Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T22:32:34.310Z Has data issue: false hasContentIssue false

DNA methylation in stress and depression: from biomarker to therapeutics

Published online by Cambridge University Press:  21 June 2021

Amanda J. Sales*
Affiliation:
Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Av Bandeirantes, 3900, Ribeirão Preto-SP14049-900, Brazil
Francisco S. Guimarães
Affiliation:
Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Av Bandeirantes, 3900, Ribeirão Preto-SP14049-900, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
Sâmia R.L. Joca*
Affiliation:
Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000Aarhus C, Denmark
*
Author for correspondence: Amanda J. Sales, Email: amanda.sales@usp.br; Sâmia Joca, Email: sjoca@biomed.au.dk
Author for correspondence: Amanda J. Sales, Email: amanda.sales@usp.br; Sâmia Joca, Email: sjoca@biomed.au.dk

Abstract

Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press in association with Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdallah, CG, Adams, TG, Kelmendi, B, Esterlis, I, Sanacora, G and Krystal, JH (2016) Ketamine’s mechanism of action: A path to rapid-acting antidepressants. Depress Anxiety 33, 689697.CrossRefGoogle ScholarPubMed
Abdallah, CG, Roache, JD, Averill, LA, Young-Mccaughan, S, Martini, B, Gueorguieva, R, Amoroso, T, Southwick, SM, Guthmiller, K, Lopez-Roca, AL, Lautenschlager, K, Mintz, J, Litz, BT, Williamson, DE, Keane, TM, Peterson, AL, Krystal, JH and Consortium to Alleviate P (2019) Repeated ketamine infusions for antidepressant-resistant PTSD: Methods of a multicenter, randomized, placebo-controlled clinical trial. Contemporary Clinical Trials 81, 1118.CrossRefGoogle ScholarPubMed
Agid, Y, Buzsaki, G, Diamond, DM, Frackowiak, R, Giedd, J, Girault, JA, Grace, A, Lambert, JJ, Manji, H, Mayberg, H, Popoli, M, Prochiantz, A, Richter-Levin, G, Somogyi, P, Spedding, M, Svenningsson, P and Weinberger, D (2007) How can drug discovery for psychiatric disorders be improved? Nature Reviews Drug Discovery 6, 189201.CrossRefGoogle ScholarPubMed
Aizawa, H, Cui, W, Tanaka, K and Okamoto, H (2013) Hyperactivation of the habenula as a link between depression and sleep disturbance. Frontiers in Human Neuroscience 7, 826.CrossRefGoogle ScholarPubMed
Allis, CD and Jenuwein, T (2016) The molecular hallmarks of epigenetic control. Nature Reviews Genetics 17, 487500.CrossRefGoogle ScholarPubMed
Amaral, DG and Insausti, R (1992) Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Experimental Brain Research 88, 375388.CrossRefGoogle Scholar
American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th ed., Volume 991. Arlington, VA: American Psychiatric Association. DSM-5.Google Scholar
Andrade, C and Rao, NS (2010) How antidepressant drugs act: A primer on neuroplasticity as the eventual mediator of antidepressant efficacy. Indian Journal of Psychiatry 52, 378386.CrossRefGoogle ScholarPubMed
Anier, K, Malinovskaja, K, Pruus, K, Aonurm-Helm, A, Zharkovsky, A and Kalda, A (2014) Maternal separation is associated with DNA methylation and behavioural changes in adult rats. European Neuropsychopharmacology 24, 459468.CrossRefGoogle ScholarPubMed
Antequera, F (2003) Structure, function and evolution of CpG island promoters. Cellular and Molecular Life Sciences 60, 16471658.CrossRefGoogle ScholarPubMed
Aran, D, Toperoff, G, Rosenberg, M and Hellman, A (2011) Replication timing-related and gene body-specific methylation of active human genes. Human Molecular Genetics 20, 670680.CrossRefGoogle ScholarPubMed
Bachman, KE, Rountree, MR and Baylin, SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. The Journal of Biological Chemistry 276, 3228232287.CrossRefGoogle Scholar
Bachner-Melman, R and Ebstein, RP (2014) The role of oxytocin and vasopressin in emotional and social behaviors. Handbook of Clinical Neurology 124, 5368.Google ScholarPubMed
Bahar Halpern, K, Vana, T and Walker, MD (2014) Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development. The Journal of Biological Chemistry 289, 2388223892.CrossRefGoogle ScholarPubMed
Baker-Andresen, D, Ratnu, VS and Bredy, TW (2013) Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends in Neurosciences 36, 313.CrossRefGoogle ScholarPubMed
Ball, MP, Li, JB, Gao, Y, Lee, JH, Leproust, EM, Park, IH, Xie, B, Daley, GQ and Church, GM (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology 27, 361368.CrossRefGoogle ScholarPubMed
Bannister, AJ and Kouzarides, T (2011) Regulation of chromatin by histone modifications. Cell Research 21, 381395.CrossRefGoogle ScholarPubMed
Barbas, H (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neuroscience and Biobehavioral Reviews 19, 499510.CrossRefGoogle ScholarPubMed
Bartlett, AA, Singh, R and Hunter, RG (2017) Anxiety and Epigenetics. Advances in Experimental Medicine and Biology 978, 145166.CrossRefGoogle ScholarPubMed
Beery, AK, Mcewen, LM, Macisaac, JL, Francis, DD and Kobor, MS (2016) Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats. Hormones and Behavior 77, 4252.CrossRefGoogle ScholarPubMed
Belda, X, Fuentes, S, Daviu, N, Nadal, R and Armario, A (2015) Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress 18, 269279.CrossRefGoogle ScholarPubMed
Berton, O and Nestler, EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nature Reviews Neuroscience 7, 137151.CrossRefGoogle ScholarPubMed
Bhandari, R, Paliwal, JK and Kuhad, A (2020) Neuropsychopathology of Autism Spectrum Disorder: Complex interplay of genetic, epigenetic, and environmental factors. Advances in Neurobiology 24, 97141.CrossRefGoogle ScholarPubMed
Bhatnagar, S, Vining, C and Denski, K (2004) Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Annals of the New York Academy of Sciences 1032, 315319.CrossRefGoogle ScholarPubMed
Bijl, RV and Ravelli, A (2000) Current and residual functional disability associated with psychopathology: findings from the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Psychological Medicine 30, 657668.CrossRefGoogle Scholar
Blaze, J, Scheuing, L and Roth, TL (2013) Differential methylation of genes in the medial prefrontal cortex of developing and adult rats following exposure to maltreatment or nurturing care during infancy. Developmental Neuroscience 35, 306316.CrossRefGoogle ScholarPubMed
Bockmuhl, Y, Patchev, AV, Madejska, A, Hoffmann, A, Sousa, JC, Sousa, N, Holsboer, F, Almeida, OF and Spengler, D (2015) Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics 10, 247257.CrossRefGoogle Scholar
Boersma, GJ, Lee, RS, Cordner, ZA, Ewald, ER, Purcell, RH, Moghadam, AA and Tamashiro, KL (2014) Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437447.CrossRefGoogle ScholarPubMed
Bonfiglio, JJ, Inda, C, Refojo, D, Holsboer, F, Arzt, E and Silberstein, S (2011) The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved. Neuroendocrinology 94, 1220.CrossRefGoogle ScholarPubMed
Border, R, Johnson, EC, Evans, LM, Smolen, A, Berley, N, Sullivan, PF and Keller, MC (2019) No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression Across Multiple Large Samples. The American Journal of Psychiatry 176, 376387.CrossRefGoogle ScholarPubMed
Bourc’his, D and Bestor, TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 9699.CrossRefGoogle ScholarPubMed
Bourc’his, D, Xu, GL, Lin, CS, Bollman, B and Bestor, TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294, 25362539.CrossRefGoogle ScholarPubMed
Braithwaite, EC, Kundakovic, M, Ramchandani, PG, Murphy, SE and Champagne, FA (2015) Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 10, 408417.CrossRefGoogle ScholarPubMed
Braun, JM, Kalkbrenner, AE, Calafat, AM, Yolton, K, Ye, X, Dietrich, KN and Lanphear, BP (2011) Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128, 873882.CrossRefGoogle ScholarPubMed
Brenet, F, Moh, M, Funk, P, Feierstein, E, Viale, AJ, Socci, ND and Scandura, JM (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 6, e14524.CrossRefGoogle ScholarPubMed
Bridges, RS (2015) Neuroendocrine regulation of maternal behavior. Frontiers in Neuroendocrinology 36, 178196.CrossRefGoogle ScholarPubMed
Brown, SM, Henning, S and Wellman, CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cerebral Cortex (New York, NY) 15, 17141722.Google ScholarPubMed
Cabrera-Licona, A, Perez-Anorve, IX, Flores-Fortis, M, Moral-Hernandez, OD, Gonzalez-De La Rosa, CH, Sanchez, M, Chavez-Saldana, M and Arechaga-Ocampo, E (2021) Deciphering the epigenetic network in cancer radioresistance. Radiotherapy and Oncology.CrossRefGoogle ScholarPubMed
Carlberg, L, Scheibelreiter, J, Hassler, MR, Schloegelhofer, M, Schmoeger, M, Ludwig, B, Kasper, S, Aschauer, H, Egger, G and Schosser, A (2014) Brain-derived neurotrophic factor (BDNF)-epigenetic regulation in unipolar and bipolar affective disorder. Journal of Affective Disorders 168, 399406.CrossRefGoogle ScholarPubMed
Castellano, S, Kuck, D, Sala, M, Novellino, E, Lyko, F and Sbardella, G (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. Journal of Medicinal Chemistry 51, 23212325.CrossRefGoogle ScholarPubMed
Castren, E (2005) Is mood chemistry?. Nature Reviews Neuroscience 6, 241246.CrossRefGoogle ScholarPubMed
Castren, E and Rantamaki, T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental Neurobiology 70, 289297.CrossRefGoogle ScholarPubMed
Cattaneo, A, Macchi, F, Plazzotta, G, Veronica, B, Bocchio-Chiavetto, L, Riva, MA and Pariante, CM (2015) Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Frontiers in Cellular Neuroscience 9, 40.CrossRefGoogle ScholarPubMed
Chan, RF, Turecki, G, Shabalin, AA, Guintivano, J, Zhao, M, Xie, LY, Van Grootheest, G, Kaminsky, ZA, Dean, B, Penninx, B, Aberg, KA and Van Den Oord, E (2020) Cell Type-Specific Methylome-wide Association Studies Implicate Neurotrophin and Innate Immune Signaling in Major Depressive Disorder. Biological Psychiatry 87, 431442.CrossRefGoogle ScholarPubMed
Chandramohan, Y, Droste, SK, Arthur, JS and Reul, JM (2008) The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway. European Journal of Neuroscience 27, 27012713.CrossRefGoogle ScholarPubMed
Chen, GG, Almeida, D, Fiori, L and Turecki, G (2018) Evidence of reduced agmatine concentrations in the cerebral cortex of suicides. International Journal of Neuropsychopharmacology 21, 895900.CrossRefGoogle ScholarPubMed
Chirita, AL, Gheorman, V, Bondari, D and Rogoveanu, I (2015) Current understanding of the neurobiology of major depressive disorder. Romanian Journal of Morphology and Embryology 56, 651658.Google ScholarPubMed
Cipriani, A, Furukawa, TA, Salanti, G, Chaimani, A, Atkinson, LZ, Ogawa, Y, Leucht, S, Ruhe, HG, Turner, EH, Higgins, JPT, Egger, M, Takeshima, N, Hayasaka, Y, Imai, H, Shinohara, K, Tajika, A, Ioannidis, JPA and Geddes, JR (2018) Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391, 13571366.CrossRefGoogle ScholarPubMed
Cook, SC and Wellman, CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. Journal of Neurobiology 60, 236248.CrossRefGoogle ScholarPubMed
Coppen, A (1972) Indoleamines and affective disorders. Journal of Psychiatric Research 9, 163171.CrossRefGoogle ScholarPubMed
Cordova-Palomera, A, Fatjo-Vilas, M, Gasto, C, Navarro, V, Krebs, MO and Fananas, L (2015) Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Translational Psychiatry 5, e557.CrossRefGoogle Scholar
Correia De Sousa, M, Gjorgjieva, M, Dolicka, D, Sobolewski, C and Foti, M (2019) Deciphering miRNAs’ Action through miRNA Editing. International Journal of Molecular Sciences 20.Google ScholarPubMed
Cortese, R, Lewin, J, Backdahl, L, Krispin, M, Wasserkort, R, Eckhardt, F and Beck, S (2011) Genome-wide screen for differential DNA methylation associated with neural cell differentiation in mouse. PLoS One 6, e26002.CrossRefGoogle Scholar
Cruceanu, C, Kutsarova, E, Chen, ES, Checknita, DR, Nagy, C, Lopez, JP, Alda, M, Rouleau, GA and Turecki, G (2016) DNA hypomethylation of Synapsin II CpG islands associates with increased gene expression in bipolar disorder and major depression. BMC Psychiatry 16, 286.CrossRefGoogle ScholarPubMed
Cui, W, Mizukami, H, Yanagisawa, M, Aida, T, Nomura, M, Isomura, Y, Takayanagi, R, Ozawa, K, Tanaka, K and Aizawa, H (2014) Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. The Journal of Neuroscience 34, 1627316285.CrossRefGoogle ScholarPubMed
Cui, X, Wakai, T, Shirai, Y, Yokoyama, N, Hatakeyama, K and Hirano, S (2006) Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Human Pathology 37, 298311.CrossRefGoogle ScholarPubMed
Czeh, B, Perez-Cruz, C, Fuchs, E and Flugge, G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behavioural Brain Research 190, 113.CrossRefGoogle ScholarPubMed
Daskalakis, M, Blagitko-Dorfs, N and Hackanson, B (2010) Decitabine. Recent Results in Cancer Research 184, 131157.CrossRefGoogle ScholarPubMed
Datta, J, Ghoshal, K, Denny, WA, Gamage, SA, Brooke, DG, Phiasivongsa, P, Redkar, S and Jacob, ST (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Research 69, 42774285.CrossRefGoogle ScholarPubMed
Davies, MN, Krause, L, Bell, JT, Gao, F, Ward, KJ, Wu, H, Lu, H, Liu, Y, Tsai, PC, Collier, DA, Murphy, T, Dempster, E, Mill, J, Consortium, UKBE, Battle, A, Mostafavi, S, Zhu, X, Henders, A, Byrne, E, Wray, NR, Martin, NG, Spector, TD and Wang, J (2014) Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biology 15, R56.CrossRefGoogle ScholarPubMed
Dempster, EL, Wong, CC, Lester, KJ, Burrage, J, Gregory, AM, Mill, J and Eley, TC (2014) Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biological Psychiatry 76, 977983.CrossRefGoogle ScholarPubMed
Diazgranados, N, Ibrahim, LA, Brutsche, NE, Ameli, R, Henter, ID, Luckenbaugh, DA, Machado-Vieira, R and Zarate, CA Jr 2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. The Journal of Clinical Psychiatry 71, 16051611.CrossRefGoogle ScholarPubMed
Diesch, J, Zwick, A, Garz, AK, Palau, A, Buschbeck, M and Gotze, KS (2016) A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clinical Epigenetics 8, 71.CrossRefGoogle ScholarPubMed
Ding, Y and Dai, J (2019) Advance in Stress for Depressive Disorder. Advances in Experimental Medicine and Biology 1180, 147178.CrossRefGoogle ScholarPubMed
Diniz, C, Casarotto, PC, Resstel, L and Joca, SRL (2018) Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neuroscience & Biobehavioral Reviews 90, 7083.CrossRefGoogle ScholarPubMed
Doherty, TS, Forster, A and Roth, TL (2016) Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behavioural Brain Research 298, 5561.CrossRefGoogle Scholar
Domenici, MR, Ferrante, A, Martire, A, Chiodi, V, Pepponi, R, Tebano, MT and Popoli, P (2019) Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacological Research 147, 104338.CrossRefGoogle ScholarPubMed
Domschke, K, Tidow, N, Schwarte, K, Deckert, J, Lesch, KP, Arolt, V, Zwanzger, P and Baune, BT (2014) Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. International Journal of Neuropsychopharmacology 17, 11671176.CrossRefGoogle ScholarPubMed
Dong, E, Locci, V, Gatta, E, Grayson, DR and Guidotti, A (2019) N-Phthalyl-l-Tryptophan (RG108), like Clozapine (CLO), induces chromatin remodeling in brains of prenatally stressed mice. Molecular Pharmacology 95, 6269.CrossRefGoogle Scholar
Drevets, WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology 11, 240249.CrossRefGoogle ScholarPubMed
Duman, RS and Aghajanian, GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 6872.CrossRefGoogle ScholarPubMed
Duman, RS, Heninger, GR and Nestler, EJ (1997) A molecular and cellular theory of depression. Archives of General Psychiatry 54, 597606.CrossRefGoogle ScholarPubMed
Duman, RS and Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends in Neurosciences 35, 4756.CrossRefGoogle ScholarPubMed
Duncan, GE, Knapp, DJ, Johnson, KB and Breese, GR (1996) Functional classification of antidepressants based on antagonism of swim stress-induced fos-like immunoreactivity. The Journal of Pharmacology and Experimental Therapeutics 277, 10761089.Google ScholarPubMed
Dwyer, JM and Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biological Psychiatry 73, 11891198.CrossRefGoogle ScholarPubMed
Ernst, C, Deleva, V, Deng, X, Sequeira, A, Pomarenski, A, Klempan, T, Ernst, N, Quirion, R, Gratton, A, Szyf, M and Turecki, G (2009) Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Archives of General Psychiatry 66, 2232.CrossRefGoogle ScholarPubMed
Estey, EH (2013) Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia 27, 18031812.CrossRefGoogle ScholarPubMed
Fabbri, C, Di Girolamo, G and Serretti, A (2013) Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. American Journal of Medical Genetics 162B, 487520.Google ScholarPubMed
Fanselow, MS and Dong, HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 719.CrossRefGoogle ScholarPubMed
Farrell, C, Doolin, K, N OL, Jairaj, C, Roddy, D, Tozzi, L, Morris, D, Harkin, A, Frodl, T, Nemoda, Z, Szyf, M, Booij, L and O’keane, V (2018) DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Research 265, 341348.CrossRefGoogle Scholar
Feng, J, Chang, H, Li, E and Fan, G (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. Journal of Neuroscience Research 79, 734746.CrossRefGoogle ScholarPubMed
Feng, J, Zhou, Y, Campbell, SL, Le, T, Li, E, Sweatt, JD, Silva, AJ and Fan, G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience 13, 423430.CrossRefGoogle ScholarPubMed
Ferrari, F and Villa, RF (2017) The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Molecular Neurobiology 54, 48474865.CrossRefGoogle ScholarPubMed
Fitzgerald, PB, Laird, AR, Maller, J and Daskalakis, ZJ (2008) A meta-analytic study of changes in brain activation in depression. Human Brain Mapping 29, 683695.CrossRefGoogle ScholarPubMed
Forero, DA and Gonzalez-Giraldo, Y (2020) Integrative In Silico Analysis of Genome-Wide DNA Methylation Profiles in Schizophrenia. Journal of Molecular Neuroscience 70, 18871893.CrossRefGoogle Scholar
Fredman, L, Weissman, MM, Leaf, PJ and Bruce, ML (1988) Social functioning in community residents with depression and other psychiatric disorders: results of the New Haven Epidemiologic Catchment Area Study. Journal of Affective Disorders 15, 103112.CrossRefGoogle ScholarPubMed
Fuchikami, M, Morinobu, S, Segawa, M, Okamoto, Y, Yamawaki, S, Ozaki, N, Inoue, T, Kusumi, I, Koyama, T, Tsuchiyama, K and Terao, T (2011) DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6, e23881.CrossRefGoogle ScholarPubMed
Fukushima, K, Kado, T and Tsujiuchi, T (2018) Lysophosphatidic acid receptor. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Cham: Springer. https://doi.org/10.1007/978-3-S19-67199-4_101681.Google Scholar
Gassen, NC, Fries, GR, Zannas, AS, Hartmann, J, Zschocke, J, Hafner, K, Carrillo-Roa, T, Steinbacher, J, Preissinger, SN, Hoeijmakers, L, Knop, M, Weber, F, Kloiber, S, Lucae, S, Chrousos, GP, Carell, T, Ising, M, Binder, EB, Schmidt, MV, Ruegg, J and Rein, T (2015) Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Science Signaling 8, ra119.CrossRefGoogle ScholarPubMed
Gayon, J (2016) From Mendel to epigenetics: History of genetics. Comptes Rendus Biologies 339, 225230.CrossRefGoogle ScholarPubMed
Gerhard, DM and Duman, RS (2018) Rapid-Acting Antidepressants: Mechanistic Insights and Future Directions. Current Behavioral Neuroscience Reports 5, 3647.CrossRefGoogle ScholarPubMed
Geuze, E, Westenberg, HG, Heinecke, A, De Kloet, CS, Goebel, R and Vermetten, E (2008) Thinner prefrontal cortex in veterans with posttraumatic stress disorder. Neuroimage 41, 675681.CrossRefGoogle ScholarPubMed
Gillespie, CF and Nemeroff, CB (2005) Hypercortisolemia and depression. Psychosomatic Medicine 67(Suppl 1), S268.CrossRefGoogle ScholarPubMed
Gilpin, NW, Herman, MA and Roberto, M (2015) The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biological Psychiatry 77, 859869.CrossRefGoogle ScholarPubMed
Girotti, M, Adler, SM, Bulin, SE, Fucich, EA, Paredes, D and Morilak, DA (2018) Prefrontal cortex executive processes affected by stress in health and disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry 85, 161179.CrossRefGoogle ScholarPubMed
Glover, ME, Mccoy, CR, Shupe, EA, Unroe, KA, Jackson, NL and Clinton, SM (2019) Perinatal exposure to the SSRI paroxetine alters the methylome landscape of the developing dentate gyrus. European Journal of Neuroscience 50, 18431870.CrossRefGoogle Scholar
Gowher, H, Stockdale, CJ, Goyal, R, Ferreira, H, Owen-Hughes, T and Jeltsch, A (2005) De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44, 98999904.CrossRefGoogle ScholarPubMed
Grayson, DR and Guidotti, A (2013) The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 38, 138166.CrossRefGoogle ScholarPubMed
Griffith, JS and Mahler, HR (1969) DNA ticketing theory of memory. Nature 223, 580582.CrossRefGoogle Scholar
Grigoryan, G and Segal, M (2016) Lasting Differential Effects on Plasticity Induced by Prenatal Stress in Dorsal and Ventral Hippocampus. Neural Plasticity 2016, 2540462.CrossRefGoogle ScholarPubMed
Gros, C, Fahy, J, Halby, L, Dufau, I, Erdmann, A, Gregoire, JM, Ausseil, F, Vispe, S and Arimondo, PB (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94, 22802296.CrossRefGoogle ScholarPubMed
Haghighi, F, Xin, Y, Chanrion, B, O’donnell, AH, Ge, Y, Dwork, AJ, Arango, V and Mann, JJ (2014) Increased DNA methylation in the suicide brain. Dialogues in Clinical Neuroscience 16, 430438.Google ScholarPubMed
Hammen, C (2005) Stress and depression. Annual Review of Clinical Psychology 1, 293319.CrossRefGoogle ScholarPubMed
Hark, AT, Schoenherr, CJ, Katz, DJ, Ingram, RS, Levorse, JM and Tilghman, SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486489.CrossRefGoogle Scholar
Harmer, CJ, Duman, RS and Cowen, PJ (2017) How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 4, 409418.CrossRefGoogle ScholarPubMed
Harmer, CJ, Mackay, CE, Reid, CB, Cowen, PJ and Goodwin, GM (2006) Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biological Psychiatry 59, 816820.CrossRefGoogle ScholarPubMed
Hauer, MH and Gasser, SM (2017) Chromatin and nucleosome dynamics in DNA damage and repair. Genes & Development 31, 22042221.CrossRefGoogle ScholarPubMed
Heim, C and Binder, EB (2012) Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Experimental Neurology 233, 102111.CrossRefGoogle ScholarPubMed
Heim, C, Newport, DJ, Mletzko, T, Miller, AH and Nemeroff, CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33, 693710.CrossRefGoogle ScholarPubMed
Hellman, A and Chess, A (2007) Gene body-specific methylation on the active X chromosome. Science 315, 11411143.CrossRefGoogle ScholarPubMed
Herken, H, Gurel, A, Selek, S, Armutcu, F, Ozen, ME, Bulut, M, Kap, O, Yumru, M, Savas, HA and Akyol, O (2007) Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Archives of Medical Research 38, 247252.CrossRefGoogle ScholarPubMed
Herman, JG and Baylin, SB (2003) Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine 349, 20422054.CrossRefGoogle ScholarPubMed
Hervouet, E, Peixoto, P, Delage-Mourroux, R, Boyer-Guittaut, M and Cartron, PF (2018) Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clinical Epigenetics 10, 17.CrossRefGoogle ScholarPubMed
Higuchi, F, Uchida, S, Yamagata, H, Otsuki, K, Hobara, T, Abe, N, Shibata, T and Watanabe, Y (2011) State-dependent changes in the expression of DNA methyltransferases in mood disorder patients. Journal of Psychiatric Research 45, 12951300.CrossRefGoogle ScholarPubMed
Holliday, R (2006) Epigenetics: a historical overview. Epigenetics 1, 7680.CrossRefGoogle ScholarPubMed
Holliday, R and Pugh, JE (1975) DNA modification mechanisms and gene activity during development. Science 187, 226232.CrossRefGoogle ScholarPubMed
Hsieh, MT, Lin, CC, Lee, CT and Huang, TL (2019) Abnormal Brain-Derived Neurotrophic Factor Exon IX Promoter Methylation, Protein, and mRNA Levels in Patients with Major Depressive Disorder. Journal of Clinical Medicine 8, 568.CrossRefGoogle ScholarPubMed
Issler, O and Chen, A (2015) Determining the role of microRNAs in psychiatric disorders. Nature Reviews Neuroscience 16, 201212.CrossRefGoogle ScholarPubMed
Ivanova, E, Bozhilova, R, Kaneva, R and Milanova, V (2018) The Dysregulation of microRNAs and the Role of Stress in the Pathogenesis of Mental Disorders. Current Topics in Medicinal Chemistry 18, 18931907.CrossRefGoogle ScholarPubMed
Jackson, MF (2020) Epigenetic Mechanism Links NMDA Receptor Hypofunction and Cognitive Deficits in Schizophrenia to D2 Receptors. Biological Psychiatry 87, 692694.CrossRefGoogle ScholarPubMed
Jeltsch, A (2006) Molecular enzymology of mammalian DNA methyltransferases. Current Topics in Microbiology and Immunology 301, 203225.Google ScholarPubMed
Jenuwein, T and Allis, CD (2001) Translating the histone code. Science 293, 10741080.CrossRefGoogle ScholarPubMed
Jia, N, Wang, J, Li, Q, Tao, X, Chang, K, Hua, K, Yu, Y, Wong, KK and Feng, W (2016) DNA methylation promotes paired box 2 expression via myeloid zinc finger 1 in endometrial cancer. Oncotarget 7, 8478584797.CrossRefGoogle ScholarPubMed
Johnston, KM, Powell, LC, Anderson, IM, Szabo, S and Cline, S (2019) The burden of treatment-resistant depression: A systematic review of the economic and quality of life literature. Journal of Affective Disorders 242, 195210.CrossRefGoogle ScholarPubMed
Johnstone, SE and Baylin, SB (2010) Stress and the epigenetic landscape: a link to the pathobiology of human diseases? Nature Reviews Genetics 11, 806812.CrossRefGoogle Scholar
Jones, PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics 13, 484492.CrossRefGoogle ScholarPubMed
Ju, C, Fiori, LM, Belzeaux, R, Theroux, JF, Chen, GG, Aouabed, Z, Blier, P, Farzan, F, Frey, BN, Giacobbe, P, Lam, RW, Leri, F, Macqueen, GM, Milev, R, Muller, DJ, Parikh, SV, Rotzinger, S, Soares, CN, Uher, R, Li, Q, Foster, JA, Kennedy, SH and Turecki, G (2019) Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Translational Psychiatry 9, 254.CrossRefGoogle ScholarPubMed
Jurek, B and Neumann, ID (2018) The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiological Reviews 98, 18051908.CrossRefGoogle Scholar
Kadriu, B, Musazzi, L, Henter, ID, Graves, M, Popoli, M and Zarate, CA Jr 2019) Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. International Journal of Neuropsychopharmacology 22, 119135.CrossRefGoogle ScholarPubMed
Kang, HJ, Kim, JM, Lee, JY, Kim, SY, Bae, KY, Kim, SW, Shin, IS, Kim, HR, Shin, MG and Yoon, JS (2013a) BDNF promoter methylation and suicidal behavior in depressive patients. The Journal of Affective Disorders 151, 679685.CrossRefGoogle ScholarPubMed
Kang, HJ, Kim, JM, Stewart, R, Kim, SY, Bae, KY, Kim, SW, Shin, IS, Shin, MG and Yoon, JS (2013b) Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry 44, 2328.CrossRefGoogle ScholarPubMed
Karahoca, M and Momparler, RL (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2ʼ-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clinical Epigenetics 5, 3.CrossRefGoogle ScholarPubMed
Karpova, NN, Sales, AJ and Joca, SR (2017) Epigenetic Basis of Neuronal and Synaptic Plasticity. Current Topics in Medicinal Chemistry 17, 771793.CrossRefGoogle ScholarPubMed
Keller, S, Sarchiapone, M, Zarrilli, F, Videtic, A, Ferraro, A, Carli, V, Sacchetti, S, Lembo, F, Angiolillo, A, Jovanovic, N, Pisanti, F, Tomaiuolo, R, Monticelli, A, Balazic, J, Roy, A, Marusic, A, Cocozza, S, Fusco, A, Bruni, CB, Castaldo, G and Chiariotti, L (2010) Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Archives of General Psychiatry 67, 258267.CrossRefGoogle ScholarPubMed
Kendler, KS and Gardner, CO (2016) Depressive vulnerability, stressful life events and episode onset of major depression: a longitudinal model. Psychological Medicine 46, 18651874.CrossRefGoogle ScholarPubMed
Kendler, KS, Karkowski, LM and Prescott, CA (1999) Causal relationship between stressful life events and the onset of major depression. The American Journal of Psychiatry 156, 837841.CrossRefGoogle ScholarPubMed
Kessler, RC, Akiskal, HS, Ames, M, Birnbaum, H, Greenberg, P, Hirschfeld, RM, Jin, R, Merikangas, KR, Simon, GE and Wang, PS (2006) Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. The American Journal of Psychiatry 163, 15611568.CrossRefGoogle Scholar
Kessler, RC and Bromet, EJ (2013) The epidemiology of depression across cultures. Annual Review of Public Health 34, 119138.CrossRefGoogle ScholarPubMed
Khan, AR, Chuhutin, A, Wiborg, O, Kroenke, CD, Nyengaard, JR, Hansen, B and Jespersen, SN (2016a) Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain. Neuroimage 142, 421430.CrossRefGoogle ScholarPubMed
Khan, AR, Chuhutin, A, Wiborg, O, Kroenke, CD, Nyengaard, JR, Hansen, B and Jespersen, SN (2016b) Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain. Data in Brief 8, 934937.CrossRefGoogle ScholarPubMed
Kimpton, J (2012) The brain derived neurotrophic factor and influences of stress in depression. Psychiatria Danubina 24(Suppl 1), S16971.Google ScholarPubMed
King, L, Robins, S, Chen, G, Yerko, V, Zhou, Y, Nagy, C, Feeley, N, Gold, I, Hayton, B, Turecki, G and Zelkowitz, P (2017) Perinatal depression and DNA methylation of oxytocin-related genes: a study of mothers and their children. Hormones and Behavior 96, 8494.CrossRefGoogle ScholarPubMed
Klengel, T and Binder, EB (2015) Epigenetics of Stress-Related Psychiatric Disorders and Gene x Environment Interactions. Neuron 86, 13431357.CrossRefGoogle ScholarPubMed
Klengel, T, Pape, J, Binder, EB and Mehta, D (2014) The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 80, 115132.CrossRefGoogle ScholarPubMed
Koenigs, M, Huey, ED, Calamia, M, Raymont, V, Tranel, D and Grafman, J (2008) Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. The Journal of Neuroscience 28, 1234112348.CrossRefGoogle ScholarPubMed
Krishnan, V and Nestler, EJ (2008) The molecular neurobiology of depression. Nature 455, 894902.CrossRefGoogle ScholarPubMed
Kulis, M, Queiros, AC, Beekman, R and Martin-Subero, JI (2013) Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochimica et Biophysica Acta 1829, 11611174.CrossRefGoogle ScholarPubMed
Kundakovic, M and Champagne, FA (2011) Epigenetic perspective on the developmental effects of bisphenol A. Brain, Behavior, and Immunity 25, 10841093.CrossRefGoogle Scholar
Kundakovic, M, Gudsnuk, K, Herbstman, JB, Tang, D, Perera, FP and Champagne, FA (2015) DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences of the United States of America 112, 68076813.CrossRefGoogle ScholarPubMed
Labonte, B, Suderman, M, Maussion, G, Lopez, JP, Navarro-Sanchez, L, Yerko, V, Mechawar, N, Szyf, M, Meaney, MJ and Turecki, G (2013) Genome-wide methylation changes in the brains of suicide completers. The American Journal of Psychiatry 170, 511520.CrossRefGoogle ScholarPubMed
Laplant, Q, Vialou, V, Covington, HE, 3rd, Dumitriu, D, Feng, J, Warren, BL, Maze, I, Dietz, DM, Watts, EL, Iniguez, SD, Koo, JW, Mouzon, E, Renthal, W, Hollis, F, Wang, H, Noonan, MA, Ren, Y, Eisch, AJ, Bolanos, CA, Kabbaj, M, Xiao, G, Neve, RL, Hurd, YL, Oosting, RS, Fan, G, Morrison, JH and Nestler, EJ (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience 13, 11371143.CrossRefGoogle ScholarPubMed
Lascano, S, Lopez, M and Arimondo, PB (2018) Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. Chemical Record 18, 18541876.CrossRefGoogle ScholarPubMed
Laursen, TM, Musliner, KL, Benros, ME, Vestergaard, M and Munk-Olsen, T (2016) Mortality and life expectancy in persons with severe unipolar depression. The Journal of Affective Disorders 193, 203207.CrossRefGoogle ScholarPubMed
Le Francois, B, Soo, J, Millar, AM, Daigle, M, Le Guisquet, AM, Leman, S, Minier, F, Belzung, C and Albert, PR (2015) Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiology of Disease 82, 332341.CrossRefGoogle ScholarPubMed
Leonardo, ED, Richardson-Jones, JW, Sibille, E, Kottman, A and Hen, R (2006) Molecular heterogeneity along the dorsal-ventral axis of the murine hippocampal CA1 field: a microarray analysis of gene expression. Neuroscience 137, 177186.CrossRefGoogle ScholarPubMed
Li, B, Piriz, J, Mirrione, M, Chung, C, Proulx, CD, Schulz, D, Henn, F and Malinow, R (2011a) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535539.CrossRefGoogle ScholarPubMed
Li, C, Pleil, KE, Stamatakis, AM, Busan, S, Vong, L, Lowell, BB, Stuber, GD and Kash, TL (2012) Presynaptic inhibition of gamma-aminobutyric acid release in the bed nucleus of the stria terminalis by kappa opioid receptor signaling. Biological Psychiatry 71, 725732.CrossRefGoogle ScholarPubMed
Li, E and Zhang, Y (2014) DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology 6, a019133.CrossRefGoogle ScholarPubMed
Li, K, Zhou, T, Liao, L, Yang, Z, Wong, C, Henn, F, Malinow, R, Yates, JR 3rd and Hu, H (2013) betaCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 10161020.CrossRefGoogle ScholarPubMed
Li, N, Lee, B, Liu, RJ, Banasr, M, Dwyer, JM, Iwata, M, Li, XY, Aghajanian, G and Duman, RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959964.CrossRefGoogle ScholarPubMed
Li, N, Liu, RJ, Dwyer, JM, Banasr, M, Lee, B, Son, H, Li, XY, Aghajanian, G and Duman, RS (2011b) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biological Psychiatry 69, 754761.CrossRefGoogle ScholarPubMed
Liao, J, Karnik, R, Gu, H, Ziller, MJ, Clement, K, Tsankov, AM, Akopian, V, Gifford, CA, Donaghey, J, Galonska, C, Pop, R, Reyon, D, Tsai, SQ, Mallard, W, Joung, JK, Rinn, JL, Gnirke, A and Meissner, A (2015) Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nature Genetics 47, 469478.CrossRefGoogle ScholarPubMed
Lin, CC and Huang, TL (2020) Brain-derived neurotrophic factor and mental disorders. Biomedical Journal 43, 134142.CrossRefGoogle ScholarPubMed
Lin, L, Liu, Y, Xu, F, Huang, J, Daugaard, TF, Petersen, TS, Hansen, B, Ye, L, Zhou, Q, Fang, F, Yang, L, Li, S, Floe, L, Jensen, KT, Shrock, E, Chen, F, Yang, H, Wang, J, Liu, X, Xu, X, Bolund, L, Nielsen, AL and Luo, Y (2018) Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. GigaScience 7, 119.CrossRefGoogle ScholarPubMed
Lister, R, Mukamel, EA, Nery, JR, Urich, M, Puddifoot, CA, Johnson, ND, Lucero, J, Huang, Y, Dwork, AJ, Schultz, MD, Yu, M, Tonti-Filippini, J, Heyn, H, Hu, S, Wu, JC, Rao, A, Esteller, M, He, C, Haghighi, FG, Sejnowski, TJ, Behrens, MM and Ecker, JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905.CrossRefGoogle ScholarPubMed
Liston, C, Miller, MM, Goldwater, DS, Radley, JJ, Rocher, AB, Hof, PR, Morrison, JH and Mcewen, BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. The Journal of Neuroscience 26, 78707874.CrossRefGoogle ScholarPubMed
Liu, L, Wylie, RC, Andrews, LG and Tollefsbol, TO (2003) Aging, cancer and nutrition: the DNA methylation connection. Mechanisms of Ageing and Development 124, 989998.Google ScholarPubMed
Liu, W, Ge, T, Leng, Y, Pan, Z, Fan, J, Yang, W and Cui, R (2017) The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity 2017, 6871089.CrossRefGoogle ScholarPubMed
Long, MD, Smiraglia, DJ and Campbell, MJ (2017) The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer. Biomolecules 7.Google ScholarPubMed
Lopizzo, N, Bocchio Chiavetto, L, Cattane, N, Plazzotta, G, Tarazi, FI, Pariante, CM, Riva, MA and Cattaneo, A (2015) Gene-environment interaction in major depression: focus on experience-dependent biological systems. Frontiers in Psychiatry 6, 68.CrossRefGoogle ScholarPubMed
Lorenzetti, V, Allen, NB, Fornito, A and Yucel, M (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. Journal of Affective Disorders 117, 117.CrossRefGoogle ScholarPubMed
Lorincz, MC, Dickerson, DR, Schmitt, M and Groudine, M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural & Molecular Biology 11, 10681075.CrossRefGoogle ScholarPubMed
Luoni, A and Riva, MA (2016) MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacology & Therapeutics 167, 1327.CrossRefGoogle ScholarPubMed
Lyko, F and Brown, R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. JNCI Journal of the National Cancer Institute 97, 14981506.CrossRefGoogle ScholarPubMed
Macarthur, IC and Dawlaty, MM (2021) TET Enzymes and 5-Hydroxymethylcytosine in Neural Progenitor Cell Biology and Neurodevelopment. Frontiers in Cell and Developmental Biology 9, 645335.CrossRefGoogle ScholarPubMed
Maes, M, Mihaylova, I, Kubera, M, Uytterhoeven, M, Vrydags, N and Bosmans, E (2011) Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro-endocrinology Letters 32, 133140.Google Scholar
Mai, A and Altucci, L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. International Journal of Biochemistry & Cell Biology 41, 199213.CrossRefGoogle ScholarPubMed
Makhathini, KB, Abboussi, O, Stein, DJ, Mabandla, MV and Daniels, WMU (2017) Repetitive stress leads to impaired cognitive function that is associated with DNA hypomethylation, reduced BDNF and a dysregulated HPA axis. International Journal of Developmental Neuroscience 60, 6369.CrossRefGoogle Scholar
Malberg, JE and Duman, RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28, 15621571.CrossRefGoogle ScholarPubMed
Marcucci, G, Silverman, L, Eller, M, Lintz, L and Beach, CL (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. Journal of Clinical Pharmacology 45, 597602.CrossRefGoogle ScholarPubMed
Mccoy, CR, Rana, S, Stringfellow, SA, Day, JJ, Wyss, JM, Clinton, SM and Kerman, IA (2016) Neonatal maternal separation stress elicits lasting DNA methylation changes in the hippocampus of stress-reactive Wistar Kyoto rats. European Journal of Neuroscience 44, 28292845.CrossRefGoogle ScholarPubMed
Melas, PA, Rogdaki, M, Lennartsson, A, Bjork, K, Qi, H, Witasp, A, Werme, M, Wegener, G, Mathe, AA, Svenningsson, P and Lavebratt, C (2012) Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. International Journal of Neuropsychopharmacology 15, 669679.CrossRefGoogle Scholar
Mersfelder, EL and Parthun, MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Research 34, 26532662.CrossRefGoogle ScholarPubMed
Metzger, M, Bueno, D and Lima, LB (2017) The lateral habenula and the serotonergic system. Pharmacology Biochemistry and Behavior 162, 2228.CrossRefGoogle ScholarPubMed
Mifsud, KR, Saunderson, EA, Spiers, H, Carter, SD, Trollope, AF, Mill, J and Reul, JM (2017) Rapid Down-Regulation of Glucocorticoid Receptor Gene Expression in the Dentate Gyrus after Acute Stress in vivo: Role of DNA Methylation and MicroRNA Activity. Neuroendocrinology 104, 157169.CrossRefGoogle ScholarPubMed
Mitchelmore, C and Gede, L (2014) Brain Derived Neurotrophic Factor: epigenetic regulation in psychiatric disorders. Brain Research 1586, 162172.CrossRefGoogle ScholarPubMed
Momparler, RL (2005) Pharmacology of 5-Aza-2ʼ-deoxycytidine (decitabine). Seminars in Hematology 42, S916.CrossRefGoogle Scholar
Momparler, RL, Rivard, GE and Gyger, M (1985) Clinical trial on 5-aza-2ʼ-deoxycytidine in patients with acute leukemia. Pharmacology & Therapeutics 30, 277286.CrossRefGoogle ScholarPubMed
Moore, LD, Le, T and Fan, G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38, 2338.CrossRefGoogle ScholarPubMed
Morris, MJ, Na, ES, Autry, AE and Monteggia, LM (2016) Impact of DNMT1 and DNMT3a forebrain knockout on depressive- and anxiety like behavior in mice. Neurobiology of Learning and Memory 135, 139145.CrossRefGoogle ScholarPubMed
Na, KS, Chang, HS, Won, E, Han, KM, Choi, S, Tae, WS, Yoon, HK, Kim, YK, Joe, SH, Jung, IK, Lee, MS and Ham, BJ (2014) Association between glucocorticoid receptor methylation and hippocampal subfields in major depressive disorder. PLoS One 9, e85425.CrossRefGoogle ScholarPubMed
Na, KS, Won, E, Kang, J, Chang, HS, Yoon, HK, Tae, WS, Kim, YK, Lee, MS, Joe, SH, Kim, H and Ham, BJ (2016) Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Scientific Reports 6, 21089.CrossRefGoogle ScholarPubMed
Nabilsi, NH, Broaddus, RR and Loose, DS (2009) DNA methylation inhibits p53-mediated survivin repression. Oncogene 28, 20462050.CrossRefGoogle ScholarPubMed
Nantharat, M, Wanitchanon, T, Amesbutr, M, Tammachote, R and Praphanphoj, V (2015) Glucocorticoid receptor gene (NR3C1) promoter is hypermethylated in Thai females with major depressive disorder.  Genetics and Molecular Research 14, 1907119079.CrossRefGoogle ScholarPubMed
Navada, SC, Steinmann, J, Lubbert, M and Silverman, LR (2014) Clinical development of demethylating agents in hematology. The Journal of Clinical Investigation 124, 4046.CrossRefGoogle ScholarPubMed
Neis, VB, Bettio, LB, Moretti, M, Rosa, PB, Olescowicz, G, Fraga, DB, Goncalves, FM, Freitas, AE, Heinrich, IA, Lopes, MW, Leal, RB and Rodrigues, ALS (2018) Single administration of agmatine reverses the depressive-like behavior induced by corticosterone in mice: Comparison with ketamine and fluoxetine. Pharmacology Biochemistry and Behavior. 173, 4450.CrossRefGoogle ScholarPubMed
Neis, VB, Bettio, LEB, Moretti, M, Rosa, PB, Ribeiro, CM, Freitas, AE, Goncalves, FM, Leal, RB and Rodrigues, ALS (2016a) Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacology Biochemistry and Behavior. 150-151, 108114.CrossRefGoogle ScholarPubMed
Neis, VB, Moretti, M, Bettio, LE, Ribeiro, CM, Rosa, PB, Goncalves, FM, Lopes, MW, Leal, RB and Rodrigues, AL (2016b) Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling. European Neuropsychopharmacology 26, 959971.CrossRefGoogle ScholarPubMed
Nemoda, Z, Massart, R, Suderman, M, Hallett, M, Li, T, Coote, M, Cody, N, Sun, ZS, Soares, CN, Turecki, G, Steiner, M and Szyf, M (2015) Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi. Translational Psychiatry 5, e545.CrossRefGoogle ScholarPubMed
Nestler, EJ, Barrot, M, Dileone, RJ, Eisch, AJ, Gold, SJ and Monteggia, LM (2002) Neurobiology of depression. Neuron 34, 1325.CrossRefGoogle ScholarPubMed
Neyazi, A, Theilmann, W, Brandt, C, Rantamaki, T, Matsui, N, Rhein, M, Kornhuber, J, Bajbouj, M, Sperling, W, Bleich, S, Frieling, H and Loscher, W (2018) P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy. Translational Psychiatry 8, 25.CrossRefGoogle ScholarPubMed
Notaras, M and Van Den Buuse, M (2020) Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Molecular Psychiatry 25, 22512274.CrossRefGoogle ScholarPubMed
Numata, S, Ishii, K, Tajima, A, Iga, J, Kinoshita, M, Watanabe, S, Umehara, H, Fuchikami, M, Okada, S, Boku, S, Hishimoto, A, Shimodera, S, Imoto, I, Morinobu, S and Ohmori, T (2015) Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation. Epigenetics 10, 135141.CrossRefGoogle ScholarPubMed
O’carroll, D and Schaefer, A (2013) General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology 38, 3954.CrossRefGoogle Scholar
Oberdoerffer, S (2012) A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing. Transcription 3, 106109.CrossRefGoogle ScholarPubMed
Oberlander, TF, Weinberg, J, Papsdorf, M, Grunau, R, Misri, S and Devlin, AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3, 97106.CrossRefGoogle ScholarPubMed
Oh, JE, Chambwe, N, Klein, S, Gal, J, Andrews, S, Gleason, G, Shaknovich, R, Melnick, A, Campagne, F and Toth, M (2013) Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment. Translational Psychiatry 3, e218.CrossRefGoogle ScholarPubMed
Okada, S, Morinobu, S, Fuchikami, M, Segawa, M, Yokomaku, K, Kataoka, T, Okamoto, Y, Yamawaki, S, Inoue, T, Kusumi, I, Koyama, T, Tsuchiyama, K, Terao, T, Kokubo, Y and Mimura, M (2014) The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. Journal of Psychiatric Research 53, 4753.CrossRefGoogle ScholarPubMed
Okano, M, Bell, DW, Haber, DA and Li, E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247257.CrossRefGoogle Scholar
Ooi, SK, Qiu, C, Bernstein, E, Li, K, Jia, D, Yang, Z, Erdjument-Bromage, H, Tempst, P, Lin, SP, Allis, CD, Cheng, X and Bestor, TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714717.CrossRefGoogle ScholarPubMed
Otte, C, Gold, SM, Penninx, BW, Pariante, CM, Etkin, A, Fava, M, Mohr, DC and Schatzberg, AF (2016) Major depressive disorder. Nature Reviews Disease Primers 2, 16065.CrossRefGoogle ScholarPubMed
Papakostas, GI and Ionescu, DF (2015) Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Molecular Psychiatry 20, 11421150.CrossRefGoogle ScholarPubMed
Pariante, CM and Lightman, SL (2008) The HPA axis in major depression: classical theories and new developments. Trends in Neurosciences 31, 464468.CrossRefGoogle ScholarPubMed
Park, HJ, Kim, SK, Kang, WS, Chung, JH and Kim, JW (2014) Increased activation of synapsin 1 and mitogen-activated protein kinases/extracellular signal-regulated kinase in the amygdala of maternal separation rats. CNS Neuroscience & Therapeutics 20, 172181.CrossRefGoogle ScholarPubMed
Parsey, RV, Hastings, RS, Oquendo, MA, Huang, YY, Simpson, N, Arcement, J, Huang, Y, Ogden, RT, Van Heertum, RL, Arango, V and Mann, JJ (2006) Lower serotonin transporter binding potential in the human brain during major depressive episodes. The American Journal of Psychiatry 163, 5258.CrossRefGoogle ScholarPubMed
Pastor-Anglada, M, Molina-Arcas, M, Casado, FJ, Bellosillo, B, Colomer, D and Gil, J (2004) Nucleoside transporters in chronic lymphocytic leukaemia. Leuk 18, 385393.CrossRefGoogle ScholarPubMed
Pazini, FL, Cunha, MP, Rosa, JM, Colla, AR, Lieberknecht, V, Oliveira, A and Rodrigues, AL (2016) Creatine, Similar to Ketamine, Counteracts Depressive-Like Behavior Induced by Corticosterone via PI3K/Akt/mTOR Pathway. Molecular Neurobiology 53, 68186834.CrossRefGoogle ScholarPubMed
Pena, CJ and Nestler, EJ (2018) Progress in Epigenetics of Depression. Progress in Molecular Biology and Translational Science 157, 4166.CrossRefGoogle ScholarPubMed
Pereira, VS, Casarotto, PC, Hiroaki-Sato, VA, Sartim, AG, Guimaraes, FS and Joca, SR (2013) Antidepressant- and anticompulsive-like effects of purinergic receptor blockade: involvement of nitric oxide. European Neuropsychopharmacology 23, 17691778.CrossRefGoogle ScholarPubMed
Perera, F, Vishnevetsky, J, Herbstman, JB, Calafat, AM, Xiong, W, Rauh, V and Wang, S (2012) Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environmental Health Perspectives 120, 11901194.CrossRefGoogle Scholar
Pettersson, E, Lichtenstein, P, Larsson, H, Song, J, ttention Deficit/Hyperactivity Disorder Working Group of the Ipsych-Broad-Pgc Consortium ASDWGOTI-B-PGCCBDWG, Tourette Syndrome Working Group of the Pgc SCSUDWGOTPGC, Agrawal, A, Borglum, AD, Bulik, CM, Daly, MJ, Davis, LK, Demontis, D, Edenberg, HJ, Grove, J, Gelernter, J, Neale, BM, Pardinas, AF, Stahl, E, Walters, JTR, Walters, R, Sullivan, PF, Posthuma, D and Polderman, TJC (2019) Genetic influences on eight psychiatric disorders based on family data of 4 408 646 full and half-siblings, and genetic data of 333 748 cases and controls - CORRIGENDUM. Psychological Medicine 49, 351, A.CrossRefGoogle ScholarPubMed
Peyrot, WJ, Middeldorp, CM, Jansen, R, Smit, JH, De Geus, EJ, Hottenga, JJ, Willemsen, G, Vink, JM, Virding, S, Barragan, I, Ingelman-Sundberg, M, Sim, SC, Boomsma, DI and Penninx, BW (2013) Strong effects of environmental factors on prevalence and course of major depressive disorder are not moderated by 5-HTTLPR polymorphisms in a large Dutch sample. Journal of Affective Disorders 146, 9199.CrossRefGoogle ScholarPubMed
Pina, IC, Gautschi, JT, Wang, GY, Sanders, ML, Schmitz, FJ, France, D, Cornell-Kennon, S, Sambucetti, LC, Remiszewski, SW, Perez, LB, Bair, KW and Crews, P (2003) Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. Journal of Organic Chemistry 68, 38663873.CrossRefGoogle ScholarPubMed
Pittenger, C and Duman, RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33, 88109.CrossRefGoogle Scholar
Post, RM and Silberstein, SD (1994) Shared mechanisms in affective illness, epilepsy, and migraine. Neurology 44, S3747.Google ScholarPubMed
Pradhan, S, Bacolla, A, Wells, RD and Roberts, RJ (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. The Journal of Biological Chemistry 274, 3300233010.CrossRefGoogle ScholarPubMed
Price, JL and Drevets, WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192216.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS and Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biological Psychiatry 66, 522526.CrossRefGoogle ScholarPubMed
Qin, T, Jelinek, J, Si, J, Shu, J and Issa, JP (2009) Mechanisms of resistance to 5-aza-2ʼ-deoxycytidine in human cancer cell lines. Blood 113, 659667.CrossRefGoogle ScholarPubMed
Quirk, GJ, Garcia, R and Gonzalez-Lima, F (2006) Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry 60, 337343.CrossRefGoogle ScholarPubMed
Rescher, U and Gerke, V (2008) S100A10/p11: family, friends and functions. Pflugers Arch 455, 575582.CrossRefGoogle ScholarPubMed
Resstel, LB and Correa, FM (2006) Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Autonomic Neuroscience 126-127, 130138.CrossRefGoogle ScholarPubMed
Resstel, LB, Joca, SR, Guimaraes, FG and Correa, FM (2006) Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience 143, 377385.CrossRefGoogle ScholarPubMed
Richel, DJ, Colly, LP, Kluin-Nelemans, JC and Willemze, R (1991) The antileukaemic activity of 5-Aza-2 deoxycytidine (Aza-dC) in patients with relapsed and resistant leukaemia. British Journal of Cancer 64, 144148.CrossRefGoogle ScholarPubMed
Richter-Levin, G and Xu, L (2018) How could stress lead to major depressive disorder?. IBRO Reports 4, 3843.CrossRefGoogle ScholarPubMed
Riggs, AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14, 925.CrossRefGoogle Scholar
Rivard, GE, Momparler, RL, Demers, J, Benoit, P, Raymond, R, Lin, K and Momparler, LF (1981) Phase I study on 5-aza-2ʼ-deoxycytidine in children with acute leukemia. Leukemia Research 5, 453462.CrossRefGoogle ScholarPubMed
Rocher, C, Spedding, M, Munoz, C and Jay, TM (2004) Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cerebral Cortex (New York, NY) 14, 224229.Google ScholarPubMed
Rodrigues, SM, Ledoux, JE and Sapolsky, RM (2009) The influence of stress hormones on fear circuitry. Annual Review of Neuroscience 32, 289313.CrossRefGoogle ScholarPubMed
Rosenzweig-Lipson, S, Beyer, CE, Hughes, ZA, Khawaja, X, Rajarao, SJ, Malberg, JE, Rahman, Z, Ring, RH and Schechter, LE (2007) Differentiating antidepressants of the future: efficacy and safety. Pharmacology & Therapeutics 113, 134153.CrossRefGoogle ScholarPubMed
Roth, TL, Lubin, FD, Funk, AJ and Sweatt, JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry 65, 760769.CrossRefGoogle ScholarPubMed
Roth, TL, Zoladz, PR, Sweatt, JD and Diamond, DM (2011) Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. Journal of Psychiatric Research  45, 919926.CrossRefGoogle Scholar
Rybka, J, Kedziora-Kornatowska, K, Banas-Lezanska, P, Majsterek, I, Carvalho, LA, Cattaneo, A, Anacker, C and Kedziora, J (2013) Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radical Biology and Medicine 63, 187194.CrossRefGoogle ScholarPubMed
Sabunciyan, S, Aryee, MJ, Irizarry, RA, Rongione, M, Webster, MJ, Kaufman, WE, Murakami, P, Lessard, A, Yolken, RH, Feinberg, AP, Potash, JB and Gen, REDC (2012) Genome-wide DNA methylation scan in major depressive disorder. PLoS One 7, e34451.CrossRefGoogle ScholarPubMed
Saibil, H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nature Reviews Molecular Cell Biology 14, 630642.CrossRefGoogle ScholarPubMed
Sales, AJ, Biojone, C, Terceti, MS, Guimaraes, FS, Gomes, MV and Joca, SR (2011) Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. British Journal of Pharmacology 164, 17111721.CrossRefGoogle ScholarPubMed
Sales, AJ and Joca, SR (2016) Effects of DNA methylation inhibitors and conventional antidepressants on mice behaviour and brain DNA methylation levels. Acta Neuropsychiatrica 28, 1122.CrossRefGoogle ScholarPubMed
Sales, AJ and Joca, SRL (2018) Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behavioural Brain Research 343, 815.CrossRefGoogle ScholarPubMed
Sales, AJ, Maciel, IS, Suavinha, A and Joca, SRL (2020) Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. Molecular Neurobiology.Google ScholarPubMed
Sartorius, A, Kiening, KL, Kirsch, P, Von Gall, CC, Haberkorn, U, Unterberg, AW, Henn, FA and Meyer-Lindenberg, A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biological Psychiatry 67, e9e11.CrossRefGoogle Scholar
Saunderson, EA, Spiers, H, Mifsud, KR, Gutierrez-Mecinas, M, Trollope, AF, Shaikh, A, Mill, J and Reul, JM (2016) Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America 113, 48304835.CrossRefGoogle ScholarPubMed
Schiele, MA, Zwanzger, P, Schwarte, K, Arolt, V, Baune, BT and Domschke, K (2020) Serotonin transporter gene promoter hypomethylation as a predictor of antidepressant treatment response in major depression - a replication study. International Journal of Neuropsychopharmacology.Google Scholar
Schildkraut, JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. The American Journal of Psychiatry 122, 509522.CrossRefGoogle ScholarPubMed
Schildkraut, JJ (1995) The catecholamine hypothesis of affective disorders: a review of supporting evidence. 1965. Journal of Neuropsychiatry and Clinical Neurosciences, 7, 524533; discussion 523-4.Google ScholarPubMed
Schneeberger, Y, Stenzig, J, Hubner, F, Schaefer, A, Reichenspurner, H and Eschenhagen, T (2016) Pharmacokinetics of the Experimental Non-Nucleosidic DNA Methyl Transferase Inhibitor N-Phthalyl-L-Tryptophan (RG 108) in Rats. Basic & Clinical Pharmacology & Toxicology 118, 327332.Google ScholarPubMed
Schulz, PE and Arora, G (2015) Depression. Continuum : Lifelong Learning in Neurology 21, 756771.Google ScholarPubMed
Serafini, G (2012) Neuroplasticity and major depression, the role of modern antidepressant drugs. World Journal of Psychiatry 2, 4957.CrossRefGoogle ScholarPubMed
Serchov, T, Clement, HW, Schwarz, MK, Iasevoli, F, Tosh, DK, Idzko, M, Jacobson, KA, De Bartolomeis, A, Normann, C, Biber, K and Van Calker, D (2015) Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 87, 549562.CrossRefGoogle ScholarPubMed
Serchov, T, Heumann, R, Van Calker, D and Biber, K (2016) Signaling pathways regulating Homer1a expression: implications for antidepressant therapy. Biological Chemistry 397, 207214.CrossRefGoogle ScholarPubMed
Shabel, SJ, Proulx, CD, Piriz, J and Malinow, R (2014) Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 14941498.CrossRefGoogle ScholarPubMed
Shadrina, M, Bondarenko, EA and Slominsky, PA (2018) Genetics Factors in Major Depression Disease. Frontiers in Psychiatry 9, 334.CrossRefGoogle ScholarPubMed
Sheline, YI, Barch, DM, Donnelly, JM, Ollinger, JM, Snyder, AZ and Mintun, MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biological Psychiatry 50, 651658.CrossRefGoogle ScholarPubMed
Sheline, YI, Gado, MH and Kraemer, HC (2003) Untreated depression and hippocampal volume loss. The American Journal of Psychiatry 160, 15161518.CrossRefGoogle ScholarPubMed
Shelton, RC, Osuntokun, O, Heinloth, AN and Corya, SA (2010) Therapeutic options for treatment-resistant depression. CNS Drugs 24, 131161.CrossRefGoogle ScholarPubMed
Shen, XF, Yuan, HB, Wang, GQ, Xue, H, Liu, YF and Zhang, CX (2019) Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats. Journal of Affective Disorders 252, 373381.CrossRefGoogle ScholarPubMed
Siegle, GJ, Steinhauer, SR, Thase, ME, Stenger, VA and Carter, CS (2002) Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry 51, 693707.CrossRefGoogle ScholarPubMed
Silva, AS, Toffoli, LV, Estrada, VB, Verissimo, LF, Francis-Oliveira, J, Moreira, EG, Gomes, MV and Pelosi, GG (2018) Maternal exposure to fluoxetine during gestation and lactation induces long lasting changes in the DNA methylation profile of offspring’s brain and affects the social interaction of rat. Brain Research Bulletin 142, 409413.CrossRefGoogle ScholarPubMed
Slack, JM (2002) Conrad Hal Waddington: the last Renaissance biologist?. Nature Reviews Genetics 3, 889895.CrossRefGoogle ScholarPubMed
Slavich, GM and Irwin, MR (2014) From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological Bulletin 140, 774815.CrossRefGoogle ScholarPubMed
Smith, J, Sen, S, Weeks, RJ, Eccles, MR and Chatterjee, A (2020) Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 6, 392406.CrossRefGoogle ScholarPubMed
Smoller, JW (2016) The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology 41, 297319.CrossRefGoogle ScholarPubMed
Song, Y, Miyaki, K, Suzuki, T, Sasaki, Y, Tsutsumi, A, Kawakami, N, Shimazu, A, Takahashi, M, Inoue, A, Kan, C, Kurioka, S and Shimbo, T (2014) Altered DNA methylation status of human brain derived neurotrophis factor gene could be useful as biomarker of depression.  American Journal of Medical Genetics Part B: Neuropsychiatric Genetics  165B, 357364.Google ScholarPubMed
Sorm, F, Piskala, A, Cihak, A and Vesely, J (1964) 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20, 202203.CrossRefGoogle ScholarPubMed
Sorm, F and Vesely, J (1968) Effect of 5-aza-2ʼ-deoxycytidine against leukemic and hemopoietic tissues in AKR mice. Neoplasma 15, 339343.Google ScholarPubMed
Spreafico, R, Soriaga, LB, Grosse, J, Virgin, HW and Telenti, A (2020) Advances in Genomics for Drug Development. Genes 11.Google ScholarPubMed
St-Cyr, S and Mcgowan, PO (2015) Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Frontiers in Behavioral Neuroscience 9, 145.CrossRefGoogle ScholarPubMed
Stefanescu, C and Ciobica, A (2012) The relevance of oxidative stress status in first episode and recurrent depression. Journal of Affective Disorders 143, 3438.CrossRefGoogle ScholarPubMed
Strekalova, T, Spanagel, R, Bartsch, D, Henn, FA and Gass, P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29, 20072017.CrossRefGoogle ScholarPubMed
Stresemann, C and Lyko, F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer 123, 813.CrossRefGoogle ScholarPubMed
Stroud, H, Su, SC, Hrvatin, S, Greben, AW, Renthal, W, Boxer, LD, Nagy, MA, Hochbaum, DR, Kinde, B, Gabel, HW and Greenberg, ME (2017) Early-Life Gene Expression in Neurons Modulates Lasting Epigenetic States. Cell 171, 11511164 e16..CrossRefGoogle ScholarPubMed
Sullivan, PF (2007) Spurious genetic associations. Biological Psychiatry 61, 11211126.CrossRefGoogle ScholarPubMed
Sullivan, PF (2017) How Good Were Candidate Gene Guesses in Schizophrenia Genetics?. Biological Psychiatry 82, 696697.CrossRefGoogle ScholarPubMed
Sullivan, PF, De Geus, EJ, Willemsen, G, James, MR, Smit, JH, Zandbelt, T, Arolt, V, Baune, BT, Blackwood, D, Cichon, S, Coventry, WL, Domschke, K, Farmer, A, Fava, M, Gordon, SD, He, Q, Heath, AC, Heutink, P, Holsboer, F, Hoogendijk, WJ, Hottenga, JJ, Hu, Y, Kohli, M, Lin, D, Lucae, S, Macintyre, DJ, Maier, W, Mcghee, KA, Mcguffin, P, Montgomery, GW, Muir, WJ, Nolen, WA, Nothen, MM, Perlis, RH, Pirlo, K, Posthuma, D, Rietschel, M, Rizzu, P, Schosser, A, Smit, AB, Smoller, JW, Tzeng, JY, Van Dyck, R, Verhage, M, Zitman, FG, Martin, NG, Wray, NR, Boomsma, DI and Penninx, BW (2009) Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Molecular Psychiatry 14, 359375.CrossRefGoogle ScholarPubMed
Sullivan, PF, Eaves, LJ, Kendler, KS and Neale, MC (2001) Genetic case-control association studies in neuropsychiatry. Archives of General Psychiatry 58, 10151024.CrossRefGoogle ScholarPubMed
Sullivan, PF, Neale, MC and Kendler, KS (2000) Genetic epidemiology of major depression: review and meta-analysis. The American Journal of Psychiatry 157, 15521562.CrossRefGoogle ScholarPubMed
Sun, H, Kennedy, PJ and Nestler, EJ (2013) Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38, 124137.CrossRefGoogle ScholarPubMed
Sun, L, Verkaik-Schakel, RN, Biber, K, Plosch, T and Serchov, T (2020) Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. Journal of Affective Disorders 279, 501509.CrossRefGoogle Scholar
Sweatt, JD (2016) Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. Journal of Neurochemistry 137, 312330.CrossRefGoogle ScholarPubMed
Szyf, M, Weaver, I and Meaney, M (2007) Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology 24, 919.CrossRefGoogle ScholarPubMed
Tadic, A, Muller-Engling, L, Schlicht, KF, Kotsiari, A, Dreimuller, N, Kleimann, A, Bleich, S, Lieb, K and Frieling, H (2014) Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Molecular Psychiatry 19, 281283.CrossRefGoogle ScholarPubMed
Takeuchi, N, Nonen, S, Kato, M, Wakeno, M, Takekita, Y, Kinoshita, T and Kugawa, F (2017) Therapeutic Response to Paroxetine in Major Depressive Disorder Predicted by DNA Methylation. Neuropsychobiology 75, 8188.CrossRefGoogle ScholarPubMed
Tanti, A and Belzung, C (2013) Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific?. Neuroscience 252, 234252.CrossRefGoogle ScholarPubMed
Tasic, B, Yao, Z, Graybuck, LT, Smith, KA, Nguyen, TN, Bertagnolli, D, Goldy, J, Garren, E, Economo, MN, Viswanathan, S, Penn, O, Bakken, T, Menon, V, Miller, J, Fong, O, Hirokawa, KE, Lathia, K, Rimorin, C, Tieu, M, Larsen, R, Casper, T, Barkan, E, Kroll, M, Parry, S, Shapovalova, NV, Hirschstein, D, Pendergraft, J, Sullivan, HA, Kim, TK, Szafer, A, Dee, N, Groblewski, P, Wickersham, I, Cetin, A, Harris, JA, Levi, BP, Sunkin, SM, Madisen, L, Daigle, TL, Looger, L, Bernard, A, Phillips, J, Lein, E, Hawrylycz, M, Svoboda, K, Jones, AR, Koch, C and Zeng, H (2018) Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 7278.CrossRefGoogle ScholarPubMed
Taylor, MJ, Sen, S and Bhagwagar, Z (2010) Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biological Psychiatry 68, 536543.CrossRefGoogle ScholarPubMed
Tchenio, A, Lecca, S, Valentinova, K and Mameli, M (2017) Limiting habenular hyperactivity ameliorates maternal separation-driven depressive-like symptoms. Nature Communications 8, 1135.CrossRefGoogle ScholarPubMed
Thomas, RM, Sai, H and Wells, AD (2012) Conserved intergenic elements and DNA methylation cooperate to regulate transcription at the il17 locus. The Journal of Biological Chemistry 287, 2504925059.CrossRefGoogle Scholar
Toffoli, LV, RodriguesOliveira, GM,, JF JrOliveira, , JF, Silva, AS, Moreira, EG, Pelosi, GG and Gomes, MV (2014) Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat’s offspring: modulation by folic acid supplementation. Behavioural Brain Research 265, 142147.CrossRefGoogle ScholarPubMed
Tolsma, TO and Hansen, JC (2019) Post-translational modifications and chromatin dynamics. Essays in Biochemistr 63, 8996.Google ScholarPubMed
Tremblay, R, Lee, S and Rudy, B (2016) GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron 91, 260292.CrossRefGoogle ScholarPubMed
Tsankova, N, Renthal, W, Kumar, A and Nestler, EJ (2007) Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience 8, 355367.CrossRefGoogle ScholarPubMed
Tsankova, NM, Berton, O, Renthal, W, Kumar, A, Neve, RL and Nestler, EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience 9, 519525.CrossRefGoogle Scholar
Turecki, G and Meaney, MJ (2016) Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review. Biological Psychiatry 79, 8796.CrossRefGoogle ScholarPubMed
Uchida, S, Yamagata, H, Seki, T and Watanabe, Y (2018) Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci 72, 212227.CrossRefGoogle ScholarPubMed
Uffelmann, E and Posthuma, D (2021) Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric Polygenic Signal. Biological Psychiatry 89, 4153.CrossRefGoogle ScholarPubMed
Ulrich-Lai, YM and Herman, JP (2009) Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience 10, 397409.CrossRefGoogle ScholarPubMed
Urb, M, Anier, K, Matsalu, T, Aonurm-Helm, A, Tasa, G, Koppel, I, Zharkovsky, A, Timmusk, T and Kalda, A (2019) Glucocorticoid Receptor Stimulation Resulting from Early Life Stress Affects Expression of DNA Methyltransferases in Rat Prefrontal Cortex. Journal of Molecular Neuroscience 68, 99110.CrossRefGoogle ScholarPubMed
Valencia, A, Masala, E, Rossi, A, Martino, A, Sanna, A, Buchi, F, Canzian, F, Cilloni, D, Gaidano, V, Voso, MT, Kosmider, O, Fontenay, M, Gozzini, A, Bosi, A and Santini, V (2014) Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia 28, 621628.CrossRefGoogle ScholarPubMed
Verdonck, S, Pu, SY, Sorrell, FJ, Elkins, JM, Froeyen, M, Gao, LJ, Prugar, LI, Dorosky, DE, Brannan, JM, Barouch-Bentov, R, Knapp, S, Dye, JM, Herdewijn, P, Einav, S and De Jonghe, S (2019) Synthesis and Structure-Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3- b]pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity. Journal of Medicinal Chemistry 62, 58105831.CrossRefGoogle ScholarPubMed
Vigo, D, Thornicroft, G and Atun, R (2016) Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171178.CrossRefGoogle ScholarPubMed
Vyas, A, Mitra, R, Shankaranarayana Rao, BS and Chattarji, S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. The Journal of Neuroscience 22, 68106818.CrossRefGoogle ScholarPubMed
Wajed, SA, Laird, PW and Demeester, TR (2001) DNA methylation: an alternative pathway to cancer. Annals of Surgery 234, 1020.CrossRefGoogle ScholarPubMed
Wang, D, Li, Y, Feng, Q, Guo, Q, Zhou, J and Luo, M (2017) Learning shapes the aversion and reward responses of lateral habenula neurons. eLife 6.Google ScholarPubMed
Wang, P, Lv, Q, Mao, Y, Zhang, C, Bao, C, Sun, H, Chen, H, Yi, Z, Cai, W and Fang, Y (2018a) HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. Journal of Affective Disorder 228, 222228.CrossRefGoogle ScholarPubMed
Wang, P, Zhang, C, Lv, Q, Bao, C, Sun, H, Ma, G, Fang, Y, Yi, Z and Cai, W (2018b) Association of DNA methylation in BDNF with escitalopram treatment response in depressed Chinese Han patients. European Journal of Clinical Pharmacology 74, 10111020.CrossRefGoogle ScholarPubMed
Wankerl, M, Miller, R, Kirschbaum, C, Hennig, J, Stalder, T and Alexander, N (2014) Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Translational Psychiatry 4, e402.CrossRefGoogle ScholarPubMed
Weaver, IC, Cervoni, N, Champagne, FA, D’alessio, AC, Sharma, S, Seckl, JR, Dymov, S, Szyf, M and Meaney, MJ (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 7, 847854.CrossRefGoogle ScholarPubMed
Weder, N, Zhang, H, Jensen, K, Yang, BZ, Simen, A, Jackowski, A, Lipschitz, D, Douglas-Palumberi, H, Ge, M, Perepletchikova, F, O’loughlin, K, Hudziak, JJ, Gelernter, J and Kaufman, J (2014) Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. Journal of the American Academy of Child and Adolescent Psychiatry 53, 417424 e5..CrossRefGoogle ScholarPubMed
Wei, J, Cheng, J, Waddell, NJ, Wang, ZJ, Pang, X, Cao, Q, Liu, A, Chitaman, JM, Abreu, K, Jasrotia, RS, Duffney, LJ, Zhang, J, Dietz, DM, Feng, J and Yan, Z (2020) DNA Methyltransferase 3A Is Involved in the Sustained Effects of Chronic Stress on Synaptic Functions and Behaviors. Cerebral Cortex (New York, NY).Google Scholar
Whitehouse, I, Rando, OJ, Delrow, J and Tsukiyama, T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 10311035.CrossRefGoogle ScholarPubMed
Wigner, P, Synowiec, E, Czarny, P, Bijak, M, Jozwiak, P, Szemraj, J, Gruca, P, Papp, M and Sliwinski, T (2020) Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. Journal of Cellular and Molecular Medicine 24, 56755694.CrossRefGoogle ScholarPubMed
Wikenius, E, Myhre, AM, Page, CM, Moe, V, Smith, L, Heiervang, ER, Undlien, DE and Leblanc, M (2019) Prenatal maternal depressive symptoms and infant DNA methylation: a longitudinal epigenome-wide study. Nordic Journal of Psychiatry 73, 257263.CrossRefGoogle ScholarPubMed
World Health Organization (2017) Depression and Other Mental Disorders: Global Health estimates. WHO.Google Scholar
World Health Organization (2018) Depression. WHO.Google Scholar
Xing, B, Liu, P, Xu, WJ, Xu, FY and Dang, YH (2014) Effect of microinjecting of 5-aza-2-deoxycytidine into ventrolateral orbital cortex on depressive-like behavior in rats. Neuroscience Letters 574, 1114.CrossRefGoogle ScholarPubMed
Xu, H, Wang, J, Zhang, K, Zhao, M, Ellenbroek, B, Shao, F and Wang, W (2018) Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology 88, 92101.CrossRefGoogle ScholarPubMed
Xu, P, Hu, G, Luo, C and Liang, Z (2016) DNA methyltransferase inhibitors: an updated patent review (2012-2015). Expert Opinion on Therapeutic Patents 26, 10171030.CrossRefGoogle Scholar
Yang, BZ, Zhang, H, Ge, W, Weder, N, Douglas-Palumberi, H, Perepletchikova, F, Gelernter, J and Kaufman, J (2013) Child abuse and epigenetic mechanisms of disease risk. American Journal of Preventive Medicine 44, 101107.CrossRefGoogle ScholarPubMed
Yoo, CB and Jones, PA (2006) Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery 5, 3750.CrossRefGoogle ScholarPubMed
Yoshimura, S, Okamoto, Y, Onoda, K, Matsunaga, M, Ueda, K, Suzuki, S and Shigetoyamawaki, (2010) Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. Journal of Affective Disorders 122, 7685.CrossRefGoogle ScholarPubMed
Zambrano, P, Segura-Pacheco, B, Perez-Cardenas, E, Cetina, L, Revilla-Vazquez, A, Taja-Chayeb, L, Chavez-Blanco, A, Angeles, E, Cabrera, G, Sandoval, K, Trejo-Becerril, C, Chanona-Vilchis, J and Duenas-Gonzalez, A (2005) A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 5, 44.CrossRefGoogle ScholarPubMed
Zhang, WJ, Wang, HH, Lv, YD, Liu, CC, Sun, WY and Tian, LJ (2018) Downregulation of Egr-1 Expression Level via GluN2B Underlies the Antidepressant Effects of Ketamine in a Chronic Unpredictable Stress Animal Model of Depression. Neuroscience 372, 3845.CrossRefGoogle Scholar
Zhang, Y, Sun, J, Gao, Y, Jin, L, Xu, Y, Lian, H, Sun, Y, Sun, Y, Liu, J, Fan, R, Zhang, T and He, Z (2013) A carrier-mediated prodrug approach to improve the oral absorption of antileukemic drug decitabine. Molecular Pharmaceutics 10, 31953202.CrossRefGoogle ScholarPubMed
Zheng, Y, Fan, W, Zhang, X and Dong, E (2016) Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics 11, 150162.CrossRefGoogle ScholarPubMed
Zhou, W, Wang, N, Yang, C, Li, XM, Zhou, ZQ and Yang, JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. European Psychiatry 29, 419423.CrossRefGoogle ScholarPubMed
Zhou, Z, Li, HQ and Liu, F (2018) DNA Methyltransferase Inhibitors and their Therapeutic Potential. Current Topics in Medicinal Chemistry 18, 24482457.CrossRefGoogle ScholarPubMed
Zhu, Y, Strachan, E, Fowler, E, Bacus, T, Roy-Byrne, P and Zhao, J (2019) Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: A Monozygotic Discordant Twin Study. Translational Psychiatry, 9, 215.CrossRefGoogle ScholarPubMed
Ziller, MJ, Gu, H, Muller, F, Donaghey, J, Tsai, LT, Kohlbacher, O, De Jager, PL, Rosen, ED, Bennett, DA, Bernstein, BE, Gnirke, A and Meissner, A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477481.CrossRefGoogle ScholarPubMed
Zimmermann, N, Zschocke, J, Perisic, T, Yu, S, Holsboer, F and Rein, T (2012) Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochemical Journal 448, 93102.CrossRefGoogle ScholarPubMed
Zomkowski, AD, Hammes, L, Lin, J, Calixto, JB, Santos, AR and Rodrigues, AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 13, 387391.CrossRefGoogle ScholarPubMed
Zuckerkandl, E (1975) The appearance of new structures and functions in proteins during evolution. Journal of Molecular Evolution 7, 157.CrossRefGoogle ScholarPubMed