Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T06:35:42.719Z Has data issue: false hasContentIssue false

Visual Control of Locomotion

Published online by Cambridge University Press:  30 March 2021

Brett R. Fajen
Affiliation:
Rensselaer Polytechnic Institute, New York

Summary

This Element examines visual perception in the context of activities that involve moving about in complex, dynamic environments. A central theme is that the ability of humans and other animals to perceive their surroundings based on vision is profoundly shaped by the need to adaptively regulate locomotion to variations in the environment. As such, important new insights into what and how we perceive can be gleaned by investigating the connection between vision and the control of locomotion. I present an integrated summary of decades of research on the perception of self-motion and object motion based on optic flow, the perception of spatial layout and affordances, and the control strategies for guiding locomotion based on visual information. I also explore important theoretical issues and debates, including the question of whether visual control relies on internal models.
Get access
Type
Element
Information
Online ISBN: 9781108870474
Publisher: Cambridge University Press
Print publication: 22 April 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, K. E. (2008a). The growing body in action: What infant locomotion tells us about perceptually guided action. In Klatzky, R., MacWhinney, B., & Behrmann, M. (eds.), Embodiment, Ego-Space, and Action (pp. 275321). Psychology Press.Google Scholar
Adolph, K. E. (2008b). Learning to move. Current Directions in Psychological Science, 17(3), 213218. doi:10.1111/j.1467-8721.2008.00577.xGoogle Scholar
Angelaki, D. E., Gu, Y., & Deangelis, G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J. Physiol., 589(Pt 4), 825833. doi:10.1113/jphysiol.2010.194720Google Scholar
Banks, M. S., Ehrlich, S. M., Backus, B. T., & Crowell, J. A. (1996). Estimating heading during real and simulated eye movements. Vision Research, 36(3), 431443. doi:10.1016/0042-6989(95)00122-0Google Scholar
Barsingerhorn, A. D., Zaal, F. T. J. M., Smith, J., & Pepping, G.-J. (2012). On possibilities for action: the past, present and future of affordance research. Avant, 3(2).Google Scholar
Barton, S. L., Matthis, J. S., & Fajen, B. R. (2017). Visual regulation of gait: zeroing in on a solution to the complex terrain problem. Journal of Experimental Psychology: Human Perception and Performance, 43(10), 17731790. doi:10.1037/xhp0000435Google Scholar
Bastin, J., Craig, C., & Montagne, G. (2006). Prospective strategies underlie the control of interceptive actions. Hum. Mov. Sci., 25(6), 718732. doi:10.1016/j.humov.2006.04.001Google Scholar
Bastin, J., Fajen, B. R., & Montagne, G. (2010). Controlling speed and direction during interception: an affordance-based approach. Exp. Brain Res., 201(4), 763780. doi:10.1007/s00221-009-2092-yGoogle Scholar
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proc. Natl. Acad. Sci. U S A, 110(45), 1832718332. doi:10.1073/pnas.1306572110CrossRefGoogle ScholarPubMed
Bootsma, R. J. (2009). The (current) future is here! Perception, 38(6), 851.Google Scholar
Bootsma, R. J., Ledouit, S., Casanova, R., & Zaal, F. T. J. M. (2016). Fractional-order information in the visual control of lateral locomotor interception. Journal of Experimental Psychology: Human Perception and Performance, 42(4), 517529. doi:10.1037/xhp0000162Google Scholar
Britten, K. H. (2008). Mechanisms of self-motion perception. Annu. Rev. Neurosci., 31, 389410. doi:10.1146/annurev.neuro.29.051605.112953CrossRefGoogle ScholarPubMed
Britten, K. H., & van Wezel, R. J. A. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nature Neuroscience, 1, 5963.Google Scholar
Chapman, S. (1968). Catching a baseball. American Journal of Physics, 36(10), 868870. doi:10.1119/1.1974297Google Scholar
Chardenon, A., Montagne, G., Buekers, M. J., & Laurent, M. (2002). The visual control of ball interception during human locomotion. Neuroscience Letters, 334(1), 1316.Google Scholar
Cheng, J. C. K., & Li, L. (2012). Effects of reference objects and extra-retinal information about pursuit eye movements on curvilinear path perception from retinal flow. Journal of Vision, 12(3):12, 1–21. doi:10.1167/12.3.12Google Scholar
Craik, K. J. W. (1943). The Nature of Explanation. Cambridge, UK: Cambridge University Press.Google Scholar
Creem-Regehr, S. H., Stefanucci, J. K., & Thompson, W. B. (2015). Perceiving absolute scale in virtual environments: How theory and application have mutually informed the role of body-based perception. In Psychology of Learning and Motivation, 62 (pp. 195224). Elsevier.Google Scholar
Cullen, K. E. (2019). Vestibular processing during natural self-motion: implications for perception and action. Nature Reviews Neuroscience, 20(6), 346363. doi:10.1038/s41583-019-0153-1Google Scholar
Cuturi, L. F., & MacNeilage, P. R. (2013). Systematic biases in human heading estimation. PLoS ONE, 8(2), e56862.Google Scholar
Dachner, G. C., & Warren, W. H. (2014). Behavioral dynamics of heading alignment in pedestrian following. Transportation Research Procedia, 2, 6976. doi:10.1016/j.trpro.2014.09.010CrossRefGoogle Scholar
Diaz, G. J., Phillips, F., & Fajen, B. R. (2009). Intercepting moving targets: a little foresight helps a lot. Experimental Brain Research, 195(3), 345360. doi:10.1007/s00221-009-1794-5CrossRefGoogle ScholarPubMed
Dixon, M. W., Wraga, M., Proffitt, D. R., & Williams, G. C. (2000). Eye height scaling of absolute size in immersive and nonimmersive displays. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 582.Google Scholar
Dokka, K., DeAngelis, G. C., & Angelaki, D. E. (2015). Multisensory integration of visual and vestibular signals improves heading discrimination in the presence of a moving object. Journal of Neuroscience, 35(40), 1359913607. doi:10.1523/JNEUROSCI.2267-15.2015Google Scholar
Dokka, K., MacNeilage, P. R., DeAngelis, G. C., & Angelaki, D. E. (2013). Multisensory self-motion compensation during object trajectory judgments. Cerebral Cortex.Google Scholar
Dokka, K., Park, H., Jansen, M., DeAngelis, G. C., & Angelaki, D. E. (2019). Causal inference accounts for heading perception in the presence of object motion. Proc. Natl. Acad. Sci. U S A, 116(18), 90609065. doi:10.1073/pnas.1820373116CrossRefGoogle ScholarPubMed
Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology, 65(6), 13291345.Google Scholar
Durant, S., & Zanker, J. M. (2020). The combined effect of eye movements improve head centred local motion information during walking. PLoS One, 15(1), e0228345. doi:10.1371/journal.pone.0228345Google Scholar
Elder, D. M., Grossberg, S., & Mingolla, E. (2009). A neural model of visually guided steering, obstacle avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 15011531.Google ScholarPubMed
Escobar-Alvarez, H. D., Johnson, N., Hebble, T., Klingebiel, K., Quintero, S. A. P., Regenstein, J., & Browning, N. A. (2017). R-ADVANCE: Rapid adaptive prediction for vision-based autonomous navigation, control, and evasion. Journal of Field Robotics, 35(1), 91100. doi:10.1002/rob.21744Google Scholar
Fajen, B. R. (2005a). Calibration, information, and control strategies for braking to avoid a collision. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 480501. doi:10.1037/0096-1523.31.3.480Google ScholarPubMed
Fajen, B. R. (2005b). Perceiving possibilities for action: On the necessity of calibration and perceptual learning for the visual guidance of action. Perception, 34, 717740. doi:10.1068/p5405CrossRefGoogle ScholarPubMed
Fajen, B. R. (2005c). The scaling of information to action in visually guided braking. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 11071123. doi:10.1037/0096-1523.31.5.1107Google Scholar
Fajen, B. R. (2007). Affordance-based control of visually guided action. Ecological Psychology, 19(4), 383410.Google Scholar
Fajen, B. R. (2013). Guiding locomotion in complex, dynamic environments. Frontiers in Behavioral Neuroscience, 7(Article 85), 115. doi:10.3389/fnbeh.2013.00085/abstractGoogle Scholar
Fajen, B. R., Diaz, G., & Cramer, C. (2011). Reconsidering the role of movement in perceiving action-scaled affordances. Human Movement Science, 30(3), 504533. doi:10.1016/j.humov.2010.07.016Google Scholar
Fajen, B. R., & Matthis, J. S. (2011). Direct perception of action-scaled affordances: The shrinking gap problem. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1442.Google Scholar
Fajen, B. R., & Matthis, J. S. (2013). Visual and non-visual contributions to the perception of object motion during self-motion. PLoS One, 8(2), e55446. doi:10.1371/journal.pone.0055446Google Scholar
Fajen, B. R., Parade, M. S., & Matthis, J. S. (2013). Humans perceive object motion in world coordinates during obstacle avoidance. J Vis, 13(8). doi:10.1167/13.8.25Google Scholar
Fajen, B. R., Riley, M. A., & Turvey, M. T. (2008). Information, affordances, and the control of action in sport. International Journal of Sport Psychology, 40, 79107.Google Scholar
Fajen, B. R., & Turvey, M. T. (2003). Perception, categories, and possibilities for action. Adaptive Behavior, 11(4), 276278.CrossRefGoogle Scholar
Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstable avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 343362.Google Scholar
Fajen, B. R., & Warren, W. H. (2004). Visual guidance of intercepting a moving target on foot. Perception, 33(6), 689715. doi:10.1068/p5236CrossRefGoogle ScholarPubMed
Fajen, B. R., & Warren, W. H. (2007). Behavioral dynamics of intercepting a moving target. Experimental Brain Research, 180(2), 303319. doi:10.1007/s00221-007-0859-6Google Scholar
Fath, A. J., & Fajen, B. R. (2011). Static and dynamic visual information about the size and passability of an aperture. Perception, 40(8), 887904. doi:10.1068/p6917Google Scholar
Fink, P. W., Foo, P. S., & Warren, W. H. (2009). Catching fly balls in virtual reality: A critical test of the outfielder problem. Journal of Vision, 9(13), 1414. doi:10.1167/9.13.14Google Scholar
Floreano, D., Ijspeert, A. J., & Schaal, S. (2014). Robotics and neuroscience. Curr Biol, 24(18), R910R920. doi:10.1016/j.cub.2014.07.058Google Scholar
Floreano, D., Zufferey, J.-C., Klaptocz, A., Germann, J., & Kovac, M. (2017). Aerial locomotion in cluttered environments. In Robotics Research (Vol. 100 2, pp. 2139). Cham: Springer. doi:10.1007/978-3-319-29363-9_2CrossRefGoogle Scholar
Fukusima, S. S., Loomis, J. M., & Da Silva, J. A. (1997). Visual perception of egocentric distance as assessed by triangulation. Journal of Experimental Psychology: Human Perception and Performance, 23(1), 86.Google Scholar
Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., & Moss, C. F. (2006). Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey. PLoS Biology, 4(5), e108.Google Scholar
Gibson, J. J. (1950). The Perception of the Visual World. Cambridge: The Riverside Press.Google Scholar
Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals. British Journal of Psychology, 49(3), 182194. doi:10.1111/j.2044-8295.1958.tb00656.xGoogle Scholar
Gibson, J. J. (1979). The Ecological Approach to Visual Perception Текст. doi:10.4324/9781315740218-10Google Scholar
Gibson, J. J. (1977). The theory of affordances. Hilldale, USA, 1(2).Google Scholar
Gibson, J. J., Olum, P., & Rosenblatt, F. (1955). Parallax and perspective during aircraft landings. The American Journal of Psychology, 68(3), 372385.Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems.Google Scholar
Godthelp, H. (1986). Vehicle control during curve driving. Human Factors, 28(2), 211221.Google Scholar
Godthelp, J. (1985). Precognitive control: Open-and closed-loop steering in a lane-change manoeuvre. Ergonomics, 28(10), 14191438.Google Scholar
Graziano, M. S., Andersen, R. A., & Snowden, R. J. (1994). Tuning of MST neurons to spiral motions. Journal of Neuroscience, 14(1), 5467.Google Scholar
Greenlee, M. W., Frank, S. M., Kaliuzhna, M., Blanke, O., Bremmer, F., Churan, J., … Smith, A. T. (2016). Multisensory integration in self motion perception. Multisensory Research, 29(67), 525556.Google Scholar
Gu, Y., Angelaki, D. E., & Deangelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci, 11(10), 12011210. doi:10.1038/nn.2191CrossRefGoogle ScholarPubMed
Gu, Y., DeAngelis, G. C., & Angelaki, D. E. (2007). A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci, 10(8), 10381047. doi:10.1038/nn1935Google Scholar
Gu, Y., Deangelis, G. C., & Angelaki, D. E. (2012). Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. J Neurosci, 32(7), 22992313. doi:10.1523/JNEUROSCI.5154-11.2012Google Scholar
Hayhoe, M. M. (2017). Vision and action. Annual Review of Vision Science, 3, 389413.Google Scholar
Hildreth, E. C., Beusmans, J. M. H., Boer, E. R., & Royden, C. S. (2000). From vision to action: Experiments and models of steering control during driving. Journal of Experimental Psychology: Human Perception and Performance, 26(3), 1106.Google Scholar
Hsu, J. (2019). Machines on mission possible. Nature Machine Intelligence, 1(3), 124127. doi:10.1038/s42256-019-0034-3Google Scholar
Israël, I., & Warren, W. H. (2005). Vestibular, proprioceptive, and visual influences on the perception of orientation and self-motion in humans. Head direction cells and the neural mechanisms of spatial orientation, 347381.Google Scholar
Jirsa, V. K., & Kelso, S. (2004). Coordination dynamics: Issues and trends. Springer Science & Business Media.Google Scholar
Kaiser, M. K., & Mowafy, L. (1993). Optical specification of time-to-passage: Observers’ sensitivity to global tau. Journal of Experimental Psychology: Human Perception and Performance, 19(5), 1028.Google Scholar
Kelly, J. W., Loomis, J. M., & Beall, A. C. (2005). The importance of perceived relative motion in the control of posture. Exp Brain Res, 161(3), 285292. doi:10.1007/s00221-004-2069-9Google Scholar
Kelso, J. A. S. (1995). Dynamic Patterns: The Self-Organization of Brain and Behavior. Massachusetts Institute of Technology Press.Google Scholar
Kim, N.-G., & Turvey, M. T. (1999). Eye movements and a rule for perceiving direction of heading. Ecological Psychology, 11(3), 233248.Google Scholar
Konczak, J., Meeuwsen, H. J., & Cress, M. E. (1992). Changing affordances in stair climbing: The perception of maximum climbability in young and older adults. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 691.Google Scholar
Kuo, A. D., & Donelan, J. M. (2010). Dynamic principles of gait and their clinical implications. Physical Therapy, 90(2), 157174.Google Scholar
Lappe, M., Bremmer, F., & Van den Berg, A. V. (1999). Perception of self-motion from visual flow. Trends in Cognitive Sciences, 3(9), 329336.Google Scholar
Lappi, O., & Mole, C. (2018). Visuomotor control, eye movements, and steering: A unified approach for incorporating feedback, feedforward, and internal models. Psychological Bulletin, 144(10), 9811001. doi:10.1037/bul0000150Google Scholar
Latash, M. L. (2008). Synergy. Oxford University Press.Google Scholar
Layton, O. W., & Fajen, B. R. (2016a). A neural model of MST and MT explains perceived object motion during self-motion. Journal of Neuroscience, 36(31), 80938102. doi:10.1523/JNEUROSCI.4593-15.2016Google Scholar
Layton, O. W., & Fajen, B. R. (2016b). Competitive dynamics in MSTd: A mechanism for robust heading perception based on optic flow. PLoS Computational Biology, 12(6).Google Scholar
Layton, O. W., & Fajen, B. R. (2016c). Sources of bias in the perception of heading in the presence of moving objects: Object-based and border-based discrepancies. J Vis, 16(1), 9. doi:10.1167/16.1.9Google Scholar
Layton, O. W., & Fajen, B. R. (2016d). The temporal dynamics of heading perception in the presence of moving objects. J Neurophysiol, 115(1), 286300. doi:10.1152/jn.00866.2015Google Scholar
Layton, O. W., & Fajen, B. R. (2017). Possible role for recurrent interactions between expansion and contraction cells in MSTd during self-motion perception in dynamic environments. J Vis, 17(5), 5. doi:10.1167/17.5.5Google Scholar
Layton, O. W., Mingolla, E., & Browning, N. A. (2012). A motion pooling model of visually guided navigation explains human behavior in the presence of independently moving objects. Journal of Vision, 12(1), 2020. doi:10.1167/12.1.20Google Scholar
Lee, D. N. (1980). Visuo-motor coordination in space-time. In Stelmach, G. E. & Requin, J. (Eds.), Tutorials in Motor Behavior (pp. 281295). Amsterdam: North-Holland. doi:10.1111/j.1467-9450.1977.tb00281.xCrossRefGoogle Scholar
Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5(4), 437459. doi:10.1068/p050437Google Scholar
Lee, D. N. (1974). Visual information during locomotion. In MacLeod, H. & Pick, H. (Eds.) Perception: Essays in Honor of J. J. Gibson, Ithaca: Cornell University Press.Google Scholar
Lee, D. N., Lishman, J. R., & Thomson, J. A. (1982). Regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8(3), 448459.Google Scholar
Lenoir, M., Musch, E., Janssens, M., Thiery, E., & Uyttenhove, J. (1999). Intercepting moving objects during self-motion. Journal of Motor Behavior, 31(1), 5567.Google Scholar
Li, L., Chen, J., & Peng, X. (2009). Influence of visual path information on human heading perception during rotation. Journal of Vision, 9(3):29, 1–14. doi:10.1167/9.3.29Google Scholar
Li, L., & Cheng, J. C. (2011). Perceiving path from optic flow. Journal of Vision, 11(1). doi:10.1167/11.1.22Google Scholar
Li, L., Ni, L., Lappe, M., Niehorster, D. C., & Sun, Q. (2018). No special treatment of independent object motion for heading perception. Journal of Vision, 18(4), 19–16. doi:10.1167/18.4.19Google Scholar
Li, L., Stone, L. S., & Chen, J. (2011). Influence of optic-flow information beyond the velocity field on the active control of heading. Journal of Vision, 11(4), 99. doi:10.1167/11.4.9Google Scholar
Li, L., Sweet, B. T., & Stone, L. S. (2006). Humans can perceive heading without visual path information. Journal of Vision, 6(9), 22. doi:10.1167/6.9.2Google Scholar
Li, L., & Warren, W. H. (2000). Perception of heading during rotation: Sufficiency of dense motion parallax and reference objects. Vision Research, 40(28), 38733894.Google Scholar
Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings of the Royal Society of London. Series B. Biological Sciences, 208(1173), 385397.Google Scholar
Loomis, J. M., & Beall, A. C. (1998). Visually controlled locomotion: Its dependence on optic flow, three-dimensional space perception, and cognition. Ecological Psychology, 10(3–4), 271285.Google Scholar
Loomis, J. M., & Beall, A. C. (2004). Model-based control of perception/action. In Optic Flow and Beyond (pp. 421441). Dordrecht: Springer.Google Scholar
Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906.Google Scholar
Macuga, K. L., Beall, A. C., Smith, R. S., & Loomis, J. M. (2019). Visual control of steering in curve driving. Journal of Vision, 19(5), 11. doi:10.1167/19.5.1Google Scholar
Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361370.Google Scholar
Mark, L. S., Balliett, J. A., Craver, K. D., Douglas, S. D., & Fox, T. (1990). What an actor must do in order to perceive the affordance for sitting. Ecological Psychology, 2(4), 325366.Google Scholar
Matthis, J. S., Muller, K. S., Bonnen, K., & Hayhoe, M. M. (2020). Retinal optic flow during natural locomotion. doi:10.1101/2020.07.23.217893Google Scholar
McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 339364.Google Scholar
Michaels, C. F., & Oudejans, R. R. D. (1992). The optics and actions of catching fly balls: Zeroing out optical acceleration. Ecological Psychology, 4(4), 199222. doi:10.1207/s15326969eco0404_1Google Scholar
Michaels, C. F., Prindle, S., & Turvey, M. T. (1985). A note on the natural basis of action categories: The catching distance of mantids. Journal of Motor Behavior, 17(2), 255264. doi:10.1080/00222895.1985.10735348Google Scholar
Mischiati, M., Lin, H. T., Herold, P., Imler, E., Olberg, R., & Leonardo, A. (2015). Internal models direct dragonfly interception steering. Nature, 517(7534), 333338. doi:10.1038/nature14045Google Scholar
Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Willemsen, P., Pick, J., Herbert, L., & Rieser, J. J. (2007). Calibration of locomotion resulting from visual motion in a treadmill-based virtual environment. ACM Transactions on Applied Perception (TAP), 4(1), 4–es.Google Scholar
Mole, C. D., Lappi, O., Giles, O., Markkula, G., Mars, F., & Wilkie, R. M. (2019). Getting Back Into the Loop: The Perceptual-Motor Determinants of Successful Transitions out of Automated Driving. Hum Factors, 18720819829594. doi:10.1177/0018720819829594Google Scholar
Morice, A. H. P., François, M., Jacobs, D. M., & Montagne, G. (2010). Environmental constraints modify the way an interceptive action is controlled. Experimental Brain Research, 202(2), 397411. doi:10.1007/s00221-009-2147-0Google Scholar
Olberg, R. M., Worthington, A. H., Fox, J. L., Bessette, C. E., & Loosemore, M. P. (2005). Prey size selection and distance estimation in foraging adult dragonflies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 191(9), 791797. doi:10.1007/s00359-005-0002-8Google Scholar
Olberg, R. M., Worthington, A. H., & Venator, K. R. (2000). Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 186(2), 155162. doi:10.1007/s003590050015Google Scholar
Oudejans, R. R., Michaels, C. F., van Dort, B., & Frissen, E. J. P. (1996). To cross or not to cross: The effect of locomotion on street-crossing behavior. Ecological Psychology, 8(3), 259267. doi:10.1207/s15326969eco0803_4Google Scholar
Oudejans, R. R. D., Michaels, C. F., Bakker, F. C., & Dolné, M. A. (1996). The relevance of action in perceiving affordances: Perception of catchableness of fly balls. Journal of Experimental Psychology: Human Perception and Performance, 22(4), 879891.Google Scholar
Perrone, J. A. (2018). Visual-vestibular estimation of the body’s curvilinear motion through the world: A computational model. J Vis, 18(4), 1. doi:10.1167/18.4.1Google Scholar
Perrone, J. A. (1992). Model for the computation of self-motion in biological systems. JOSA A, 9(2), 177194.CrossRefGoogle ScholarPubMed
Philbeck, J. W., Loomis, J. M., & Beall, A. C. (1997). Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 59(4), 601612.Google Scholar
Plumert, J. M., & Kearney, J. K. (2014). How do children perceive and act on dynamic affordances in crossing traffic-filled roads. Child Dev Perspect, 8(4), 207212. doi:10.1111/cdep.12089Google Scholar
Postma, D. B. W. (2019). Affordance-based control in running to catch fly balls. Ph.D. thesis, University of Groningen.Google Scholar
Postma, D. B. W., Lemmink, K. A. P. M., & Zaal, F. T. J. M. (2018). The affordance of catchability in running to intercept fly balls. Journal of Experimental Psychology: Human Perception and Performance, 44(9), 13361347. doi:10.1037/xhp0000531Google Scholar
Postma, D. B. W., Smith, J., Pepping, G.-J., van Andel, S., & Zaal, F. T. J. M. (2017). When a fly ball is out of reach: Catchability judgments are not based on optical acceleration cancelation. Frontiers in Psychology, 8(868), 14271428. doi:10.3389/fpsyg.2017.00535Google Scholar
Raudies, F., & Neumann, H. (2013). Modeling heading and path perception from optic flow in the case of independently moving objects. Frontiers in Behavioral Neuroscience, 7, 23. doi:10.3389/fnbeh.2013.00023Google Scholar
Reed, E. S. (1988). James J. Gibson and the Psychology of Perception. Yale University Press.Google Scholar
Regan, D., & Beverley, K. I. (1982). How do we avoid confounding the direction we are looking and the direction we are moving. Science, 215(4529), 194196.Google Scholar
Riddell, H., Li, L., & Lappe, M. (2019). Heading perception from optic flow in the presence of biological motion. J Vis, 19(14), 25. doi:10.1167/19.14.25Google Scholar
Rieger, J. H. (1983). Information in optical flows induced by curved paths of observation. JOSA, 73(3), 339344. doi:10.1364/JOSA.73.000339CrossRefGoogle ScholarPubMed
Rieger, J. H., & Lawton, D. T. (1985). Processing differential image motion. JOSA A, 2, 354359.Google Scholar
Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19(5), 675689. doi:10.1068/p190675Google Scholar
Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 480.Google Scholar
Rio, K. W., Rhea, C. K., & Warren, W. H. (2014). Follow the leader: Visual control of speed in pedestrian following. J Vis, 14(2). doi:10.1167/14.2.4Google Scholar
Royden, C. S. (1994). Analysis of misperceived observer motion during simulated eye rotations. Vision Research, 34(23), 32153222. doi:10.1016/0042-6989(94)90085-XGoogle Scholar
Royden, C. S., Banks, M. S., & Crowell, J. A. (1992). The perception of heading during eye movements. Nature, 360(6404), 583585.Google Scholar
Royden, C. S., Crowell, J. A., & Banks, M. S. (1994). Estimating heading during eye movements. Vision Research, 34(23), 31973214. doi:10.1016/0042-6989(94)90084-1Google Scholar
Royden, C. S., & Hildreth, E. C. (1996). Human heading judgments in the presence of moving objects. Perception & Psychophysics, 58(6), 836856.Google Scholar
Rushton, S. K., Chen, R., & Li, L. (2018). Ability to identify scene-relative object movement is not limited by, or yoked to, ability to perceive heading. Journal of Vision, 18(6), 1111. doi:10.1167/18.6.11Google Scholar
Rushton, S. K., Harris, J. M., Lloyd, M. R., & Wann, J. P. (1998). Guidance of locomotion on foot uses perceived target location rather than optic flow. Current Biology, 8(21), 11911194. doi:10.1016/S0960-9822(07)00492-7Google Scholar
Saito, H.- a., Yukie, M. , Tanaka, K. , Hikosaka, K. , Fukada, Y. , & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience, 6(1), 145157.Google Scholar
Saunders, J. A. (2010). View rotation is used to perceive path curvature from optic flow. Journal of Vision, 10(13), 2525. doi:10.1167/10.7.806Google Scholar
Saunders, J. A., & Ma, K.-Y. (2011). Can observers judge future circular path relative to a target from retinal flow. Journal of Vision, 11(7), 1616. doi:10.1167/11.7.16Google Scholar
Senders, J. W., Kristofferson, A. B., Levison, W. H., Dietrich, C. W., & Ward, J. L. (1967). The attentional demand of automobile driving. Highway Research Record, 195, 15-33.Google Scholar
Srinivasan, M. V. (2011). Visual control of navigation in insects and its relevance for robotics. Current Opinion in Neurobiology, 21(4), 535543. doi:10.1016/j.conb.2011.05.020Google Scholar
Steinmetz, S. T., Layton, O. W., Powell, N. V., & Fajen, B. R. (2020). Affordance-based versus current-future accounts of choosing whether to pursue or abandon the chase of a moving target. J Vis, 20(3), 8. doi:10.1167/jov.20.3.8Google Scholar
Stoffregen, T. A., Yang, C.-M., Giveans, M. R., Flanagan, M., & Bardy, B. G. (2009). Movement in the perception of an affordance for wheelchair locomotion. Ecological Psychology, 21(1), 136.Google Scholar
Stone, L. S., & Perrone, J. A. (1997). Human heading estimation during visually simulated curvilinear motion. Vision Research, 37(5), 573590. doi:10.1016/S0042-6989(96)00204-0Google Scholar
Strogatz, S. (2001). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (studies in nonlinearity).Google Scholar
Sunkara, A., DeAngelis, G. C., & Angelaki, D. E. (2016). Joint representation of translational and rotational components of optic flow in parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 50775082. doi:10.1073/pnas.1604818113Google Scholar
Tanaka, K., & Saito, H.-A. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62(3), 626641.Google Scholar
Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427.Google Scholar
Turvey, M. T. (1990). Coordination. American Psychologist, 45(8), 938.Google Scholar
Turvey, M. T. (2007). Action and perception at the level of synergies. Human Movement Science, 26(4), 657697.Google Scholar
Turvey, M. T., & Carello, C. (1996). Dynamics of Bernstein’s level of synergies. Dexterity and its development, 339376.Google Scholar
van Andel, S., Cole, M. H., & Pepping, G.-J. (2017). A systematic review on perceptual-motor calibration to changes in action capabilities. Human Movement Science, 51, 5971. doi:10.1016/j.humov.2016.11.004Google Scholar
Van den Berg, A. V., & Brenner, E. (1994a). Humans combine the optic flow with static depth cues for robust perception of heading. Vision Research, 34(16), 21532167. doi:10.1016/0042-6989(94)90324-7Google Scholar
Van den Berg, A. V., & Brenner, E. (1994b). Why two eyes are better than one for judgements of heading. Nature, 371(6499), 700702. doi:10.1038/371700a0Google Scholar
Wallis, G., Chatziastros, A., & Bülthoff, H. (2002a). An unexpected role for visual feedback in vehicle steering control. Current Biology, 12(4), 295299. doi:10.1016/S0960-9822(02)00685-1Google Scholar
Wallis, G., Chatziastros, A., & Bülthoff, H. (2002b). An unexpected role for visual feedback in vehicle steering control. Current Biology, 12(4), 295299.CrossRefGoogle ScholarPubMed
Wann, J., & Land, M. (2000). Steering with or without the flow: Is the retrieval of heading necessary? Trends in Cognitive Sciences, 4(8), 319324. doi:10.1016/S1364-6613(00)01513-8Google Scholar
Wann, J. P., & Swapp, D. K. (2000). Why you should look where you are going. Nature Neuroscience, 3 (7), 647.Google Scholar
Warren, P., & Rushton, S. (2007). Perception of object trajectory: Parsing retinal motion into self and object. Journal of Vision.Google Scholar
Warren, P., & Rushton, S. (2009a). Perception of scene-relative object movement: Optic flow parsing and the …. Vision Research.Google Scholar
Warren, P. A., & Rushton, S. K. (2009b). Optic flow processing for the assessment of object movement during ego movement. Current Biology, 19(18), 15551560. doi:10.1016/j.cub.2009.07.057Google Scholar
Warren, P. A., Rushton, S. K., & Foulkes, A. J. (2012). Does optic flow parsing depend on prior estimation of heading? Journal of Vision, 12(11), 8.Google Scholar
Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683703.Google Scholar
Warren, W. H. (1988). Action modes and laws of control for the visual guidance of action. In Complex Movement Behavior: The Motor-Action Controversy (pp. 339380). Elsevier.Google Scholar
Warren, W. H. (1995). Self-motion: Visual perception and visual control. In Perception of Space and Motion (pp. 263325). Elsevier.Google Scholar
Warren, W. H. (1998a). The state of flow. High-Level Motion Processing: Computational, Neurobiological and Psychophysical Perspectives, 315358.CrossRefGoogle Scholar
Warren, W. H. (1998b). Visually controlled locomotion: 40 years later. Ecological Psychology, 10 (34), 177219.Google Scholar
Warren, W. H. (2004). Optic flow. In Chalupa, L. & Werner, J. (eds.), The Visual Neurosciences (pp. 12471259). Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358389.Google Scholar
Warren, W. H. (2007). Action-scaled information for the visual control of locomotion. Closing the gap: The scientific writings of David N. Lee, 243258.Google Scholar
Warren, W. H. (2018). Collective motion in human crowds. Current Directions in Psychological Science, 12, 096372141774674096372141774679. doi:10.1177/0963721417746743Google Scholar
Warren, W. H., Blackwell, A. W., Kurtz, K. J., Hatsopoulos, N. G., & Kalish, M. L. (1991). On the sufficiency of the velocity field for perception of heading. Biological Cybernetics, 65(5), 311320.Google Scholar
Warren, W. H., & Fajen, B. R. (2004). From optic flow to laws of control. In Optic Flow and Beyond (pp. 307337). Springer.Google Scholar
Warren, W. H., & Fajen, B. R. (2008). Behavioral dynamics of visually guided locomotion. In Coordination: Neural, Behavioral and Social Dynamics (pp. 4575). Springer.Google Scholar
Warren, W. H., & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow. Nature, 336(6195), 162163. doi:10.1038/336162a0Google Scholar
Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4(2), 213. doi:10.1038/84054Google Scholar
Warren, W. H., Mestre, D. R., Blackwell, A. W., & Morris, M. W. (1991). Perception of circular heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 28.Google Scholar
Warren, W. H., Morris, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 646.Google Scholar
Warren, W. H., & Saunders, J. A. (1995). Perceiving heading in the presence of moving objects. Perception, 24(3), 315331. doi:10.1068/p240315Google Scholar
Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 371383.Google Scholar
Warren, W. H., Young, D. S., & Lee, D. N. (1986). Visual control of step length during running over irregular terrain. Journal of Experimental Psychology: Human Perception and Performance, 12(3), 259266. doi:10.1037/0096-1523.12.3.259Google Scholar
Wilkie, R. M., & Wann, J. P. (2006). Judgments of path, not heading, guide locomotion. Journal of Experimental Psychology: Human Perception and Perfo-rmance, 32(1), 88.Google Scholar
Wraga, M. (1999a). The role of eye height in perceiving affordances and object dimensions. Perception & Psychophysics, 61(3), 490507.Google Scholar
Wraga, M. (1999b). Using eye height in different postures to scale the heights of objects. Journal of Experimental Psychology: Human Perception and Perform-ance, 25(2), 518.Google Scholar
Yilmaz, E. H., & Warren, W. H. (1995). Visual control of braking: A test of the !ṫ hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 21(5), 996.Google Scholar
Zhao, H., Straub, D., & Rothkopf, C. A. (2019). The visual control of interceptive steering: How do people steer a car to intercept a moving target. J Vis, 19(14), 11. doi:10.1167/19.14.11Google Scholar
Zhao, H., & Warren, W. H. (2015). Online and model-based approaches to the visual control of action. Vision Research, 110(PB), 190202. doi:10.1016/j.visres.2014.10.008Google Scholar
Zhao, H., & Warren, W. H. (2017). Intercepting a moving target in fog: Online or model-based control? 17, 113. doi:10.1167/17.5.12.doiGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Visual Control of Locomotion
  • Brett R. Fajen, Rensselaer Polytechnic Institute, New York
  • Online ISBN: 9781108870474
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Visual Control of Locomotion
  • Brett R. Fajen, Rensselaer Polytechnic Institute, New York
  • Online ISBN: 9781108870474
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Visual Control of Locomotion
  • Brett R. Fajen, Rensselaer Polytechnic Institute, New York
  • Online ISBN: 9781108870474
Available formats
×