Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T22:36:50.793Z Has data issue: false hasContentIssue false

Neuroimaging study in subjects at high risk of psychosis revealed by the Rorschach test and first-episode schizophrenia

Published online by Cambridge University Press:  24 June 2014

Miho Ota*
Affiliation:
Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan Department of Psychiatry, Hospital Bando, Bando, Ibaraki, Japan
Satoko Obu
Affiliation:
Department of Psychiatry, Hospital Bando, Bando, Ibaraki, Japan
Noriko Sato
Affiliation:
Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
Takashi Asada
Affiliation:
Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
*
Miho Ota, Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan. Tel: +81 42 341 2711; Fax: +81 42 346 2094; E-mail: ota@ncnp.go.jp

Extract

Objective: There is increasing evidence of neuroanatomical pathology in schizophrenia, but it is unclear whether changes exist prior to disease onset. This study aimed to examine whether changes exist prior to disease onset, especially in the temporal lobes.

Methods: T1-weighted and diffusion tensor magnetic resonance imaging were performed on 9 first-episode schizophrenia patients, 10 patients who were at high risk of schizophrenia and 10 healthy controls. Voxel-based analysis using the normalised images of cortical volume data was examined, and the fractional anisotropy value at three component fibres of the temporal lobes, inferior longitudinal fasciculus, superior longitudinal fasciculus (SLF) and cingulum hippocampal part was compared among the three groups.

Results: There were statistically significant volume differences at the bilateral temporal lobe between the healthy subjects and high-risk group. Between the schizophrenic group and healthy subjects, statistically significant volume differences were detected at the bilateral temporal lobes and anterior cingulate cortex. The fractional anisotropy values of the SLF in the schizophrenic and high-risk groups were significantly lower than in the healthy subjects.

Conclusion: Our findings indicate that some brain alterations may progress in patients at psychosis pre-onset, possibly because of disrupted developmental mechanisms, and these pathological changes may be predictive of functional outcome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shenton, ME, Dickey, CC, Frumin, M, McCarley, RW.A review of MRI findings in schizophrenia. Schizophr Res 2001;49:152.CrossRefGoogle ScholarPubMed
2.Kanaan, RA, Kim, JS, Kaufmann, WE, Pearlson, GD, Barker, GJ, McGuire, PK.Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005;58:921929.CrossRefGoogle ScholarPubMed
3.Kubicki, M, McCarley, R, Westin, CF, Park, HJ, Maier, S, Kikinis, R.A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 2007;41:1530.CrossRefGoogle ScholarPubMed
4.Bearden, CE, Rosso, IM, Hollister, JM, Sanchez, LE, Hadley, T, Cannon, TD.A prospective cohort study of childhood behavioral deviance and language abnormalities as predictors of adult schizophrenia. Schizophr Bull 2000;26:395410.CrossRefGoogle ScholarPubMed
5.Jones, P, Rodgers, B, Murray, R, Marmot, M.Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994;344:13981402.CrossRefGoogle ScholarPubMed
6.Yung, AR, Phillips, LJ, McGorry, PD et al. Prediction of psychosis: a step towards indicated prevention of schizophrenia. Br J Psychiatry 1998;172:1420.CrossRefGoogle ScholarPubMed
7.Bloemen, OJ, de Koning, MB, Schmitz, N et al. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol Med 2009;9:18.Google Scholar
8.Borgwardt, SJ, Riecher-Rössler, A, Dazzan, P et al. Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry 2007;61:11481156.CrossRefGoogle ScholarPubMed
9.Hoptman, MJ, Nierenberg, J, Bertisch, HC et al. A DTI study of white matter microstructure in individuals at high genetic risk for schizophrenia. Schizophr Res 2008;106: 115124.CrossRefGoogle ScholarPubMed
10.Jacobson, S, Kelleher, I, Harley, M et al. Structural and functional brain correlates of subclinical psychotic symptoms in 11-13 year old schoolchildren. Neuroimage 2010;49:18751885.CrossRefGoogle ScholarPubMed
11.Job, DE, Whalley, HC, Johnstone, EC, Lawrie, SM.Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage 2005;25:10231030.CrossRefGoogle ScholarPubMed
12.Exner, JE Jr.A primer for Rorschach interpretation. Asheville, NC: Rorschach Workshops; 2000.Google Scholar
13.Exner, JE Jr.2000 alumni newsletter. Asheville, NC: Rorschach Workshops; 2000.Google Scholar
14.Miller, TJ, McGlashan, TH, Rosen, JL et al. Prospective diagnosis of the initial prodrome for schizophrenia based on the structured interview of for prodromal syndromes: preliminary evidence of interrater reliability and predictive validity. Am J Psychiatry 2002;159:863865.CrossRefGoogle ScholarPubMed
15.Dao, TK, Prevatt, FA.Psychometric evaluation of the Rorschach comprehensive system's perceptual thinking index. J Pers Assess 2006;86:180189.CrossRefGoogle ScholarPubMed
16.Ilonen, T, Heinimaa, M, Korkeila, J, Svirskis, T, Salokangas, RK.Differentiating adolescents at clinical high risk for psychosis from psychotic and non-psychotic patients with the Rorschach. Psychiatry Res 2010;179: 151156.CrossRefGoogle ScholarPubMed
17.Kimhy, D, Corcoran, C, Harkavy-Friedman, JM, Ritzler, B, Javitt, DC, Malaspina, D.Visual form perception: a comparison of individuals at high risk for psychosis, recent onset schizophrenia and chronic schizophrenia. Schizophr Res 2007;97:2534.CrossRefGoogle ScholarPubMed
18.Borgwardt, SJ, McGuire, PK, Aston, J et al. Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophr Res 2008;106:108114.CrossRefGoogle ScholarPubMed
19.Karlsgodt, KH, Niendam, TA, Bearden, CE, Cannon, TD.White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry 2009;66:562569.CrossRefGoogle ScholarPubMed
20.Wakana, S, Jiang, H, Nagae-Poetscher, LM, van Zijl, PC, Mori, S.Fiber tract-based atlas of human white matter anatomy. Radiology 2004;230:7787.CrossRefGoogle ScholarPubMed
21.Good, CD, Johnsrude, I, Ashburner, J, Henson, RNA, Friston, KJ, Frackowiak, RSJ.Cerebral asymmetry and the effect of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001;14:685700.CrossRefGoogle ScholarPubMed
22.Snook, L, Plewes, C, Beaulieu, C.Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 2007;34:243252.CrossRefGoogle ScholarPubMed
23.Huang, H, Zhang, J, Jiang, H, Wakana, S, Poetscher, L, Miller, MI.DTI tractography-based parcellation of white matter: application of the mid-sagittal morphology of corpus callosum. Neuroimage 2005;26:295305.CrossRefGoogle ScholarPubMed
24.Wakana, S, Caprihan, A, Panzenboeck, MM et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007;36:630644.CrossRefGoogle ScholarPubMed
25.McGorry, PD, Yung, AR, Phillips, LJ.The “close-in” or ultra high-risk model: a safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophr Bull 2003;29:771790.CrossRefGoogle Scholar
26.Pantelis, C, Velakoulis, D, McGorry, PD et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003;361:281288.CrossRefGoogle ScholarPubMed
27.Kasai, K, Shenton, ME, Salisbury, DF et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry 2003;160:156164.CrossRefGoogle ScholarPubMed
28.Szeszko, PR, Ardekani, BA, Ashtari, M et al. White matter abnormalities in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging study. Am J Psychiatry 2005;162:602605.CrossRefGoogle ScholarPubMed
29.van Haren, NE, Hulshoff Pol, HE, Schnack, HG et al. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 2007;32:20572066.CrossRefGoogle ScholarPubMed
30.Andreasen, NC, O'Leary, DS, Flaum, M et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 1997;349:17301734.CrossRefGoogle ScholarPubMed
31.Ardekani, BA, Nierenberg, J, Hoptman, MJ, Javitt, DC, Lim, KO.MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport 2003;14:20252029.CrossRefGoogle ScholarPubMed
32.Mathalon, DH, Sullivan, EV, Lim, KO, Pfefferbaum, A.Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2001;58:148157.CrossRefGoogle Scholar
33.Chan, WY, Yang, GL, Chia, MY, Lau, IY, Sitoh, YY, Nowinski, WL, Sim, K.White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr Res 2010;119:5260.CrossRefGoogle ScholarPubMed
34.Hubl, D, Koenig, T, Strik, W et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 2004;61:658668.CrossRefGoogle ScholarPubMed
35.Shergill, SS, Kanaan, RA, Chitnis, XA et al. A diffusion tensor imaging study of fasciculi in schizophrenia. Am J Psychiatry 2007;164:467473.CrossRefGoogle ScholarPubMed
36.Yamasaki, S, Yamasue, H, Abe, O et al. Reduced planum temporale volume and delusional behaviour in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007;257:318324.CrossRefGoogle ScholarPubMed
37.Benetti, S, Mechelli, A, Picchioni, M, Broome, M, Williams, S, McGuire, P.Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain 2009;132:24262436.CrossRefGoogle ScholarPubMed
38.Torrey, EF.Schizophrenia and the inferior parietal lobule. Schizophr Res 2007;97:215225.CrossRefGoogle ScholarPubMed
39.Kyriakopoulos, M, Perez-Iglesias, R, Woolley, JB et al. Effect of age at onset of schizophrenia on white matter abnormalities. Br J Psychiatry 2009;195:346353.CrossRefGoogle ScholarPubMed
40.Greenstein, D, Lerch, J, Shaw, P et al. Childhood onset schizophrenia: cortical brain abnormalities as young adults. J Child Psychol Psychiatry 2006;47:10031012.CrossRefGoogle ScholarPubMed
41.Benes, FM.Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophr Bull 1993;19:537549.CrossRefGoogle ScholarPubMed
42.Benes, FM.Emerging principles of altered neural circuitry in schizophrenia. Brain Res Rev 2000;31:251269.CrossRefGoogle ScholarPubMed
43.Glahn, DC, Laird, AR, Ellison-Wright, I et al. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry 2008;64:774781.CrossRefGoogle ScholarPubMed
44.Thompson, PM, Vidal, C, Giedd, JN et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 2001;98:1165011655.CrossRefGoogle ScholarPubMed