Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T08:02:03.276Z Has data issue: false hasContentIssue false

rCBF-activatie en neuronale circuits gerelateerd aan visuele waarneming

Published online by Cambridge University Press:  18 September 2015

Summary

Three principles of neuronal interaction within cortically distributed networks are discussed. PET-rCBF activation methods provide an opportunity to acquire insight in the distribution of functionally related areas of the human brain in vivo. The distinction of visual areas, activated by either motion or color within an observed scenery, points at a segregation in neuronal information processing. Such a segregation extends into both a dorsal and a ventral route towards consequently the parietal and temporal cortex.

Simultaneous activation over the dorsal and ventral route, which for example occurs in relation to the perception of complex motion (optic flow), or motion perception after lesion of V5, suggests integration by means of cross-connectivity. The third principle, i.e. “top-down” integration, appears by analysis of V5-V1 interaction, attentional effects on V4, frontal activation in prosopagnosia, and by analysis of hallucinations. Such “top-down” integration indicates the presence of momentaneous effect on cortical areas, intimately related to the primary sensory cortex, by neuronal activity of remote “association” cortex, the latter being connected by direct (synaps-restricted) bypass from early stations of information processing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Le Brun Kemper, T, Galaburda, AM. Principles of cytoarchitectonics. In: Peters, A, Jones, EG, eds. Cerebral Cortex vol 1. New York, London: Plenum Press 1984; 3557.Google Scholar
2.de Jong, BM, Ruijter, JM, Romijn, HJ. Cytoarchitecture in cultured rat neocortex explants. Int J developm Neurosci 1988; 6: 327–99.CrossRefGoogle ScholarPubMed
3.Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien dargestelt auf Grund der Zellenbaues. Leipzig: JA Barth, 1909.Google Scholar
4.Szentagothai, J. The moduleconcept in cerebral cortex architecture. Brain Res 1975; 95: 475–96.CrossRefGoogle ScholarPubMed
5.Phelps, ME, Mazziotta, JC. Positron emission tomography: Human brain function and biochemistry. Science 1985; 228: 799809.CrossRefGoogle ScholarPubMed
6.Raichle, ME. Visualizing the mind. Sci Am 1994; 270(4): 3642.CrossRefGoogle ScholarPubMed
7.Raichle, ME. Circulatory and metabolic correlates of brain function in normal human. In: Mountcastle, VB, Plum, F, Geiger, SR, eds. Handbook of Physiology, Section I, The nervous system. Am Physiol Soc 1987; vol 5: 643–75.Google Scholar
8.Villbringer, A, Dirnagl, U. Coupling of brain activity and cerebral bloodflow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 1995; 7: 240–76.Google Scholar
9.Friston, KJ, Frith, CD, Liddle, PF, Frackowiak, RSJ. Plastic transformation of PET images. J Comp assist Tomogr 1991a; 15:634–9.CrossRefGoogle ScholarPubMed
10.Friston, KJ, Frith, CD, Liddle, PF, Frackowiak, RSJ. Comparing functional (PET) images: The assessment of significant change. J cereb Blood Flow Metab 1991b; 11: 690–9.CrossRefGoogle ScholarPubMed
11.Hubel, DH, Wiesel, TN. Receptive fields and functional architecture of monkey striate cortex. J Neurophysiol 1968; 195: 215–44.Google ScholarPubMed
12.Zeki, S. Interhemispheric connections of prestriate cortex in monkey. Brain Res 1970; 19: 6375.CrossRefGoogle ScholarPubMed
13.Zeki, S. Functional specialization in the visual cortex of rhesus monkey. Nature 1978; 274: 423–8.CrossRefGoogle ScholarPubMed
14.van Essen, DH, Anderson, CH, Felleman, DJ. Information processing in the primate visual system: an integrated system perspective. Science 1992; 255: 419–23.CrossRefGoogle Scholar
15.Livingstone, MS, Hubel, DH. Psychophysical evidence for sepe-rate channels for the perception of form, color, movement and depth. J Neurosci 1987; 7: 3416–68.CrossRefGoogle ScholarPubMed
16.Mishkin, M, Ungerleider, LG, Macko, KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci 1983; 6: 414–7.CrossRefGoogle Scholar
17.Goodale, MA, Milner, AD. Separate visual pathways for perception and action. Trends Neurose 1992; 15: 20–5.CrossRefGoogle ScholarPubMed
18.Mountcastle, VB, Lynch, JC, Georgopoulos, A, Sakata, H, Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 1975; 38: 871908.CrossRefGoogle ScholarPubMed
19.Zeki, S, Watson, JDG, Lueck, CJ, Friston, KJ, Kennard, C, Frackowiak, RSJ. A direct demonstration of functional specialization in human visual cortex. J Neurosci 1991; 11: 641–9.CrossRefGoogle ScholarPubMed
20.Watson, JDG, Myers, R, Frackowiak, RSJ, Hajnal, JV, Woods, RP, Mazziotta, JC, Shipp, S, Zeki, S. Area V5 of the human brain: evidence from a combined study using PET and MRI. Cer Cortex 1993; 3: 7994.CrossRefGoogle Scholar
21.Tootell, RBH, Reppas, JB, Kwong, KK, Malach, R, Born, RT, Brady, TJ, Rosen, BR, Belliveau, JW. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 1995; 15: 3215–30.CrossRefGoogle ScholarPubMed
22.Haxby, JV, Horwitz, B, Ungerleider, LG, Maisog, JM, Pietrini, P, Grady, CL. The functional organisation of human striate cortex: a PET-rCBF study of selective attention of faces and locations. J Neurosci 1994; 14: 6336–53.CrossRefGoogle Scholar
23.de Jong, BM, Frackowiak, RSJ. The cerebral activity related to visuo-motor performance coping with disparity between visual and motor axes of orientation. Hum Brain Mapp 1995; suppl 1: 315.Google Scholar
24.Godschalk, M, Lemon, RN. Preparation of visually cued arm movement in monkey. Brain Behav Evol 1989; 33: 122–6.CrossRefGoogle ScholarPubMed
25.Goldschalk, M, Lemon, RN, Kuypers, HGJM, van der Steen, J. The involvement of monkey premotor cortex neurons in preparation of visually cued arm movements. Behav Brain Res 1985; 18: 143–57.CrossRefGoogle Scholar
26.Gibson, JJ. The Perception of the visual World. Boston: Houghton Mevlin, 1950.Google Scholar
27.de Jong, BM, Shipp, S, Skidmore, B, Frackowiak, RSJ, Zeki, S. The cerebral activity related to the visual perception of forward motion in depth. Brain 1994; 117: 1039–54.CrossRefGoogle Scholar
28.Distler, C, Boussaoud, D, Desimone, R, Ungerleider, LG. Cortical connections of inferior temporal area TEO in Macaque monkeys. J comp Neurol 1993; 334: 125–50.CrossRefGoogle ScholarPubMed
29.Zihl, J, von Cramon, D, Mai, N. Selective disturbance of movement vision after bilateral brain damage. Brain 1983; 106: 313–40.CrossRefGoogle ScholarPubMed
30.Shipp, S, de Jong, BM, Zihl, J, Frackowiak, RSJ, Zeki, S. The brain activity related to residual motion vision in a patient with bilateral lesions of V5. Brain 1994; 117: 1023–38.CrossRefGoogle Scholar
31.ffytche, DH, Guy, CN, Zeki, S. The parallel visual motion inputs into areas VI and V5 of human cerebral cortex. Brain 1995; 118: 1375–94.CrossRefGoogle Scholar
32.Heinze, HJ, Mangun, GR, Burchert, W, Hinrichs, H, Scholz, M, Münte, TF, Gös, A, Scherg, M, Johannes, S, Hundeshagen, H, Gazzaniga, MS, Hillyard, SA. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 1994; 372: 543–6.CrossRefGoogle ScholarPubMed
33.Damasio, AR. Disorders of complex visual processing: agnosias, achromatopsia, Balint's syndrome, and related difficulties of orientation and construction. In: Mesulam, MM. Principles of behavioral neurology. Philadelphia: FA Davis, 1985; 258–88.Google Scholar
34.PET Studie uitgevoerd i.s.m. prof. Zeki en Frackowiak in MRC Cyclotron Unit, London: Hammersmith Hosp.Google Scholar
35.Silbersweig, DA, Stern, E, Frith, CD, et al.Mapping the neural correlates of auditory hallucinations in schizophrenia: Involuntary perceptions in the absence of external stimuli. Hum Brain Mapp 1995; suppl 1: 422.Google Scholar