Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T10:56:48.747Z Has data issue: false hasContentIssue false

Positron emissie tomografie (PET) bij stemmingsstoornissen: een overzicht

Published online by Cambridge University Press:  18 September 2015

Summary

Positron emission tomography is one of the most important techniques of functional imaging in psychiatry. This paper gives a synopsis of the findings in mood disorders: determination of brain glucose metabolism, cerebral blood flow and receptor studies. Investigation in a resting state as well as after activation are discussed.

Although findings are somewhat discrepant hypometabolism, and/or hypoperfusion, most often in frontal and limbic areas are frequently described. Further research is needed, and standardization of the methodology would be most wellcome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Young, T, Williamson, P. Brain imaging in functional mental disorders. Can J Psychiat 1986; 31: 675–80.CrossRefGoogle ScholarPubMed
2.Dolan, RJ, Friston, KJ. Positron emission tomography in psychiatric and neuropsychiatrie disorders. Semin Neurol 1989; 9: 330–7.CrossRefGoogle Scholar
3.Frith, CD, Friston, KJ, Herold, S, et al.Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br J Psychiat 1995; 167: 343–9.CrossRefGoogle ScholarPubMed
4.Cummings, JL. The neuroanatomy of depression. J clin Psychiat 1993; 54 (11 suppl): 1420.Google ScholarPubMed
5.Wu, JC, Buchsbaum, MS, Johnson, JC, et al.Magnetic resonance and positron emission tomography imaging of the corpus callo-sum: size, shape and metabolic rate in unipolar depression. J affect Disord 1993; 28: 1525.CrossRefGoogle Scholar
6.Reba, RC. PET and SPECT: Opportunities and challenges for psychiatry. J clin Psychiat 1993; 54(11 suppl): 2632.Google ScholarPubMed
7.Lewis, S, Higgins, N. Brain imaging in psychiatry. Blockwill Science Ltd. 1996.Google Scholar
8.Gomez, GE, Gomez, A. Depression in the elderly. J psychosoc Nursing 1993; 31 (5): 2833.Google ScholarPubMed
9.Maurer, AH. Nuclear Medicine: SPECT Comparisons to PET. Radiol Clin N-Am 1988; 26 (5): 1029–74.CrossRefGoogle ScholarPubMed
10.Jones, AKP. Positron emission tomography as a research tool in the investigation of psychiatric and psychological disorders. Bail-lière's Clin Endocrinol Metab 1991; 5: 187203.CrossRefGoogle ScholarPubMed
11.Bench, CJ, Dolan, RJ, Friston, KJ, et al.Positron emission tomography in the study of brain metabolism in psychiatric and neuropsychiatrie disorders. Br J Psychiat 1990; 157 (9 suppl): 8295.CrossRefGoogle Scholar
12.Hales, RE, Yudofsky, SC, Talbott, JA, et al.Textbook of psychiatry, 2nd edition, American Psychiatric Press, 1997.Google Scholar
13.Pawlik, G, Beil, C, Heboid, I, et al.Positron emission tomography in depression, research: principles – results – perspectives. Psychopathol 1986; 19 (suppl 2): 8593.CrossRefGoogle ScholarPubMed
14.George, MS, Ketter, TA, Post, RM. Activation studies in mood disorders. Psychiat Ann 1994; 24(12): 648–52.CrossRefGoogle Scholar
15.Buchsbaum, MS, Delisi, LE, Holcomb, HH, et al.Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch gen Psychiat 1984; 41: 1159–66.CrossRefGoogle ScholarPubMed
16.Biver, F, Goldman, S, Delvenne, V, et al.Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiat 1994; 36: 381–8.CrossRefGoogle ScholarPubMed
17.François, A, Biver, F, Goldman, S, et al.Reduction du rapport métabolique frontal supéro-basal dans la dépression unipolaire. Acta psychiat Belg 1995; 95: 234–45.Google Scholar
18.Martinot, JL, Hardy, P, Feline, A, et al.Left prefrontal glucose hypometabolism in the depressed state: A confirmation. Am J Psychiat 1990; 147: 1313–7.Google ScholarPubMed
19.Wu, JC, Gillin, JC, Buchsbaum, MS, et al.Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiat 1992; 149:538–43.Google ScholarPubMed
20.Baxter, LR, Phelps, ME, Maziotta, JC, et al.Cerebral metabolic rates for glucose in mood disorders. Arch gen Psychiat 1985; 42: 441–7.CrossRefGoogle ScholarPubMed
21.Kishimoto, H, Takazu, O, Ohno, S, et al.11 C-glucose metabolism in manic and depressed patients. Psychiat Res 1987; 22: 81–8.CrossRefGoogle Scholar
22.Schwartz, JM, Baxter, LR, Maziotta, JC, et al.The differential diagnosis of depression relevance of positron emission tomography: studies of cerebral glucose metabolism to the bipolar-unipolar dichotomy. JAMA 1987; 258: 1368–74.CrossRefGoogle Scholar
23.Baxter, LR, Schwartz, JM, Phelps, ME, et al.Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch gen Psychiat 1989; 46: 243–50.CrossRefGoogle ScholarPubMed
24.Baxter, LR, Schwartz, JM, Guze, BH, et al.PET Imaging in obsessive compulsive disorder with and without depression. J clin Psychiat 1990; 51(4 suppl): 6170.Google ScholarPubMed
25.Gann, H, Riemann, D, Hohagen, F, et al.48-hour rapid cycling: results of psychopathometric, Polysomnographie, PET imaging and neuro-endocrine longitudinal investigations in a single case. J affect Disord 1993; 28: 133–40.CrossRefGoogle Scholar
26.Drevets, WC, Price, JL, Simpson, JR, et al.Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–7.CrossRefGoogle ScholarPubMed
27.Kling, AS, Metter, EJ, Riege, WH, et al.Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am J Psychiat 1986; 143: 175–80.Google ScholarPubMed
28.Guze, BH, Baxter, LR, Schwartz, JM, et al.Changes in glucose metabolism in dementia of the alzheimer type compared with depression: A preliminary report. Psychiat Res Neuroimaging 1991;40:195202.CrossRefGoogle ScholarPubMed
29.Morris, P, Rapoport, S. Neuroimaging and affective disorder in late life: a review. Can J Psychiat 1990; 35: 347–54.CrossRefGoogle ScholarPubMed
30.Sultzer, DL, Mahler, ME, Mandelkern, MA, et al.The relationship between psychiatric symptoms and regional cortical metabolism in Alzheimer's disease. J Neuropsychiat clin Neurosci 1995; 7: 476–84.Google ScholarPubMed
31.Mayberg, HS. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson's disease. Ann Neurol 1990; 28: 5764.CrossRefGoogle ScholarPubMed
32.Buchsbaum, MS, Wu, J, Delisi, LE, et al.Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18 F] 2-desoxyglucose in affective illness. J affect Disord 1986; 10: 137–52.CrossRefGoogle Scholar
33.Post, RM, Delisi, LE, Holcomb, HH, et al.Glucose utilization in the temporal cortex of affectively III patients: positron emission tomography. Biol Psychiat 1987; 22: 545–53.CrossRefGoogle Scholar
34.Bench, CJ, Friston, KJ, Brown, RG, et al.The anatomy of melancholia – focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992; 22: 607–15.CrossRefGoogle ScholarPubMed
35.Dolan, RJ, Bench, CJ, Brown, RG, et al.Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J Neurol Neurosurg Psychiat 1992; 55: 768–73.CrossRefGoogle ScholarPubMed
36.Bench, CJ, Frackowiak, RSJ, Dolan, RJ. Changes in regional cerebral blood flow on recovery from depression. Psychol Med 1995; 25: 247–51.CrossRefGoogle ScholarPubMed
37.Drevets, WC, Raichle, ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull 1992; 28: 261–74.Google ScholarPubMed
38.George, MS, Ketter, TA, Parekh, PI, et al.Brain activity during transient sadness and happiness in healthy women. Am J Psychiat 1995; 152:341–51.Google ScholarPubMed
39.Schneider, F, Gur, RE, Mozley, LHet al.Mood effects on limbic blood flow correlate with emotional self-rating: a PET-study with oxygen-15-labeled water. Psychiat Res Neuroimaging 1995; 61: 265–83.CrossRefGoogle ScholarPubMed
40.Pardo, JV, Pardo, PJ, Raichle, ME. Neurological correlates of self-induced dysphoria. Am J Psychiat 1993; 150: 713–9.Google ScholarPubMed
41.Baker, SC, Frith, CD, Dolan, RJ. The interaction between mood and cognitive function studied with PET. Psychol Med 1997; 27: 565–78.CrossRefGoogle ScholarPubMed
42.Mayberg, HS, Robinson, RG, Dean, FW, et al.PET imaging of cortical S2 serotonin receptors after stroke: lateralized changes and changes and relationship to depression. Am J Psychiat 1988; 145: 937–43.Google ScholarPubMed
43.Agren, H, Reibring, L, Hartvig, P, et al.PET studies with [11 C]-HTP and L-[11C] DOPA in brains of healthy volunteers and patients with major depression. Clin Neuropharm 1992; 15 (suppl 1): 235–6.CrossRefGoogle Scholar
44.Pearlson, GD, Wong, DF, Tune, LE, et al.In vivo D2 dopamine receptor density in psychotic and non-psychotic patients with bipolar disorder. Arch gen Psychiat 1995; 52: 152–6.CrossRefGoogle Scholar
45.Sadzot, B, Lemaire, C, Maquet, P, et al.Serotonin 5HT2 receptor imaging in the human brain vising positron emission tomography and a new radioligand, [18F] altanserin: results in young normal controls. J Cer Blood Flow Metab 1995; 15: 787–97.CrossRefGoogle Scholar
46.Kennedy, SH, Javanmard, M, Vaccarino, FJ. A review of functional neuroimaging in mood disorders: positron emission tomography and depression. Can J Pychiat 1997; 42: 467–75.CrossRefGoogle ScholarPubMed
47.Phelps, ME, Maziottan, JC, Baxter, L, et al.Positron emission tomography study of affective disorders: oroblems and strategies. Ann Neurol 1984; 15: S149–56.CrossRefGoogle ScholarPubMed
48.Lhermitte, F. Les comportements d'imitation de d'utilisation dans les états dépressifs majeurs. Bull Acad nat Méd 1993; 177: 883–92.Google Scholar
49.Drevets, WC. Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 1998; 49: 341–61.CrossRefGoogle ScholarPubMed
50.Wiesel, FA. Glucose metabolism in psychiatric disorders: how can we facilitate comparisons among studies? J neural Transm 1992; 37 (suppl): 118.Google ScholarPubMed