Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T04:06:57.008Z Has data issue: false hasContentIssue false

Dynamic magnetic resonance imaging and spectroscopie of experimental brain injury

Published online by Cambridge University Press:  18 September 2015

K. Nicolay*
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht
R.M. Dijkhuizen
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht Vakgroep Neurochirurgie, Academisch Ziekenhuis Utrecht
A. van der Toorn
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht Huidig adres: vakgroep Moleculaire Fysica, Landbouwuniversiteit Wageningen
T. Reese
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht
D. Brandsma
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht Vakgroep Neurochirurgie, Academisch Ziekenhuis Utrecht
M. de Boer
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht
H.-J. Muller
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht
G. van Vliet
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht
K.S. Tamminga
Affiliation:
Vakgroep in vivo NMR Spectroscopic, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht Huidig adres: Philips Medical Systems, Best
J.-W. Berkelbach van der Sprenkel
Affiliation:
Vakgroep Neurochirurgie, Academisch Ziekenhuis Utrecht
H.B. Verheul
Affiliation:
Vakgroep Neurochirurgie, Academisch Ziekenhuis Utrecht
C.A.F. Tulleken
Affiliation:
Vakgroep Neurochirurgie, Academisch Ziekenhuis Utrecht
M. van Lookeren Campagne
Affiliation:
Nederlands Instituut voor Hersenonderzoek, Amsterdam
B. M. Spruijt
Affiliation:
Vakgroep Medische Farmacologie, Universiteit Utrecht
*
*Vakgroep in vivo NMR Spectroscopic, Bijvoet Centrum, Universiteit Utrecht, Bolognalaan 50, 3584 CJ Utrecht

Summary

This article describes the use of non-invasive magnetic resonance (MR) methods for the characterization and monitoring of the pathophysiology of experimental brain injury in laboratory animals as a function of time and treatment. The impact of MR in brain research is primarily due to its non-invasive nature, thereby enabling repeated measurements in long-term studies, and due to the type of information that it provides. MR imaging (MRI) enables the measurement of the morphology/anatomy as well as the functional status of tissues under in vivo conditions. Compared to other in vivo imaging modalities, MRI has a high spatial resolution and allows for a remarkable soft tissue differentiation. MR spectroscopy (MRS) provides information on the biochemical/metabolic status of tissues. MR methods which have proven valuable in animal studies, can be readily translated to the clinical situation where MR-based diagnosis and treatment planning play a rapidly increasing role.

After a short introduction into the principles of MR, we will illustrate the remarkable versatility of MR in research on brain injury from recent animal studies. Examples will be mainly drawn from experiments on early injury in focal cerebral ischemia and from research on mechanical brain trauma and excitotoxic lesions. The article ends with a brief description of the perspectives of MR in neuropsychiatry.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Moonen, CTW, Van Zijl, PCM, Frank, JA, Le Bihan, D, Becker, ED. Functional magnetic resonance imaging in medicine and physiology. Science 1990; 250: 5361.Google Scholar
2.Van Bruggen, N, Roberts, TPL, Cremer, JE. The application of magnetic resonance imaging to the study of experimental cerebral ischaemia. Cerebrovasc Brain Metab Rev 1994;6:180210.Google Scholar
3.Hossmann, KA, Hoehn-Berlage, M. Diffusion and perfusion MR imaging of cerebral ischemia. Cerebrovasc Brain Metab Rev 1995;7: 187217.Google Scholar
4.Brint, S, Jacewicz, M, Kiessling, M, Tanabe, J, Pulsinelli, W. Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J. Cerebr Blood Flow Metabol 1988; 8: 474–85.Google Scholar
5.O'Brien, MD, Waltz, AG. Transorbital approach for occluding the middle cerebral artery without craniectomy. Stroke 1973; 4: 201–6.Google Scholar
6.Verheul, HB, Balazs, R, Berkelbach van der Sprenkel, JW, Tulleken, CAF, Nicolay, K, Van Lookeren, , Campagne, M. Temporal evolution of NMDA-induced excitotoxicity in the neonatal rat brain measured with 1H NMR imaging. Brain Res 1993; 618: 203–12.Google Scholar
7.Dijkhuizen, RM, Muller, H-J, Tamminga, KS, Van Doremalen, HAAJ, Spruijt, BM, Nicolay, K. 1H-NMR imaging of fimbria fornix lesions in the rat brain. Brain Topography 1992; 5: 147-51.Google Scholar
8.Verheul, HB, Berkelbach van der Sprenkel, JW, Tulleken, CAF, Tamminga, KS, Nicolay, K. Temporal evolution of focal cerebral ischemia in the rat assessed by T2-weighted and diffusion-weighted magnetic resonance imaging. Brain Topography 1992;5:171–6.Google Scholar
9.Mintorovitch, J, Moesley, ME, Chileuitt, L, Shimizu, H, Cohen, Y, Weinstein, PR. Comparison of diffusion- and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn Reson Med 1991; 18: 3950.Google Scholar
10.Van der Toorn, A. Localized in vivo NMR spectroscopy. Applications to experimental brain ischemia. Utrecht, Thesis, 1995.Google Scholar
11.Allegrini, PR, Sauer, D. Application of magnetic resonance imaging to the measurement of neurodegeneration in rat brain: MRI data correlate strongly with histology and enzymatic analysis. Magn Reson Imag 1992; 10: 773–8.Google Scholar
12.Warach, S, Chien, D, Li, W, Ronthal, M, Edelman, RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992; 42: 1717–23.Google Scholar
13.Spielman, DM, Butts, K, De Crespigny, A, Moseley, ME. Diffusion-weighted imaging of clinical stroke. Int J Neuroradiol 1995;1:4455.Google Scholar
14.Verheul, HB, Balazs, R, Berkelbach van der Sprenkel, JW, Tulleken, CAF, Nicolay, K, Tamminga, KS, Van Lookeren Campagne, M. Comparison of diffusion-weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 1994; 7: 96100.Google Scholar
15.Van Lookeren Campagne, M, Verheul, HB, Nicolay, K, Balazs, R. Protection against excitotoxic injury in neonatal rat brain studied by nuclear magnetic resonance imaging, electrical impedance and histology. J Cerebr Blood Flow Metabol 1994; 14: 1011–23.Google Scholar
16.Van Lookeren Campagne, M, Verheul, HB, Vermeulen, JP, Balazs, R, Boer, GJ, Nicolay, K. Developmental changes in NMDA-induced cell swelling and its transition to necrosis measured with 1H magnetic resonance imaging, impedance and histology. Dev Brain Res 1996; 13: 109–19.Google Scholar
17.Verheul, HB, Tamminga, KS, Dijkhuizen, RM, Berkelbach van der Sprenkel, JW, Tulleken, CAF, Nicolay, K. Focal ischemia in cat brain as studied by diffusion-weighted and dynamic susceptibility-contrast magnetic resonance imaging. MAGMA 1994; 2: 367–70.Google Scholar
18.Verheul, HB. Experimental cerebral ischemia. Temporal evolution of ischemic cell death. Utrecht. Thesis, 1994.Google Scholar
19.Warach, S, Chien, D, Li, W, Ronthal, M, Edelman, RR. Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography. Radiology 1992; 182: 41–7.Google Scholar
20.Howe, FA, Maxwell, RJ, Saunders, DE, Brown, MM, Griffiths, JR. Proton spectroscopy in vivo. Magn. Reson. Quarterly 1993; 9: 3159.Google Scholar
21.Kauppinen, RA, Williams, SCR. Nuclear magnetic resonance spectroscopy studies of the brain. Progr Neurobiol 1994; 44: 87118.Google Scholar
22.Van der Toorn, A, Dijkhuizen, RM, Tulleken, CAF, Nicolay, K. T, and T2 relaxation times of the major 1H-containing metabolites in rat brain after focal ischemia. NMR Biomed 1996; 8: 245–53.Google Scholar
23.Dijkhuizen, RM, Muller, H-J, Josephy, M, Spruijt, BM, Nicolay, K. Mechanical lesions of the firmbria fornix in rat brain studied by 1H magnetic resonance imaging. Evidence for long-lasting dynamic alterations in the ipsilateral ventricular system. Eur Neuropsychopharmacol 1996; 6: 21–7.Google Scholar
24.Altshuler, LL, Gurran, JG, Hauser, P, Mintz, J, Denicoff, K, Post, R. T2 hyperintensities in bipolar disorder: magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiatry 1995; 152: 1139–44.Google Scholar
25.Rubin, RT, Phillips, JJ, Sadow, TF, McCracken, JT. Adrenal gland volume in major depression. Increase during depressive episode and decrease with successful treatment. Arch Gen Psychiatry 1995; 52: 213–8.Google Scholar
26.Elkashef, AM, Buchanan, RW, Gellad, F, Munson, RC, Breier, A. Basal ganglia pathology in schizofrenia and tardive dyskinesia: an MRI quantitative study. Am J Psychiatry 1994; 151: 752–5.Google Scholar
27.Deicken, RF, Calabrese, G, Merrin, EL, Fein, G, Weiner, MW. Basal ganglia phosphorous metabolism in chronic schizofrenia. Am J Psychiatry 1995; 152: 126–9.Google Scholar
28.Kwong, KK, Belliveau, JW, Chesler, DA, Goldberg, IE, Weiskoff, RM, Poncelet, BP, Kennedy, DN, Hoppel, BE, Cohen, MS, Turner, R, Cheng, HM, Brady, TJ, Rosen, BR. Dynamic magnetic reonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675–9.Google Scholar
29.Renshaw, PF, Yurgelun-Todd, DA, Cohen, BM. Greater hemodynamic response to photic stimulation in schizofrenie patients: an echo planar MRI study. Am J Psychiatry 1994; 151: 1493–5.Google Scholar