. M. and Zolotorev, M. S., Pis’ma Zh. Eksp. Teor. Fiz. 27 (1978) 379 (in Russian), [English trans.: J. Exp. Theor. Phys. Lett. 27 (1978) 357].Google Scholar
Wood, C. S., Bennett, S. C., Cho, D. et al., Science 275 (1997) 1759.Google Scholar
Arnison, G., Aniston, A., Aubert, B. et al. (UA1 Collaboration), Phys. Lett. B122 (1983) 103.Google Scholar
Arnison, G. et al. (UA1 Collaboration), Phys. Lett. B126 (1983) 101.Google Scholar
Banner, M., Battiston, R., Bloch, Ph et al. (UA2 Collaboration), Phys. Lett. B122 (1983) 476.Google Scholar
Bagnaia, P., Banner, M., Battiston, R. et al. (UA2 Collaboration), Phys. Lett. B129 (1983) 130.Google Scholar
Aoyama, T., Asmussen, N., Benayoun, M. et al., Phys. Rept. 887 (2020), e-Print: 2006.04822 [hep-ph].Google Scholar
Abi, B., Albahri, T., Al-Kilani, S. et al., (Muon g-2 Collaboration), Phys. Rev. Lett. 126 (2021) 141801, e-Print: 2104.03281 [hep-ex].Google Scholar
Albahri, T., Anastasi, A., Anisenkov, A. et al., (Muon g-2 Collaboration), Phys. Rev. D 103 (2021) 072002, e-Print: 2104.03247 [hep-ex].Google Scholar
Albahri, T., Anastasi, A., Badgley, K. et al., (Muon g-2 Collaboration), Phys. Rev. A (2021) 103 (2021) 042208, e-Print: 2104.03201 [hep-ex].Google Scholar
Bennett, G. W., Bousquet, B., Brown, H. N. et al., (Muon g-2 Collaboration), Phys. Rev. D 73 (2006) 072003, e-Print: 0602035 [hep-ex].Google Scholar
Sz. Borsanyi, Z. Fodor, Guenther, J. N. et al., Nature 593 (2021) 51, e-Print: 2002:12347 [hep-lat].Google Scholar
ALEPH, DELPHI, L3, OPAL and LEP Electroweak Collaborations, Phys. Rept. 532 (2013) 119244, e-Print: 1302.3415 [hep-ex].Google Scholar
Denner, A., Dittmaier, S., Roth, M., Wackeroth, D., Nucl. Phys. B560 (1999) 3365, e-Print: 9904472 [hep-ph].Google Scholar
Jadach, S., Placzek, W., Skrzypek, M., Ward, B. F. L., Was, Z. et al., Comput. Phys. Commun. 140 (2001) 475512, e-Print: 0104049 [hep-ph].Google Scholar
Bardin, D., Biebel, J., Lehner, D. et al., Comput. Phys. Commun. 104 (1997) 161187.Google Scholar
ALEPH, DELPHI, L3, OPAL, SLD Collaborations, LEP Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, Phys. Rep. 427 (2006) 257454.Google Scholar
Adler, S. L., Phys. Rev. 177 (1969) 2426.Google Scholar
Bell, J. S. and Jackiw, R., Nuovo Cim. 60A (1969) 47.Google Scholar
Adler, S. L. and Bardeen, W., Phys. Rev. 182 (1969) 1517.Google Scholar
Bardeen, W., Phys. Rev. 184 (1969) 1848.Google Scholar
Ross, G. G., Grand Unified Theories (Frontiers in Physics) (Benjamin-Cummings Publishing Co., 1986).Google Scholar
Abel, C., Afach, S., Ayres, N. J. et al., Phys. Rev. Lett. 124 (2020) 081803, e-Print: 2001.11966 [hep-ex].Google Scholar
Bardeen, W. A., Nucl. Phys. B75 (1974) 246.Google Scholar
Peccei, R. D. and Quinn, H. R., Phys. Rev. Lett. 38 14401443.Google Scholar
Peccei, R. D. and Quinn, H. R., Phys. Rev. D 16 (1977) 17911797.Google Scholar
Weinberg, S., Phys. Rev. Lett. 40 (1978) 223226.Google Scholar
Wilczek, F., Phys. Rev. Lett. 40 (1978) 279282.Google Scholar
Super-Kamiokande Collaboration: Fukuda, Y., Hayakawa, T., Ichihara, E. et al., Phys. Rev. Lett. 81 (1998) 15621567, e-Print: 9807003 [hep-ex].Google Scholar
Nakamura, K., Hagiwara, K., Hikasa, K. et al. (Particle Data Group), J. Phys. G 37 (2010) 075021.Google Scholar
Raffelt, G. G., Lect. Notes Phys. 741 (2008) 5171 (2008), e-Print: 0611350 [hep-ph].Google Scholar
Anastassopoulos, V., Aune, S., Barth, K. et al., Nature Physics 13 (2017) 584.Google Scholar
Chang, J. H., Essig, R., and McDermott, S. D., J. High Energy Phys. 1218 (2018) 1.Google Scholar
Pontecorvo, B., Zh. Eksp. Teor. Fiz. 33 (1957) 549551; reproduced and translated in Sov. Phys. J. Exp. Theor. Phys. 6 (1957) 429–431.Google Scholar
Majorana, E., Nuovo Cimento (in Italian) 14 (1937) 171184.Google Scholar
Weinberg, S., Phys. Rev. Lett. 43 (1979) 15661570.Google Scholar
Maki, Z., Nakagawa, M. and Sakata, S., 28 (1962) 870.Google Scholar
Minkowski, P., Phys. Lett. B. 67 (1977) 421.Google Scholar
Yanagida, T., , Prog. Theor. Phys. 64 (1980) 11031105.Google Scholar
de Swart, J. G., Bertone, G. and van Dongen, J., Nat. Astron. 1 (2017) 0059.Google Scholar
Zwicky, F., , Helv. Phys. Acta 6 (1933) 110127; Astrophys. J. 86 (1937) 217–246.Google Scholar
Oort, J. H., Astrophys. J. 91 (1940) 273306.Google Scholar
Rubin, V. C. and Kent, W. Ford, Jr., Astrophys. J. 159 (1970) 379403.Google Scholar
Rubin, V., Science 220 (1983).Google Scholar
Collaboration, WMAP, Spergel, D. N., Verde, L., Peiris, H. V. et al., Astrophys. J. Suppl. 148 (2003) 175194, e-Print: 0302209 [astro-ph].Google Scholar
Bertone, G., Hooper, D. and Silk, J., Phys. Rept. 405 (2005) 279390, e-Print: 0404175 [hep-ph].Google Scholar
Trimble, V., , Annu. Rev. of Astr. and Astro. 25 (1987) 425472.Google Scholar
Clowe, D., Gonzalez, A. and Markevich, M., Astrophys, J. 604 (2004) 596603, e-Print 0312273 [astro-ph].Google Scholar
Markevitch, M., Gonzalez, A. H., Clowe, D. et al., Astrophys. J. 606 (2004) 819824, e-Print 0309303 [astro-ph].Google Scholar
Sloan Digital Sky Survey, D. J. Eisenstein et al., Astron. J. 142 (2011) 72, e-Print 1101.1529 [astro-ph].Google Scholar
Weinberg, D. H., Dave, R., Katz, N. and Kollmeier, J. A. in The Emergence of Cosmic Structure: Thirteenth Astrophysics Conference, Holt, S. H. and Reynolds, C. S. eds. (AIP Conference Series) 666 (2003) 157169, e-Print 0301186 [astro-ph].Google Scholar
Battaglieri, M., Belloni, A., Chou, A. et al., contribution to US Cosmic Visions: New Ideas in Dark Matter (2017), e-Print: 1707.04591 [hep-ph].Google Scholar
Peebles, P. J. E., Astron. J. 263 (1982) L1.Google Scholar
Blumenthal, G. R., Pagels, H. and Primack, J. R., Nature. 299 (1982) 3738.Google Scholar
Peebles, P. J. E. and Ratra, B., Rev. Mod. Phys. 75 (2003) 559606, e-Print: 0207347 [astro-ph].Google Scholar
Frieman, J., Turner, M. and Hutere, D., Ann. Rev. Astron. Astrophys. 46 (2008) 385432, e-Print: 0803.0982 [astro-ph] (The term “dark energy” may first have appeared in the title of this paper.)Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P. et al., Astron. J. 116 (1998) 10091038.Google Scholar
Supernova Cosmology Project Collaboration: Perlmutter, S., Aldering, G, Goldhaber, G. et al., Astrophys. J. 517 (1999) 565586, e-Print: 9812133 [astro-ph].Google Scholar
Supernova Search Team: Riess, A. G., Strolger, L.-G., Tonry, J. et al., Astrophys. J. 607 (2004) 665687, e-Print: 0402512 [astro-ph].Google Scholar
Paál, G., Horváth, I. and Lukács Astrophys, B.. Space Sci. 191 (1992) 107124.Google Scholar
Planck Collaboration: Aghanim, N., Akrami, Y., Arroja, F. et al., Astron. and Astrophys. 641 (2020) A6, e-Print: 1807.06205 [astro-ph.CO].Google Scholar
Planck Collaboration: Aghanim, N., Akrami, Y., Ashdown, M. et al., Astron. and Astrophys. 641 (2020) A6, e-Print: 1807.06209 [astro-ph.CO].Google Scholar
Einstein, A., Sitzungsber. Preuss. Akad. Wiss. (in German), 142 (1931) 235237.Google Scholar
Weinberg, S., Rev. Mod. Phys. 61 (1989) 123.Google Scholar
Dine, M. and Kusenko, A., Rev. Mod. Phys. 76 (2003) 1, e-Print: 0303065 [hep-ph].Google Scholar
Sakharov, A. D., J. Exp. Theor. Phys. Lett. 5 (1967) 3235.Google Scholar
t’Hooft, G., Phys. Rev. Lett. 37 (1976) 8; Phys. Rev. D 14 (1976) 3432.Google Scholar
Kuzmin, V. A., Rubakov, V. A. and Shaposhnikov, M. E., Phys. Lett., B155 (1985) 36.Google Scholar
Rubakov, V. A. and Shaposhnikov, M. E., Usp. Fiz. Nauk, 166 (1996) 493537.Google Scholar
Fukugita, M. and Yanagida, T., Phys.Lett.B 174 (1986) 4547.Google Scholar
Buchmuller, W., Di Bari, P. and Plumacher, M., Ann. Phys. 315 (2005) 305351, e-Print: hep-ph/0401240 [hep-ph].Google Scholar
Davidson, S., Nardi, E. and Nir, Y., Phys.Rept. 466 (2008) 105177, e-Print: 0802.2962 [hep-ph].Google Scholar
Andreassen, A., Frost, W. and Schwartz, M. D., Phys. Rev. D97 (2018) 056006.Google Scholar
Chigusa, S., Moroi, T. and Shoji, Y., Phys. Rev. Lett. 119 (2017) 211801.Google Scholar
Elias-Miro, J., Espinosa, J. R., Giudice, G. F., Lee, H. M. and Strumia, A. J. High Energy Phys. 06 (2012) 031 e-Print: 1203.0237 [hep-ph].Google Scholar
Starobinskii, A. A., J. Exp. Theor. Phys. 30 (1979) 682.Google Scholar
Linde, A., Phys. Lett. B 108 (1982) 389393.Google Scholar
Linde, A., , Lect. Notes Phys. 738 (2008) 1; Mukhanov, V., Physical Foundation of Cosmology (Cambridge University Press, 2005) 421.Google Scholar
Spergel, WMAP Collaboration D. N., Bean, R., Doré, O. et al., Astrophys. J. Suppl. 170 (2007) 377408, e-Print: 0603449 [astro-ph].Google Scholar
’tHooft, G., NATO Sci. Ser. B 59 (1980) 135157; Cargese Summer Inst. (1979) 135.Google Scholar
Wess, J. and Bagger, H., Supersymmetry and Supergravity (second edition). Princeton Series in Physics (Princeton University Press, 1992).Google Scholar
Bardeen, W. A., in Ontake Summer Institute on Particle Physics (1995) 8, FERMILAB-CONF-95-391-T.Google Scholar
Lidsey, J. E., Liddle, A. R., Kolb, E. W. et al., Rev. Mod. Phys. 69 (1997) 373410, e-Print: 9508078 [astro-ph].Google Scholar
Bezrukov, F. L. and Shaposhnikov, M., Phys. Lett. B 659 (2008) 703, e-Print: 0710.3755 [hep-th].Google Scholar
De Simone, A., Hertzberg, M. P. and Wilczek, F., Phys. Lett. B 678 (2009) 18, e-Print: 0812.4946 [hep-ph].Google Scholar
Bezrukov, F., Magnin, A., Shaposhnikov, M. and Sibiryakov, S., J. High Energy Phys. 01 (2011) 016, e-Print: 1008.5157 [hep-ph].Google Scholar
Barbon, J. L. F. and Espinosa, J. R., Phys. Rev. D 79 (2009) 081302, e-Print: 0903.0355 [hep-ph].Google Scholar
Hilbert, D., Nachrichten von der Gesellschaft der Wissenschaften zu Gö ttingen – Mathematisch-Physikalische Klasse (in German) 3 (1915) 395407.Google Scholar
DeWitt, B., Phys. Rev. 160 (1967) 11131148.Google Scholar
DeWitt, B., 162 (1967) 11951239.Google Scholar
DeWitt, B., 162 (1967) 12391256.Google Scholar
Feynman, R. P., Acta. Phys. Pol. 24 (1963) 697.Google Scholar
Donoghue, J. F., Phys. Rev. D50 (1994) 38743888, e-Print: 9405057 [gr-qc].Google Scholar
Carlip, S., Rep. Prog. Phys. 64 (2001) 885942.Google Scholar
Blau, M. and Theisen, S., Gen. Relativ. Gravit. 41 (2009)743755.Google Scholar
Mangano, M. and Parke, S., Phys. Rept. 200 (1991) 301367, e-Print: 0509223 [hep-th].Google Scholar
Dixon, L. J. in Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95) 539584 (World Scientific, 1996, ed. D. E. Soper, ), e-Print: 9601359 [hep-ph].Google Scholar
Faddeev, L. D. and Popov, V., Phys. Lett. 25 (1967) 29.Google Scholar
Becchi, C., Rouet, A. and Stora, R., Phys. Lett. B52 (1974) 344346; Comm. in Math. Phys., 42 (1975) 127–162; Annals of Physics 98 (1976) 287–321.Google Scholar
Tyutin, I. V., Lebedev Physics Institute preprint 39 (1975), e-Print: 0812.0580 [hep-th].Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Role of Symmetry in the Development of the Standard Model
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Role of Symmetry in the Development of the Standard Model
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Role of Symmetry in the Development of the Standard Model
Available formats
×