Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T07:40:46.207Z Has data issue: false hasContentIssue false

Numerical methods for nonlinear equations

Published online by Cambridge University Press:  04 May 2018

C. T. Kelley*
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA E-mail: tim_kelley@ncsu.edu
*

Abstract

This article is about numerical methods for the solution of nonlinear equations. We consider both the fixed-point form $\mathbf{x}=\mathbf{G}(\mathbf{x})$ and the equations form $\mathbf{F}(\mathbf{x})=0$ and explain why both versions are necessary to understand the solvers. We include the classical methods to make the presentation complete and discuss less familiar topics such as Anderson acceleration, semi-smooth Newton’s method, and pseudo-arclength and pseudo-transient continuation methods.

Type
Research Article
Copyright
© Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES 2

Absil, P.-A., Baker, C. G. and Gallivan, K. A. (2007), ‘Trust-region methods on Riemannian manifolds’, Found. Comput. Math. 7, 303330.Google Scholar
Allgower, E. L., Böhmer, K., Potra, F. A. and Rheinboldt, W. C. (1986), ‘A mesh-independence principle for operator equations and their discretizations’, SIAM J. Numer. Anal. 23, 160169.Google Scholar
An, H., Jia, X. and Walker, H. F. (2017), ‘Anderson acceleration and application to the three-temperature energy equations’, J. Comput. Phys. 347, 119.CrossRefGoogle Scholar
Anderson, D. G. (1965), ‘Iterative procedures for nonlinear integral equations’, J. Assoc. Comput. Mach. 12, 547560.Google Scholar
Armijo, L. (1966), ‘Minimization of functions having Lipschitz-continuous first partial derivatives’, Pacific J. Math. 16, 13.Google Scholar
Ascher, U. M. and Petzold, L. R. (1998), Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations, SIAM.Google Scholar
Ascher, U. M., Mattheij, R. M. M. and Russell, R. D. (1995), Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics, SIAM.CrossRefGoogle Scholar
Aziz, A. K., Stephens, A. B. and Suri, M. (1988), ‘Numerical methods for reaction–diffusion problems with non-differentiable kinetics’, Numer. Math. 53, 111.Google Scholar
Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L. C., Rupp, K., Smith, B., Zampini, S. and Zhang, H. (2015), PETSc Users Manual, revision 3.6. Technical report ANL-95/11 Rev 3.6, Mathematics and Computer Science Division, Argonne National Laboratory.Google Scholar
Barrett, J. W. and Shanahan, R. M. (1991), ‘Finite element approximation of a model reaction–diffusion problem with a non-Lipschitzian nonlinearity’, Numer. Math. 59, 217242.Google Scholar
Bratu, G. (1914), ‘Sur les équations intégrales non linéaires’, Bull. Math. Soc. France 42, 113142.CrossRefGoogle Scholar
Brenan, K. E., Campbell, S. L. and Petzold, L. R. (1996), The Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, Vol. 14 of Classics in Applied Mathematics, SIAM.Google Scholar
Brent, R. (1973), ‘Some efficient algorithms for solving systems of nonlinear equations’, SIAM J. Numer. Anal. 10, 327344.CrossRefGoogle Scholar
Briggs, E. L., Sullivan, D. J. and Bernholc, J. (1995), ‘Large-scale electronic-structure calculations with multigrid acceleration’, Phys. Rev. B 52, R5471R5474.Google Scholar
Burmeister, W. (1975), Zur Konvergenz einiger verfahren der konjugierten Richtungen. In Internationaler Kongreßüber Anwendung der Mathematik in dem Ingenieurwissenschaften, Weimar.Google Scholar
Busbridge, I. W. (1960), The Mathematics of Radiative Transfer, Vol. 50 of Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press.Google Scholar
Cai, X.-C., Gropp, W. D., Keyes, D. E. and Tidriri, M. D. (1994), Newton–Krylov–Schwarz methods in CFD. In Proceedings of the International Workshop on the Navier–Stokes Equations, (Rannacher, R., ed.), Notes in Numerical Fluid Mechanics, Vieweg.Google Scholar
Campbell, S. L., Ipsen, I. C. F., Kelley, C. T. and Meyer, C. D. (1996a), ‘GMRES and the minimal polynomial’, BIT 36, 664675.Google Scholar
Campbell, S. L., Ipsen, I. C. F., Kelley, C. T., Meyer, C. D. and Xue, Z. Q. (1996b), ‘Convergence estimates for solution of integral equations with GMRES’, J. Integral Equ. Appl. 8, 1934.Google Scholar
Carlson, N. N. and Miller, K. (1998), ‘Design and application of a gradient weighted moving finite element code I: In one dimension’, SIAM J. Sci. Comput. 19, 766798.Google Scholar
Chandrasekhar, S. (1960), Radiative Transfer, Dover.Google Scholar
Chen, X. (2000), ‘Smoothing methods for complementarity problems and their applications: A survey’, J. Oper. Res. Soc. Japan 43, 3247.Google Scholar
Chen, X. (2001), ‘A superlinearly and globally convergent method for reaction and diffusion problems with a non-Lipschitzian operator’, Computing Supplementum 15, 7990.Google Scholar
Chen, X. and Kelley, C. T. (2017), Analysis of the EDIIS algorithm. Preprint.Google Scholar
Chen, X. and Yamamoto, T. (1989), ‘Convergence domains of certain iterative methods for solving nonlinear equations’, Numer. Funct. Anal. Optim. 10, 3748.Google Scholar
Chen, X. and Ye, Y. (1999), ‘On homotopy-smoothing methods for box-constrained variational inequalities’, SIAM J. Control Optim. 37, 589616.Google Scholar
Chen, X., Nashed, Z. and Qi, L. (2001), ‘Smoothing methods and semismooth methods for nondifferentiable operator equations’, SIAM J. Numer. Anal. 38, 12001216.Google Scholar
Chen, X., Qi, L. and Sun, D. (1998), ‘Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities’, Math. Comp. 67, 519540.CrossRefGoogle Scholar
Clarke, F. H. (1990), Optimization and Nonsmooth Analysis, Vol. 5 of Classics in Applied Mathematics, SIAM.CrossRefGoogle Scholar
Coffey, T., Kelley, C. T. and Keyes, D. E. (2003a), ‘Pseudo-transient continuation and differential-algebraic equations’, SIAM J. Sci. Comput. 25, 553569.Google Scholar
Coffey, T. S., McMullan, R. J., Kelley, C. T. and McRae, D. S. (2003b), ‘Globally convergent algorithms for nonsmooth nonlinear equations in computational fluid dynamics’, J. Comput. Appl. Math. 152, 6981.Google Scholar
Collier, A. M., Hindmarsh, A. C., Serban, R. and Woodward, C. S. (2015), User documentation for KINSOL v2.8.0. Technical report UCRL-SM-208116, Lawrence Livermore National Laboratory.Google Scholar
Conn, A. R., Gould, N. I. M. and Toint, P. L. (2000), Trust Region Methods, Vol. 1 of MPS–SIAM Series on Optimization, SIAM.Google Scholar
Coughran, W. M. and Jerome, J. W. (1990), Modular algorithms for transient semiconductor device simulation I: Analysis of the outer iteration. In AMS-SIAM Summer Seminar on Device Simulation, (Bank, R. E., ed.), Vol. 25 of AMS Lectures in Applied Mathematics, AMS, pp. 107149.Google Scholar
Crandall, M. G. and Rabinowitz, P. H. (1971), ‘Bifurcation from simple eigenvalues’, J. Funct. Anal. 8, 321340.Google Scholar
Curtis, A. R., Powell, M. J. D. and Reid, J. K. (1974), ‘On the estimation of sparse Jacobian matrices’, J. Inst. Math. Appl. 13, 117119.Google Scholar
CVX Research, Inc.(2012), CVX: Matlab software for disciplined convex programming, version 2.0. http://cvxr.com/cvx Google Scholar
Decker, D. W. and Kelley, C. T. (1980), ‘Newton’s method at singular points I’, SIAM J. Numer. Anal. 17, 6670.Google Scholar
Decker, D. W. and Kelley, C. T. (1983), ‘Sublinear convergence of the chord method at singular points’, Numer. Math. 42, 147154.Google Scholar
De Luca, T., Facchinei, F. and Kanzow, C. (1996), ‘A semismooth equation approach to the solution of nonlinear complementarity problems’, Math. Program. 75, 407439.CrossRefGoogle Scholar
Dembo, R., Eisenstat, S. and Steihaug, T. (1982), ‘Inexact Newton methods’, SIAM J. Numer. Anal. 19, 400408.Google Scholar
Demmel, J. W. (1997), Applied Numerical Linear Algebra, SIAM.Google Scholar
Dennis, J. E. (1969), ‘On the Kantorovich hypothesis for Newton’s method’, SIAM J. Numer. Anal. 6, 493507.Google Scholar
Dennis, J. E. (1971), Toward a unified convergence theory for Newton-like methods. In Nonlinear Functional Analysis and Applications (Rall, L. B., ed.), Academic, pp. 425472.Google Scholar
Dennis, J. E. and Schnabel, R. B. (1979), ‘Least change secant updates for quasi-Newton methods’, SIAM Review 21, 443459.Google Scholar
Dennis, J. E. and Schnabel, R. B. (1996), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Vol. 16 of Classics in Applied Mathematics, SIAM.Google Scholar
Dennis, J. E. and Walker, H. F. (1981), ‘Convergence theorems for least change secant update methods’, SIAM J. Numer. Anal. 18, 949987.Google Scholar
Deuflhard, P. (2004), Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Vol. 35 of Computational Mathematics, Springer.Google Scholar
Deuflhard, P., Freund, R. W. and Walter, A. (1990), ‘Fast secant methods for the iterative solution of large nonsymmetric linear systems’, Impact Comput. Sci. Engrg 2, 244276.Google Scholar
Doedel, E. J. (1997), Lecture Notes on Numerical Analysis of Bifurcation Problems, from Sommerschule über Nichtlineare Gleichungssysteme, Hamburg, Germany, March 17–21, 1997. Available by anonymous ftp to: ftp.cs.condordia.ca in pub/doedel/doc/hamburg.ps.Z Google Scholar
Doedel, E. J. and Kernévez, J. P. (1986), AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Technical report, California Institute of Technology.Google Scholar
Eisenstat, S. C. and Walker, H. F. (1996), ‘Choosing the forcing terms in an inexact Newton method’, SIAM J. Sci. Comput. 17, 1632.Google Scholar
Ern, A., Giovangigli, V., Keyes, D. E. and Smooke, M. D. (1994), ‘Towards polyalgorithmic linear system solvers for nonlinear elliptic problems’, SIAM J. Sci. Comput. 15, 681703.Google Scholar
Facchinei, F., Fischer, A. and Kanzow, C. (1996), Inexact Newton methods for semismooth equations with applications to variational inequality problems. In Nonlinear Optimization and Applications (Pillo, G. D. and Giannessi, F., eds), Plenum, pp. 125139.CrossRefGoogle Scholar
Fang, H.-R. and Saad, Y. (2009), ‘Two classes of multisecant methods for nonlinear acceleration’, Numer. Linear Algebra Appl. 16, 197221.Google Scholar
Farthing, M. W., Kees, C. E., Coffey, T., Kelley, C. T. and Miller, C. T. (2003), ‘Efficient steady-state solution techniques for variably saturated groundwater flow’, Adv. Water Resour. 26, 833849.Google Scholar
Federer, H. (1969), Geometric Measure Theory, Vol. 153 of Grundlehren der mathematischen Wissenschaften, Springer.Google Scholar
Ferng, W. R. and Kelley, C. T. (2000), ‘Mesh independence of matrix-free methods for path following’, SIAM J. Sci. Comput. 21, 18351850.Google Scholar
Fischer, A. (1992), ‘A special Newton-type optimization method’, Optimization 24, 269284.Google Scholar
Foresman, J. B. and Frisch, A. (1996), Exploring Chemistry with Electronic Structure Methods, second edition, Gaussian, Inc.Google Scholar
Fowler, K. R. and Kelley, C. T. (2005), ‘Pseudo-transient continuation for nonsmooth nonlinear equations’, SIAM J. Numer. Anal. 43, 13851406.Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, W., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, D., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J. (2009), Gaussian 09, Revision A.1, Gaussian, Inc.Google Scholar
Ganine, V., Javiya, U., Hills, N. and Chew, J. (2012), ‘Coupled fluid–structure transient thermal analysis of a gas turbine internal air system with multiple cavities’, J. Engng Gas Turbines Power 134, 102508.Google Scholar
Gardner, D. J., Woodward, C. S., Reynolds, D. R., Hommes, G., Aubrey, S. and Arsnelis, A. (2015), ‘Implicit integration methods for dislocation dynamics’, Modelling Simul. Mater. Sci. Engrg 23, 025006.Google Scholar
Golub, G. H. and Saunders, M. A. (1969), Linear least squares and quadratic programming. Technical report CS 134, Stanford University.Google Scholar
Golub, G. H. and Van Loan, C. G. (1996), Matrix Computations, third edition, Johns Hopkins University Press.Google Scholar
Govaerts, W. J. F. (2000), Numerical Methods for Bifurcations of Dynamic Equilibria, SIAM.Google Scholar
Grasser, K.-T. (1999), Mixed-mode device simulation. Technical report, Technical University of Vienna (doctoral dissertation). http://www.iue.tuwien.ac.at/phd/grasser/ Google Scholar
Hamilton, S., Berrill, M., Clarno, K., Pawlowski, R., Toth, A., Kelley, C. T., Evans, T. and Philip, B. (2016), ‘An assessment of coupling algorithms for nuclear reactor core physics simulations’, J. Comput. Phys. 311, 241257.Google Scholar
Hart, W. E. and Soul, S. O. W. (1973), ‘Quasi-Newton methods for discretized nonlinear boundary problems’, J. Inst. Appl. Math. 11, 351359.CrossRefGoogle Scholar
Heinkenschloß, M., Kelley, C. T. and Tran, H. T. (1992), ‘Fast algorithms for nonsmooth compact fixed point problems’, SIAM J. Numer. Anal. 29, 17691792.Google Scholar
Heinkenschloss, M., Ulbrich, M. and Ulbrich, S. (1999), ‘Superlinear and quadratic convergence of affine scaling interior-point Newton methods for problems with simple bounds and without strict complementarity assumption’, Math. Program. 86, 615635.Google Scholar
Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A. and Stanley, K. S. (2005), An overview of the Trilinos project. Technical report 3, Sandia National Laboratories.Google Scholar
Higham, D. J. (1999), ‘Trust region algorithms and time step selection’, SIAM J. Numer. Anal. 37, 194210.Google Scholar
Higham, N. J. (1996), Accuracy and Stability of Numerical Algorithms, SIAM.Google Scholar
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E. and Woodward, C. S. (2005), ‘SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers’, ACM Trans. Math. Softw. 31, 363396.Google Scholar
Hintermüller, M. (2010), Semismooth Newton methods and applications. Oberwolfach Seminar on ‘Mathematics of PDE-Constrained Optimization’ at Mathematisches Forschungsinstitut in Oberwolfach, November 2010.Google Scholar
Hintermüller, M. and Ulbrich, M. (2003), A mesh-independence result for semismooth Newton methods. Technical report, Fachbereich Mathematik, Universität Hamburg.Google Scholar
Hohenberg, P. and Kohn, W. (1964), ‘Inhomogeneous electron gas’, Phys. Rev. 136, B864B871.Google Scholar
Jiang, H. and Qi, L. (1997), ‘A new nonsmooth equations approach to nonlinear complementarity problems’, SIAM J. Control Optim. 35, 178193.Google Scholar
Kant, T. and Patel, S. (1990), ‘Transient/pseudo-transient finite element small/large deformation analysis of two-dimensional problems’, Comput. Struct. 36, 421427.Google Scholar
Kantorovich, L. and Akilov, G. (1982), Functional Analysis, second edition, Pergamon.Google Scholar
Karlin, S. (1959), ‘Positive operators’, J. Math. Mech. 8, 907937.Google Scholar
Keller, H. B. (1987), Lectures on Numerical Methods in Bifurcation Theory, Tata Institute of Fundamental Research, Lectures on Mathematics and Physics, Springer.Google Scholar
Kelley, C. T. (1994), Identification of the support of nonsmoothness. In Large Scale Optimization: State of the Art (Hager, W. W., Hearn, D. W. and Pardalos, P., eds), Kluwer Academic, pp. 192205.Google Scholar
Kelley, C. T. (1995), Iterative Methods for Linear and Nonlinear Equations, Vol. 16 of Frontiers in Applied Mathematics, SIAM.Google Scholar
Kelley, C. T. (1999), Iterative Methods for Optimization, Vol. 18 of Frontiers in Applied Mathematics, SIAM.Google Scholar
Kelley, C. T. and Keyes, D. E. (1998), ‘Convergence analysis of pseudo-transient continuation’, SIAM J. Numer. Anal. 35, 508523.Google Scholar
Kelley, C. T. and Sachs, E. W. (1985), ‘Broyden’s method for approximate solution of nonlinear integral equations’, J. Integral Equations 9, 2544.Google Scholar
Kelley, C. T. and Sachs, E. W. (1987), ‘A quasi-Newton method for elliptic boundary value problems’, SIAM J. Numer. Anal. 24, 516531.Google Scholar
Kelley, C. T. and Sachs, E. W. (1989), ‘A pointwise quasi-Newton method for unconstrained optimal control problems’, Numer. Math. 55, 159176.Google Scholar
Kelley, C. T. and Sachs, E. W. (1991), ‘Mesh independence of Newton-like methods for infinite dimensional problems’, J. Integral Equ. Appl. 3, 549573.Google Scholar
Kelley, C. T. and Sachs, E. W. (1993), ‘Pointwise Broyden methods’, SIAM J. Optim. 3, 423441.Google Scholar
Kelley, C. T. and Sachs, E. W. (1994), ‘Multilevel algorithms for constrained compact fixed point problems’, SIAM J. Sci. Comput. 15, 645667.Google Scholar
Kelley, C. T. and Sachs, E. W. (1995), ‘Solution of optimal control problems by a pointwise projected Newton method’, SIAM J. Control Optim. 33, 17311757.Google Scholar
Kelley, C. T. and Xue, Z. Q. (1996), ‘GMRES and integral operators’, SIAM J. Sci. Comput. 17, 217226.Google Scholar
Kelley, C. T., Liao, L.-Z., Qi, L., Chu, M. T., Reese, J. P. and Winton, C. (2008), ‘Projected pseudo-transient continuation’, SIAM J. Numer. Anal. 46, 30713083.Google Scholar
Kerkhoven, T. and Jerome, J. W. (1990), ‘ L stability of finite element approximations to elliptic gradient equations’, Numer. Math. 57, 561575.Google Scholar
Keyes, D. E. (1995), Aerodynamic applications of Newton–Krylov–Schwarz solvers. In Proceedings of the 14th International Conference on Numerical Methods in Fluid Dynamics (Narasimha, R., ed.), Springer, pp. 120.Google Scholar
Keyes, D. E. and Smooke, M. D. (1987), ‘Flame sheet starting estimates for counterflow diffusion flame problems’, J. Comput. Phys. 72, 267288.Google Scholar
Knoll, D. A. and Keyes, D. E. (2004), ‘Jacobian-free Newton–Krylov methods: A survey of approaches and applications’, J. Comput. Phys. 193, 357397.Google Scholar
Knoll, D. A. and Rider, W. J. (1997), A multigrid preconditioned Newton–Krylov method. Technical report LA-UR-97-4013, Los Alamos National Laboratory.Google Scholar
Knoll, D. A., Park, H. and Smith, K. (2011), ‘Application of the Jacobian-free Newton–Krylov method to nonlinear acceleration of transport source iteration in slab geometry’, Nucl. Sci. Engng 167, 122132.Google Scholar
Kohn, W. and Sham, L. J. (1965), ‘Self-consistent equations including exchange and correlation effects’, Phys. Rev. 140, A1133A1138.Google Scholar
Kudin, K. N., Scuseria, G. E. and Cancès, E. (2002), ‘A black-box self-consistent field convergence algorithm: One step closer’, J. Chem. Phys. 116, 82558261.Google Scholar
Kuznetsov, Y. A. (1998), Elements of Applied Bifurcation Theory, Springer.Google Scholar
Landau, L. D. and Lifschitz, E. M. (1959), Fluid Mechanics, Pergamon.Google Scholar
Leveque, R. J. (2007), Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM.Google Scholar
Lin, L. and Yang, C. (2013), ‘Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn–Sham density functional theory’, SIAM J. Sci. Comput. 35, S277S298.Google Scholar
Lott, P. A., Walker, H. F., Woodward, C. S. and Yang, U. M. (2012), ‘An accelerated Picard method for nonlinear systems related to variably saturated flow’, Adv. Water Resour. 38, 92101.Google Scholar
Marsden, J. E. and McCracken, M. (1976), The Hopf Bifurcation and its Applications, Vol. 19 of Applied Mathematical Sciences, Springer.Google Scholar
Martinez, J. and Qi, L. (1995), ‘Inexact Newton methods for solving nonsmooth equations’, J. Comput. Appl. Math. 60, 127145.Google Scholar
Mifflin, R. (1977), ‘Semismooth and semiconvex functions in constrained optimization’, SIAM J. Control Optim. 15, 959972.Google Scholar
Miller, K. (2005), ‘Nonlinear Krylov and moving nodes in the method of lines’, J. Comput. Appl. Math. 183, 275287.Google Scholar
Moré, J. J. and Toraldo, G. (1991), ‘On the solution of large quadratic programming problems with bound constraints’, SIAM J. Optim. 1, 93113.Google Scholar
Mulder, W. and Leer, B. V. (1985), ‘Experiments with implicit upwind methods for the Euler equations’, J. Comput. Phys. 59, 232246.Google Scholar
Neumaier, A. (1998), MINQ: General definite and bound constrained indefinite quadratic programming. http://www.mat.univie.ac.at/∼neum/software/minq/ Google Scholar
Nevanlinna, O. (1993), Convergence of Iterations for Linear Equations, Birkhäuser.Google Scholar
Newton, I. (1967–1976), The Mathematical Papers of Isaac Newton (seven volumes, D. T. Whiteside, ed.), Cambridge University Press.Google Scholar
Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, Springer.Google Scholar
Oosterlee, C. W. and Washio, T. (2000), ‘Krylov subspace acceleration for nonlinear multigrid schemes’, SIAM J. Sci. Comput. 21, 16701690.Google Scholar
Orkwis, P. D. and McRae, D. S. (1992), ‘Newton’s method solver for the axisymmetric Navier–Stokes equations’, AIAA J. 30, 15071514.Google Scholar
Ortega, J. M. and Rheinboldt, W. C. (1970), Iterative Solution of Nonlinear Equations in Several Variables, Academic.Google Scholar
Overton, M. L. (2001), Numerical Computing with IEEE Floating Point Arithmetic, SIAM.Google Scholar
Pang, J. S. and Qi, L. (1993), ‘Nonsmooth equations: Motivation and algorithms’, SIAM J. Optim. 3, 443645.Google Scholar
Petzold, L. R. (1983), A description of DASSL: A differential/algebraic system solver. In Scientific Computing (Stepleman, R. S. et al. , eds), North-Holland, pp. 6568.Google Scholar
Picard, E. (1890), ‘Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives’, J. de Math. ser. 4 6, 145210.Google Scholar
Potra, F. A. and Engler, H. (2013), ‘A characterization of the behavior of the Anderson acceleration on linear problems’, Linear Algebra Appl. 438, 10021011.Google Scholar
Powell, M. J. D. (1970), A hybrid method for nonlinear equations. In Numerical Methods for Nonlinear Algebraic Equations (Rabinowitz, P., ed.), Gordon & Breach, pp. 87114.Google Scholar
Pulay, P. (1980), ‘Convergence acceleration of iterative sequences. The case of SCF iteration’, Chem. Phys. Lett. 73, 393398.Google Scholar
Pulay, P. (1982), ‘Improved SCF convergence acceleration’, J. Comput. Chem. 3, 556560.Google Scholar
Qi, L. and Sun, J. (1993), ‘A nonsmooth version of Newton’s method’, Math. Program. 58, 353367.Google Scholar
Rabinowitz, P. H. (1971), ‘Some global results for nonlinear eigenvalue problems’, J. Funct. Anal. 7, 487513.Google Scholar
Raphson, J. (1690), Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus generalis, et expedita, ex nova infinitarum serierum doctrina, deducta ac demonstrata. Original in British Library, London.Google Scholar
Rheinboldt, W. C. (1986), Numerical Analysis of Parametrized Nonlinear Equations, Wiley.Google Scholar
Rohwedder, T. and Schneider, R. (2011), ‘An analysis for the DIIS acceleration method used in quantum chemistry calculations’, J. Math. Chem. 49, 18891914.Google Scholar
Saad, Y., Chelikowsky, J. R. and Shontz, S. M. (2010), ‘Numerical methods for electronic structure calculations of materials’, SIAM Review 52, 354.Google Scholar
Sachs, E. W. (1990), ‘Convergence of algorithms for perturbed optimization problems’, Ann. Oper. Res. 27, 311342.Google Scholar
Salinger, A. G., Bou-Rabee, N. M., Pawlowski, R. P., Wilkes, E. D., Burroughs, E. A., Lehoucq, R. B. and Romero, L. A. (2002), LOCA 1.0 Library of Continuation Algorithms: Theory and Implementation Manual. Technical report SAND2002-0396, Sandia National Laboratory.Google Scholar
Schneider, R., Rohwedder, T., Neelov, A. and Blauert, J. (2008), ‘Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure’, J. Comput. Math. 27, 360387.Google Scholar
Shamanskii, V. E. (1967), ‘A modification of Newton’s method’ (in Russian), Ukran. Mat. Zh. 19, 133138.Google Scholar
Shestakov, A. I. and Milovich, J. L. (2000), Applications of pseudo-transient continuation and Newton–Krylov methods for the Poisson–Boltzmann and radiation diffusion equations. Technical report UCRL-JC-139339, Lawrence Livermore National Laboratory.Google Scholar
Simoncini, V. and Szyld, D. B. (2003a), ‘Flexible inner–outer Krylov subspace methods’, SIAM J. Numer. Anal. 40, 22192239.Google Scholar
Simoncini, V. and Szyld, D. B. (2003b), ‘Theory of inexact Krylov subspace methods and applications to scientific computing’, SIAM J. Sci. Comput. 25, 454477.Google Scholar
Simoncini, V. and Szyld, D. B. (2007), ‘Recent computational developments in Krylov subspace methods for linear systems’, Numer. Linear Algebra with Appl. 14, 159.Google Scholar
Smooke, M. D., Mitchell, R. and Keyes, D. (1989), ‘Numerical solution of two-dimensional axisymmetric laminar diffusion flames’, Combust. Sci. Tech. 67, 85122.Google Scholar
Tapia, R. A., Dennis, J. E. and Schäfermeyer, J. P. (2018), ‘Inverse, shifted inverse, and Rayleigh quotient iteration as Newton’s method’, SIAM Rev. 60, 355.Google Scholar
Tocci, M. D., Kelley, C. T. and Miller, C. T. (1997), ‘Accurate and economical solution of the pressure head form of Richards’ equation by the method of lines’, Adv. Water Resour. 20, 114.Google Scholar
Toth, A. (2016), A theoretical analysis of Anderson acceleration and its application in multiphysics simulation for light-water reactors. PhD thesis, North Carolina State University.Google Scholar
Toth, A. and Kelley, C. T. (2015), ‘Convergence analysis for Anderson acceleration’, SIAM J. Numer. Anal. 53, 805819.Google Scholar
Toth, A. and Pawlowski, R. (2015), NOX::Solver::AndersonAcceleration Class Reference. https://trilinos.org/docs/dev/packages/nox/doc/html/ classNOX_1_1Solver_1_1AndersonAcceleration.html Google Scholar
Toth, A., Ellis, J. A., Evans, T., Hamilton, S., Kelley, C. T., Pawlowski, R. and Slattery, S. (2017), ‘Local improvement results for Anderson acceleration with inaccurate function evaluations’, 39, S47–S65.Google Scholar
Toth, A., Kelley, C. T., Slattery, S., Hamilton, S., Clarno, K. and Pawlowski, R. (2015), Analysis of Anderson acceleration on a simplified neutronics/thermal hydraulics system. Joint International Conference on ‘Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method’.Google Scholar
Traub, J. F. (1964), Iterative Methods for the Solution of Equations, Prentice Hall.Google Scholar
Ulbrich, M. (2001), ‘Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems’, SIAM J. Optim. 11, 889917.Google Scholar
Ulbrich, M. (2011), Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Series on Optimization, SIAM.Google Scholar
Venkatakrishnan, V. (1989), ‘Newton solution of inviscid and viscous problems’, AIAA J. 27, 885891.Google Scholar
Walker, H. W. and Ni, P. (2011), ‘Anderson acceleration for fixed-point iterations’, SIAM J. Numer. Anal. 49, 17151735.Google Scholar
Washio, T. and Oosterlee, C. (1997), ‘Krylov subspace acceleration for nonlinear multigrid schemes’, Elec. Trans. Numer. Anal. 6, 271290.Google Scholar
Willert, J., Chen, X. and Kelley, C. T. (2015), ‘Newton’s method for Monte Carlo-based residuals’, SIAM J. Numer. Anal. 53, 17381757.Google Scholar
Willert, J., Kelley, C. T., Knoll, D. A. and Park, H. K. (2013), ‘Hybrid deterministic/Monte Carlo neutronics’, SIAM J. Sci. Comput. 35, S62S83.Google Scholar
Willert, J., Taitano, W. T. and Knoll, D. (2014), ‘Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems’, J. Comput. Phys. 273, 278286.Google Scholar
Yang, Y. and Qi, L. (2005), ‘Smoothing trust region methods for nonlinear complementarity problems with p 0-functions’, Ann. Oper. Res. 133, 99117.Google Scholar