Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T22:55:29.282Z Has data issue: false hasContentIssue false

Suicide cases and venlafaxine

Published online by Cambridge University Press:  24 June 2014

Irina Piatkov*
Affiliation:
Research Laboratory, Diversity Health Institute, Western Sydney Local Health Network, Westmead Hospital, Sydney, New South Wales, Australia
Trudi Jones
Affiliation:
Research Laboratory, Diversity Health Institute, Western Sydney Local Health Network, Westmead Hospital, Sydney, New South Wales, Australia
Rainei J. Van Vuuren
Affiliation:
Department of Forensic Medicine, South Western Sydney Local Health Network, Sydney, New South Wales, Australia
*
Dr Irina Piatkov, Research Laboratory, Diversity Health Institute, Level 2, ICPMR, Westmead Hospital, Westmead 2145, Sydney, NSW, Australia. Tel: +61 02 9845 8755; Fax: +61 02 98456334; E-mail: irina.piatkov@swahs.health.nsw.gov.au

Extract

Piatkov I, Jones T, Van Vuuren RJ. Suicide cases and venlafaxine.

Objective: Our aim was to establish whether the presence or absence of fully functioning cytochrome P450 2D6, 2C19 and 2C9 genetic alleles was associated with suicide in patients receiving venlafaxine treatment.

Method: Authorisation from the NSW State Coroner to perform post-mortem genetic testing was obtained for 11 samples from deceased persons who committed suicide during treatment with venlafaxine (VENADR study).

Results: All patients, but one, have at least one copy of the loss-of-function, altered or decreased cytochrome P450 enzyme activity allele. Four patients' results reveal loss-of-function genotypes, while all others were found to have diminished enzyme activity polymorphisms. Seven patients had multiple altered function polymorphisms, which included CYP2D6, CYP2C19 or CYP2C9.

Conclusion: Our preliminary limited data show that neurotoxicity development, which manifests as suicide while on venlafaxine treatment, probably correlates with a higher prevalence of gene copies of altered functioning cytochrome P450 genetic polymorphisms.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Launiainen, T, Rasanen, I, Vuori, E, Ojanpera, I.Fatal venlafaxine poisonings are associated with a high prevalence of drug interactions. Int J Legal Med 2010;125:349358.CrossRefGoogle ScholarPubMed
2.Brent, DA, Emslie, GJ, Clarke, GN et al. Predictors of spontaneous and systematically assessed suicidal adverse events in the treatment of SSRI-resistant depression in adolescents (TORDIA) study. Am J Psychiatry 2009;166:418426.CrossRefGoogle ScholarPubMed
3.Giner, L, Nichols, CM, Zalsman, G, Oquendo, MA.Selective serotonin reuptake inhibitors and the risk for suicidality in adolescents: an update. Int J Adolesc Med Health 2005;17:211220.CrossRefGoogle ScholarPubMed
4.Rubino, A, Roskell, N, Tennis, P, Mines, D, Weich, S, Andrews, E.Risk of suicide during treatment with venlafaxine, citalopram, fluoxetine, and dothiepin: retrospective cohort study. BMJ 2007;334:242.CrossRefGoogle ScholarPubMed
5.Todder, D, Baune, BT.Recurrence of suicidal ideation due to treatment with antidepressants in anxiety disorder: a case report. J Med Case Rep 2007;1:166.CrossRefGoogle ScholarPubMed
6.De Leon, J, Armstrong, SC, Cozza, KL.Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 2006;47:7585.CrossRefGoogle ScholarPubMed
7.McAlpine, DE, O'Kane, DJ, Black, JL, Mrazek, DA.Cytochrome P450 2D6 genotype variation and venlafaxine dosage. Mayo Clin Proc 2007;82:10651068.CrossRefGoogle ScholarPubMed
8.Grasmader, K, Verwohlt, PL, Rietschel, M et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004;60:329336.CrossRefGoogle Scholar
9.Bond, GR, Garro, AC, Gilbert, DL.Dyskinesias associated with atomoxetine in combination with other psychoactive drugs. Clin Toxicol (Phila) 2007;45:182185.CrossRefGoogle ScholarPubMed
10.Bosse, GM, Spiller, HA, Collins, AM.A fatal case of venlafaxine overdose. J Med Toxicol 2008;4:1820.CrossRefGoogle ScholarPubMed
11.Caroselli, C, Ricci, G.The venlafaxine “Heart Revenge”: a short report. Clin Cardiol 2010;33:E46E47.CrossRefGoogle ScholarPubMed
12.Drent, M, Singh, S, Gorgels, AP et al. Drug-induced pneumonitis and heart failure simultaneously associated with venlafaxine. Am J Respir Crit Care Med 2003;167:958961.CrossRefGoogle ScholarPubMed
13.Garcia-Cabeza, I, Blas, MM, Epifanio, MM, Chavez, MG.Cognitive deterioration after venlafaxine overdose. J Emerg Med 2009; DOI: 10.1016/j.jemermed.2009.04.059.Google ScholarPubMed
14.Hojer, J, Hulting, J, Salmonson, H.Fatal cardiotoxicity induced by venlafaxine overdosage. Clin Toxicol (Phila) 2008;46:336337.CrossRefGoogle ScholarPubMed
15.Pan, JJ, Shen, WW.Serotonin syndrome induced by low-dose venlafaxine. Ann Pharmacother 2003;37:209211.CrossRefGoogle ScholarPubMed
16.Presecki, P, Grosic, V, Silic, A, Mihanovic, M.Infection or idiosyncratic reaction to antiepileptic drugs? Psychiatr Danub 2010;22:132134.Google ScholarPubMed
17.Thundiyil, JG, Kearney, TE, Olson, KR.Evolving epidemiology of drug-induced seizures reported to a poison control center system. J Med Toxicol 2007;3:1519.CrossRefGoogle ScholarPubMed
18.Vieweg, WV, Pandurangi, AK, Anum, EA, Lanier, JO, Fierro, MF, Fernandez, A.Toxicology findings in child and adolescent suicides in Virginia: 1987–2003. Prim Care Companion J Clin Psychiatry 2006;8:142146.Google ScholarPubMed
19.Chan, AN, Gunja, N, Ryan, CJ.A comparison of venlafaxine and SSRIs in deliberate self-poisoning. J Med Toxicol 2010;6:116121.CrossRefGoogle ScholarPubMed
20.Piatkov, I, Jones, T, Rochester, C.Cytochrome P450 loss-of-function polymorphism genotyping on the Agilent Bioanalyzer and clinical application. Pharmacogenomics 2009;10:19871994.CrossRefGoogle ScholarPubMed
21.Christopher, A, Wall, M, Catherine Oldenkamp, MMSII, Cosima Swintak, MD.Safety and efficacy pharmacogenomics in pediatric psychopharmacology. Prim Psychiatry 2010;17:5358.Google Scholar
22.Zackrisson, AL, Lindblom, B, Ahlner, J.High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther 2009;88:354359.CrossRefGoogle ScholarPubMed
23.Penas-Lledo, EM, Dorado, P, Aguera, Z et al. High risk of lifetime history of suicide attempts among CYP2D6 ultrarapid metabolizers with eating disorders. Mol Psychiatry 2011; DOI: 10.1038/mp.2011.5.Google ScholarPubMed
24.Kawanishi, C, Lundgren, S, Agren, H, Bertilsson, L.Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004;59:803807.Google ScholarPubMed
25.Seo, D, Patrick, CJ, Kennealy, PJ.Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 2008;13:383395.CrossRefGoogle ScholarPubMed
26.Stingl, JC, Viviani, R.CYP2D6 in the brain: impact on suicidality. Clin Pharmacol Ther 2011;89:352353.Google ScholarPubMed
27.Yu, AM, Idle, JR, Byrd, LG, Krausz, KW, Kupfer, A, Gonzalez, FJ.Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003;13:173181.CrossRefGoogle ScholarPubMed