Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:05:27.391Z Has data issue: false hasContentIssue false

Molecular Biology and Neuropsychiatry

Published online by Cambridge University Press:  18 September 2015

A. de Jong
Affiliation:
Apotheek Tubbergen, Oranjestraat 46, 7651 EJ Tubbergen
K.A. Kroon
Affiliation:
Studente Medische Biologie, Rijksuniversiteit Utrecht

Summary

An overview is given of some developments in the field of the molecular biological sciences with their impact on neuropsychiatry and psychopharmacology. Interference with the functioning of the cell will give some clues for the development of new psychotropic drugs. The genesis of disorders will be elucidated. This can lead to new methods of therapy. Moreover, the possibility to affect gene expression may offer opportunities for the development of new drugs. The existence and functioning of priones is explained. Interfering with neuroplastic principles may become an important method for the treatment of neurodegenerative diseases.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Loonen, AJM. Dealing with sadness, madness and hostility. New psychotropic drug remedies for the future. Pharm Weekbl [Sci] 1992;14:206–20.CrossRefGoogle ScholarPubMed
2.Loonen, AJM, De Jong, A, Kroon, KA. Celwetenschap en de psychiater. Vught: PZ Reinier van Arkel, 1992.Google Scholar
3.Alberts, B, Bray, D, Lewis, J, Raff, M, Roberts, K, Watson, JD. Molecular biology of the cell. New York: Garland, 1983.Google Scholar
4.Murray, RK, Granner, DK, Mayes, PA, Rodwell, VW. Harper's Biochemistry. Norwalk, Connecticut: Appleton & Lange, 1988.Google Scholar
5.Stryer, L. Biochemistry. New York: Freeman, 1988.Google Scholar
6.Gusella, JF, Wexler, NS, Conneally, PM, et al.A polymorphic DNA marker genetically linked to Huntington's disease. Nature 1983;306:234–8.CrossRefGoogle ScholarPubMed
7.Martin, JB. Molecular genetic studies in the neuropsychiatric disorders. Trends Neuro Sci 1989;12:130–7.CrossRefGoogle ScholarPubMed
8.The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993;72:817–8.Google Scholar
9.Baron, M, Endicott, J, Ott, J. Genetic linkage in mental illness. Limitations and prospects. Br J Psychiat 1990;157:645–55.CrossRefGoogle ScholarPubMed
10.Robertson, GS, Fibiger, HC. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 1992;46:315–28.CrossRefGoogle ScholarPubMed
11.Nguyen, TV, Kosofsky, BE, Birnbaum, R, Cohen, BM, Hyman, SE. Differential expression of c-fos and zif 268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci USA 1992;89:4270–4.CrossRefGoogle Scholar
12.Mackler, SA, Eberwine, JH. The molecular biology of addictive drugs. Mol Neurobiol 1991;5:4558.CrossRefGoogle ScholarPubMed
13.Kalasapudi, VD, Sheftel, G, Divish, MM, Papolos, DF, Lachman, HM. Lithium augments fos protoonocogene expression in PC 12 pheochromocytoma cells: implications for therapeutic action of lithium. Brain Res 1990;521:4754.CrossRefGoogle Scholar
14.Divish, MM, Sheftel, G, Boyle, A, Kalasapudi, VD, Papolos, DF, Lachman, HM. Differential effect of lithium on fos protooncogene expression mediated by receptor and postreceptor activators of protein kinase C and cyclic adenosine monophosphate: model for its antimanic action. J Neurosci Res 1991; 28:40–8.CrossRefGoogle ScholarPubMed
15.Weiner, ED, Kalasapudi, VD, Papolos, DF, Lachman, HM. Lithium augments pilocarpine-induced fos gene expression in rat brain. Brain Res 1991;553:117–22.CrossRefGoogle ScholarPubMed
16.Loonen, AJM, Soudijn, W. Peptides with a dual function: central neuroregulators and gut hormones. J Physiol (Paris) 1979;75:831–50.Google ScholarPubMed
17.Loonen, AJM. Neurocommunication and psychotropic drugs. Pharmacy int 1982;3:5964.Google Scholar
18.Kooiman, CG. Psychoimmunologie en psychiatrie: een literatuur-overzicht. Tijdschr Psychiat 1992;34:1829.Google Scholar
19.Grossarth-Maticek, R, Eysenck, HJ. Length of survival and lymphocyte percentage in women with mammary cancer as a function of psychotherapy. Psychol Rep 1989;65:315–21.CrossRefGoogle ScholarPubMed
20.Vandenabeele, P, Fiers, W. Is amyloidogenesis during Alzheimer's disease due to an IL-l-/IL-6-mediated ‘acute phase response’ in the brain? Immunol Today 1991;12:217–9.CrossRefGoogle Scholar
21.McGeer, PL, Rogers, J. Anti-inflammatory agents as a therapeutic approach to Alzheimer's disease. Neurology 1992;42:447–9.CrossRefGoogle ScholarPubMed
22.Eikelenboom, P, Rozemuller, JM, Kraal, G, Stam, FC, McBride, PA, Bruce, ME, Fraser, H. Cerebral amyloid plaques in Alzheimer's disease but not in scrapie-affected mice are closely associated with a local inflammatory process. Virchows Arch B Cell Pathol incl Mol Pathol 1991;60:329–36.CrossRefGoogle Scholar
23.Prusiner, SB. Molecular biology of prion diseases. Science 1991;252:1515–22.CrossRefGoogle ScholarPubMed
24.Prusiner, SB. Molecular biology and transgenetics of prion diseases. Crit Rev Biochem Mol Biol 1991;26:397438.CrossRefGoogle ScholarPubMed
25.Haracz, JL. Neural plasticity in schizophrenia. Schizophrenia Bull 1985;11:191229.CrossRefGoogle ScholarPubMed
26. Anonymous. Nerve growth factor. Neuroscience Facts 1990; 1(4): 14.Google Scholar
27.Horwitz, B. Neuroplasticity and the progression of Alzheimer's disease. Int J Neurosc 1988;41:114.CrossRefGoogle ScholarPubMed
28.Gaddes, JW, Cotman, CW. Plasticity, pathology, and Alzheimer's disease. Neurobiol Aging 1989;10:571–3.CrossRefGoogle Scholar
29.Coleman, PD, Rogers, KE, Flood, DG. Neuronal plasticity in normal aging and deficient plasticity in Alzheimer's disease: a proposed intercellular signal cascade. In: Coleman, P., Higgins, G. and Phelps, C., eds. Progress in Brain Research. Vol 86. Amsterdam: Elsevier, 1990:7587.Google Scholar
30.Muller, CM. A role for glial cells in activity-dependent central nervous plasticity? Review and hypothesis. Int Rev Neurobiol 1992;34:215–81.CrossRefGoogle ScholarPubMed
31.Olson, L. Grafts and growth factors in CNS. Basic science with clinical promise. Stereotact funct Neurosurg 1990;54+55:250–67.CrossRefGoogle ScholarPubMed
32.Gage, FH, Rosenberg, MB, Tuszynski, MH, Yoshida, K, Armstrong, DM, Hayes, RC, Friedmann, T. Gene therapy in the CNS: intracerebral grafting of genetically modified cells. Prog Brain Res 1990;86:205–17.CrossRefGoogle ScholarPubMed