Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T03:59:14.445Z Has data issue: false hasContentIssue false

The significance of β-carbolines in psychiatry

Published online by Cambridge University Press:  18 September 2015

G.J. van Gelderen*
Affiliation:
Riagg Rotterdam Zuid, Rotterdam
D. Fekkes
Affiliation:
E.U.R., Werkgroep Pathofysiologie van gedrag, Rotterdam
L. Timmerman
Affiliation:
Delta Psychiatrisch Ziekenhuis, Poortugaal
L. Pepplinkhuizen
Affiliation:
A.Z.R. Dijkzigt, afd. psychiatrie, Rotterdam
*
Riagg Rotterdam Zuid, Postbus 5250, 3008 AG Rotterdam

Summary

In this review the naturally occurring β-carbolines norharman and harman in human beings and mammals will be discussed. These β-carbolines have been recognized as aromatic alkaloids, which can be detected in very low concentrations in human plasma. Norharman and especially harman display moderate affinity to the benzodiazepine receptor. The biosynthesis of these compounds in vivo, the localization, the biological effects and the probable involvement of these compounds in the cause of psychopathologic states will be discussed. This with a special focus on alcoholism, heroin addiction, psychosis and anxiety disorders. In some of these clinical pictures the concentration of norharman is increased. Whether this is a causality or a matter of minor importance is still unknown.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Airaksinen, MM, Kari, I.Beta-carbolines, psychoactive compounds in the mammalian body; Part II; Effects. Med Biol 1981; 59: 190211.Google ScholarPubMed
2.Cain, M, Guzman, RW, Cook, F.β-carbolines: Synthesis and neurochemical and pharmacological actions on brain benzodiazepine receptors. J med Chem 1982; 25: 1081–91.CrossRefGoogle ScholarPubMed
3.Tenen, S, Hirsch, J.β-Carboline-3-carboxylic acid ethyl ester antagonizes diazepam activity. Nature 1980; 288: 609–10.CrossRefGoogle ScholarPubMed
4.Cowen, P, Green, A, Nutt, D, Martin, I.Ethyl-β-carboline-3-carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats. Nature 1981; 290: 54–5.CrossRefGoogle ScholarPubMed
5.Buckholtz, NS, Boggan, WO.Monoamineoxidase inhibition in brain and liver produced by beta-carbolines: Structure, activity, relationships and substrate specificity. Biochem Pharmacol 1977; 26: 1991–6.CrossRefGoogle Scholar
6.Rommelspacher, H, Strauss, S, Cohnitz, CH.Inhibition of 5-hy-droxytryptamine uptake by tetrahydro-norharmane in vivo. Naunyn Schmiedeberg's Arch Pharmacol 1978; 303: 229–33.CrossRefGoogle Scholar
7.Susilo, R, Rommelspacher, H.Formation of a β-carboline (1,2,3,4-tetrahydro-l-methyl-β-carboline-l-carboxylic acid) following intracerebroventricular injection of tryptamine and pyruvic acid. Arch Pharmacol 1987; 335: 70–6.CrossRefGoogle ScholarPubMed
8.Rommelspacher, H, Damm, H, Lutter, S.Harman (1-methyl-β-caboline) in blood plasma and erythrocytes of nonalcoholics following ethanol loading. Alcohol 1990; 7: 2731.CrossRefGoogle ScholarPubMed
9.Bidder, TG, Shoemaker, DW, Boettger, HG, Evans, M, Cummins, JT.Harman in human platelets. Life Sci 1979; 25: 157–64.CrossRefGoogle Scholar
10.Schouten, MR, Bruinvels, J.High performance liquid chromatography of tetrahydro-beta-carbolines extracted from plasma and platelets. Anal Biochem 1985; 147: 401–9.CrossRefGoogle ScholarPubMed
11.Rommelspacher, H, Strauss, S, Lindemann, J.Excretion of tetrahy-droharman and harman into the urine of man and rat after a load of ethanol. FEBS Letters 109: 209212.CrossRefGoogle Scholar
12.Airaksinen, MM, Huang, JT, Ho, BT, Taylor, D.Uptake of 5-methoxytryptoline (6-meo-tetrahydro-β-carboline) by blood platelets and its effect on 5HT uptake and release. Acta Pharmacol Toxicol 1977; 41: 39.Google Scholar
13.Schmeltz, I, Hoffman, D.Nitrogen-containing compounds in tobacco and tobacco smoke. Chem Rev 1977; 77: 295311.CrossRefGoogle Scholar
14.Shoemaker, DW, Cummins, JT, Bidder, TG, Boettger, HG, Evans, M.Identification of Harman in the rat arcuate nucleus. Naunyn-Schmiedeberg's Arch Pharmacol 1980; 310: 227–30.CrossRefGoogle Scholar
15.Fekkes, D, Schouten, MJ, Pepplinkhuizen, L, Bruinvels, J, Lauwers, W, Brinkman, UA.Norharman, a normal body constituent. Lancet 1992; 339: 506.CrossRefGoogle ScholarPubMed
16.Fekkes, D, Bode, WT.Occurrence and partition of the β-carboline Norharman in rat organs. Life Sci 1993; 52: 2045–54.CrossRefGoogle ScholarPubMed
17.Rommelspacher, H, Schmidt, LG, May, T.Plasma norharman (β-carboline) levels are elevated in chronic alcoholics. Alcohol clin expRes 1991; 15: 553–9.CrossRefGoogle ScholarPubMed
18.Pawlik, M, Rommelspacher, H.Demonstration of a distinct class of high-affinity binding sites for [3H] norharman ([3H]β-carboline) in the rat brain. Eur J Pharmacol 1988; 147: 163–71.CrossRefGoogle ScholarPubMed
19.Pawlik, M, Kaulen, P, Baumgarten, HG, Rommelspacher, H.Quantitative Autoradiography of [3H]Norharman ([3H]β-carboline) binding sites in rat brain. J chem Neuroanatomy 1990; 3: 1924.Google ScholarPubMed
20.May, T, Rommelspacher, H, Pawlik, M.[3H]Harman binding experiments. A reversible and selective radioligand for monoamine oxidase subtype A in the CNS of the rat. J Neurochem 1991; 56: 490–9.CrossRefGoogle ScholarPubMed
21.Morin, AM, Tanaka, IA, Wasterlain, CG.Norharman inhibition of [3H]-diazepam binding in mouse brain. Life Sci 1981; 28: 22S7–63.CrossRefGoogle ScholarPubMed
22.Morin, AM.β-Carboline kindling of the benzodiazepine receptor. Brain Res 1984; 321: 151–4.CrossRefGoogle ScholarPubMed
23.Skolnick, P, Ninan, P, Insel, T, Crawley, J, Paul, S.A novel chemically induced animal model of human anxiety. Psychopathol 1984; 17: 2536.CrossRefGoogle ScholarPubMed
24.Cohen, G.Alkaloid products in the metabolism of alcohol and biogenic amines. Biochem Pharmacol 1976; 25: 1123–8.CrossRefGoogle Scholar
25.Meyers, RD, Oblinger, MM.Alcohol drinking in the rat induced by acute intracerebral infusion of two tetrahydroisoquinolines and a β-carboline. Drug Alcohol Depend 1977; 2: 469–83.CrossRefGoogle Scholar
26.Stohler, R, Rommelspacher, H, Ladewig, D, Dammann, G.β-carboline (Harman/Norharman) sind bei heroinabhängigen erhöht. Therap Umschau 1993; 50: 178–81.Google Scholar
27.Pepplinkhuizen, L.Disturbances of serine and glycine metabolism as a cause of episodic acute polymorphous psychoses. Rotterdam: Thesis, 1983.Google Scholar
28.Schouten, MJ.The occurance of β-carbolines in man and rat, putative biochemical substrates responsible for psychosis. Rotterdam: Thesis, 1986.Google Scholar
29.Timmerman, L, Verhey, R, Fekkes, D.Norharman and platelet serotonin in panic disorder patients compared with healthy controls. Eur Neuropsychopharm 1994; 413: 353–4.CrossRefGoogle Scholar