Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T17:58:04.514Z Has data issue: false hasContentIssue false

Verification methods: Rigorous results using floating-point arithmetic

Published online by Cambridge University Press:  10 May 2010

Siegfried M. Rump
Affiliation:
Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, 21071 Hamburg, Germany and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo, 169–8555, Japan, E-mail: rump@tu-harburg.de

Extract

A classical mathematical proof is constructed using pencil and paper. However, there are many ways in which computers may be used in a mathematical proof. But ‘proof by computer’, or even the use of computers in the course of a proof, is not so readily accepted (the December 2008 issue of the Notices of the American Mathematical Society is devoted to formal proofs by computer).

In the following we introduce verification methods and discuss how they can assist in achieving a mathematically rigorous result. In particular we emphasize how floating-point arithmetic is used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, J. P. and Brent, R. P. (1975), ‘Fast local convergence with single and multistep methods for nonlinear equations’, Austr. Math. Soc. B 19, 173199.CrossRefGoogle Scholar
ACRITH (1984), IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), Release 1, IBM Deutschland GmbH, Böblingen.Google Scholar
Adams, R. A. (1975), Sobolev Spaces, Academic Press, New York.Google Scholar
Alefeld, G., private communication.Google Scholar
Alefeld, G. (1994), Inclusion methods for systems of nonlinear equations. In Topics in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 726.Google Scholar
Alefeld, G. and Herzberger, J. (1974), Einführung in die Intervallrechnung, BI Wissenschaftsverlag.Google Scholar
Alefeld, G., Kreinovich, V. and Mayer, G. (1997), ‘On the shape of the symmetric, persymmetric, and skew-symmetric solution set’, SIAM J. Matrix Anal. Appl. 18, 693705.CrossRefGoogle Scholar
Alefeld, G., Kreinovich, V. and Mayer, G. (2003), ‘On the solution sets of particular classes of linear interval systems’, J. Comput. Appl. Math. 152, 115.CrossRefGoogle Scholar
Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. and Sorensen, D. C. (1995), LAPACK User‘s Guide, Release 2.0, 2nd edn, SIAM, Philadelphia.Google Scholar
Andrade, M. V. A., Comba, J. L. D. and Stolfi, J. (1994), Affine arithmetic. Extended abstract, presented at INTERVAL'94, St. Petersburg.Google Scholar
ARITHMOS (1986), ARITHMOS: Benutzerhandbuch, Siemens AG, Bibl.-Nr. U 2900-I-Z87–1 edition.Google Scholar
Aschbacher, M. (1994), Sporadic Groups, Cambridge University Press.CrossRefGoogle Scholar
Avizienis, A. (1961), ‘Signed-digit number representations for fast parallel arithmetic’, Ire Trans. Electron. Comp. EC-10, 389400.CrossRefGoogle Scholar
Bauer, H. (1978), Wahrscheinlichkeitstheorie und Grundzüge der Maβtheorie, 3rd edn, de Gruyter, Berlin.CrossRefGoogle Scholar
Beaumont, O. (2000), Solving interval linear systems with oblique boxes. Research report PI 1315, INRIA.Google Scholar
Behnke, H. (1989), Die Bestimmung von Eigenwertschranken mit Hilfe von Variationsmethoden und Intervallarithmetik. Dissertation, Institut für Mathematik, TU Clausthal.Google Scholar
Behnke, H. and Goerisch, F. (1994), Inclusions for eigenvalues of selfadjoint problems. In Topics in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 277322.Google Scholar
Ben-Tal, A. and Nemirovskii, A. (2001), Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia.CrossRefGoogle Scholar
Bernelli Zazzera, F., Vasile, M., Massari, M. and Di Lizia, P. (2004), Assessing the accuracy of interval arithmetic estimates in space flight mechanics. Final report, Ariadna id: 04/4105, Contract Number: 18851/05/NL/MV.Google Scholar
Bertot, Y. and Castéran, P. (2004), Interactive Theorem Proving and Program Development, Coq'Art: The Calculus of Inductive Constructions, Texts in Theoretical Computer Science, Springer.CrossRefGoogle Scholar
Berz, M. and Makino, K. (1999), ‘New methods for high-dimensional verified quadrature’, Reliable Computing 5, 1322.CrossRefGoogle Scholar
Bischof, C. H., Carle, A., Corliss, G. and Griewank, A. (1991), ADIFOR: Generating derivative codes from Fortran programs. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory.CrossRefGoogle Scholar
Borchers, B. (1999), ‘SDPLIB 1.2: A library of semidefinite programming test problems’, Optim. Methods Software 11, 683690.CrossRefGoogle Scholar
Bornemann, F., Laurie, D., Wagon, S. and Waldvogel, J. (2004), The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing, SIAM, Philadelphia.CrossRefGoogle Scholar
Börsken, N. C. (1978), Komplexe Kreis-Standardfunktionen. Diplomarbeit, Freiburger Intervall-Ber. 78/2, Institut für Angewandte Mathematik, Universität Freiburg.Google Scholar
Braune, K. D. (1987), Hochgenaue Standardfunktionen für reelle und komplexe Punkte und Intervalle in beliebigen Gleitpunktrastern. Dissertation, Univer-sität Karlsruhe.Google Scholar
Breuer, B., Horák, J., McKenna, P. J. and Plum, M. (2006), ‘A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam’, J. Diff. Equations 224, 6097.CrossRefGoogle Scholar
Breuer, B., McKenna, P. J. and Plum, M. (2003), ‘Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof’, J. Diff. Equations 195, 243269.CrossRefGoogle Scholar
Brown, B. M., McCormack, D. K. R. and Zettl, A. (2000), ‘On a computer assisted proof of the existence of eigenvalues below the essential spectrum of the Sturm-Liouville problem’, J. Comput. Appl. Math. 125, 385393.CrossRefGoogle Scholar
Browne, M. W. (1988), Is a math proof a proof if no one can check it? The New York Times, December 1988, p. 1.Google Scholar
Bunch, J. R., Demmel, J. W. and Van Loan, C. F. (1989), ‘The strong stability of algorithms for solving symmetric linear systems’, SIAM J. Matrix Anal. Appl. 10, 494499.CrossRefGoogle Scholar
Bünger, F. (2008), private communication.Google Scholar
Caprani, O. and Madsen, K. (1978), ‘Iterative methods for interval inclusion of fixed points’, BIT Numer. Math. 18, 4251.CrossRefGoogle Scholar
Chatelin, F. (1988), Analyse statistique de la qualité numérique et arithmétique de la résolution approchée d'équations par calcul sur ordinateur. Technical Report F.133, Centre Scientifique IBM-France.Google Scholar
Choi, Y. S. and McKenna, P. J. (1993), ‘A mountain pass method for the numerical solutions of semilinear elliptic problems’, Nonlinear Anal. Theory Methods Appl. 20, 417437.CrossRefGoogle Scholar
Collatz, L. (1942), ‘Einschlieβungssatz für die charakteristischen Zahlen von Matrizen’, Math. Z. 48, 221226.CrossRefGoogle Scholar
Corliss, G. F. and Rall, L. B. (1987), ‘Adaptive, self-validating numerical quadrature’, SIAM J. Sci. Statist. Comput. 8, 831847.CrossRefGoogle Scholar
Corliss, G., Faure, C., Griewank, A., Hascöet, L. and Nauman, U. (2002), Automatic Differentiation of Algorithms: From Simulation to Optimization, Springer.CrossRefGoogle Scholar
Cuyt, A., Verdonk, B., Becuwe, S. and Kuterna, P. (2001), ‘A remarkable example of catastrophic cancellation unraveled’, Computing 66, 309320.CrossRefGoogle Scholar
Dancer, E. N. and Yan, S. S. (2005), ‘On the superlinear Lazer-McKenna conjecture’, J. Diff. Equations 210, 317351.CrossRefGoogle Scholar
Darboux, G. (1876), ‘Sur les développements en série des fonctions d'une seule variable’, J. des Mathématiques Pures et Appl. 3, 291312.Google Scholar
Daumas, M., Melquiond, G. and Muñoz, C. (2005), Guaranteed proofs using interval arithmetic. In Proc. 17th IEEE Symposium on Computer Arithmetic (ARITH'05).Google Scholar
Dekker, T. J. (1971), ‘A floating-point technique for extending the available precision’, Numer. Math. 18, 224242.CrossRefGoogle Scholar
Demmel, J. B. (1989), On floating point errors in Cholesky. LAPACK Working Note 14 CS–89–87, Department of Computer Science, University of Tennessee, Knoxville, TN, USA.Google Scholar
Demmel, J. B., Diament, B. and Malajovich, G. (2001), ‘On the complexity of computing error bounds’, Found. Comput. Math. 1, 101125.CrossRefGoogle Scholar
Demmel, J. B., Dumitriu, I., Holtz, O. and Koev, P. (2008), Accurate and efficient expression evaluation and linear algebra. In Acta Numerica, Vol. 17, Cambridge University Press, pp. 87145.Google Scholar
Demmel, J. B., Hida, Y., Kahan, W., Li, X. S., Mukherjee, S. and Riedy, E. J. (2004), Error bounds from extra precise iterative refinement. Report no. ucb/csd–04–1344, Computer Science Devision (EECS), University of California, Berkeley.Google Scholar
Dwyer, P. S. (1951), Linear Computations, Wiley, New York/London.Google Scholar
Eckart, C. and Young, G. (1936), ‘The approximation of one matrix by another of lower rank’, Psychometrika 1, 211218.CrossRefGoogle Scholar
Eckmann, J.-P., Koch, H. and Wittwer, P. (1984), ‘A computer-assisted proof of universality for area-preserving maps’, Mem. Amer. Math. Soc. 47, 289.Google Scholar
Eijgenraam, P. (1981), The solution of initial value problems using interval arithmetic.Google Scholar
Fazekas, B., Plum, M. and Wieners, C. (2005), Enclosure for biharmonic equation. In Dagstuhl Online Seminar Proceedings 05391. http://drops.dagstuhl.de/portal/05391/.Google Scholar
Figueiredo, L. H. de and Stolfi, J. (2004), ‘Affine arithmetic: Concepts and applications’, Numer. Algorithms 37, 147158.CrossRefGoogle Scholar
Foster, L. V. (1994), ‘Gaussian elimination with partial pivoting can fail in practice’, SIAM J. Matrix Anal. Appl. 14, 13541362.CrossRefGoogle Scholar
Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P. (2005), MPFR: A multiple-precision binary floating-point library with correct rounding. Research Report RR-5753, INRIA. Code and documentation available at: http://hal.inria.fr/inria-00000818.Google Scholar
Frommer, A. (2001), Proving conjectures by use of interval arithmetic. In Perspectives on Enclosure Methods: SCAN 2000 (Kulisch, U.et al., ed.), Springer.Google Scholar
Galias, Z. and Zgliczynski, P. (1998), ‘Computer assisted proof of chaos in the Lorenz equations’, Physica D 115, 165188.Google Scholar
Gargantini, I. and Henrici, P. (1972), ‘Circular arithmetic and the determination of polynomial zeros’, Numer. Math. 18, 305320.CrossRefGoogle Scholar
Gidas, B., Ni, W. and Nirenberg, L. (1979), ‘Symmetry and related problems via the maximum principle’, Comm. Math. Phys. 68, 209243.CrossRefGoogle Scholar
Gilbarg, D. and Trudinger, N. S. (1983), Elliptic Partial Differential Equations of Second Order, 2nd edn, Springer.Google Scholar
Goldberg, D. (1991), ‘What every computer scientist should know about floatingpoint arithmetic’, ACM Comput. Surv. 23, 548.CrossRefGoogle Scholar
Gordon, M. J. C. (2000), From LCF to HOL: A short history. In Proof, Language, and Interaction: Essays in Honour of Robin Milner (Plotkin, G., Stirling, C. and Tofte, M., eds), MIT Press. http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.html.Google Scholar
Gorenstein, D., Lyons, R. and Solomon, R. (1994), The Classification of the Finite Simple Groups, Vol. 40 of Math. Surveys Monographs, AMS, Providence, RI.CrossRefGoogle Scholar
Griewank, A. (2003), A mathematical view of automatic differentiation. In Acta Numerica, Vol. 12, Cambridge University Press, pp. 321398.Google Scholar
Grisvard, P. (1985), Elliptic Problems in Nonsmooth Domains, Pitman, Boston.Google Scholar
Hansen, E. (1969), The centered form. In Topics in Interval Analysis (Hansen, E., ed.), Oxford University Press, pp. 102106.Google Scholar
Hansen, E. R. and Smith, R. (1967), ‘Interval arithmetic in matrix computations II’, SIAM J. Numer. Anal. 4, 19.CrossRefGoogle Scholar
Hargreaves, G. (2002), Interval analysis in MATLAB. Master's thesis, University of Manchester. http://www.manchester.ac.uk/mims/eprints.Google Scholar
Hass, J., Hutchings, M. and Schlafly, R. (1995), ‘The double bubble conjecture’, Electron. Res. Announc. Amer. Math. Soc. 1, 98102.CrossRefGoogle Scholar
Higham, D. J. and Higham, N. J. (1992 a), ‘Componentwise perturbation theory for linear systems with multiple right-hand sides’, Linear Algebra Appl. 174, 111129.CrossRefGoogle Scholar
Higham, D. J. and Higham, N. J. (1992 b), ‘Backward error and condition of structured linear systems’, SIAM J. Matrix Anal. Appl. 13, 162175.CrossRefGoogle Scholar
Higham, N. J. (2002), Accuracy and Stability of Numerical Algorithms, 2nd edn, SIAM, Philadelphia.CrossRefGoogle Scholar
Hölzl, J. (2009), Proving real-valued inequalities by computation in Isabelle/HOL. Diplomarbeit, Fakultät für Informatik der Technischen Universität München.Google Scholar
IEEE 754 (2008), ANSI/IEEE 754–2008: IEEE Standard for Floating-Point Arithmetic, New York.Google Scholar
Jansson, C. (1991), ‘Interval linear systems with symmetric matrices, skew-symmetric matrices, and dependencies in the right hand side’, Computing 46, 265274.CrossRefGoogle Scholar
Jansson, C. (1994), On self-validating methods for optimization problems. In Topic,s in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 381438.Google Scholar
Jansson, C. (1997), ‘Calculation of exact bounds for the solution set of linear interval systems’, Linear Algebra Appl. 251, 321340.CrossRefGoogle Scholar
Jansson, C. (2004 a), ‘A rigorous lower bound for the optimal value of convex optimization problems’, J. Global Optim. 28, 121137.CrossRefGoogle Scholar
Jansson, C. (2004 b), ‘Rigorous lower and upper bounds in linear programming’, SIAM J. Optim. 14, 914935.CrossRefGoogle Scholar
Jansson, C. (2006), VSDP: A MATLAB software package for verified semidefinite programming. In NOLTA 2006, pp. 327330.Google Scholar
Jansson, C. (2009), ‘On verified numerical computations in convex programming’, Japan J. Indust. Appl. Math. 26, 337363.CrossRefGoogle Scholar
Jansson, C. and Rohn, J. (1999), ‘An algorithm for checking regularity of interval matrices’, SIAM J. Matrix Anal. Appl. 20, 756776.CrossRefGoogle Scholar
Jansson, C., Chaykin, D. and Keil, C. (2007), ‘Rigorous error bounds for the optimal value in semidefinite programming’, SIAM J. Numer. Anal. 46, 180200. http://link.aip.org/link/?SNA/46/180/1.CrossRefGoogle Scholar
Kahan, W. M. (1968), A more complete interval arithmetic. Lecture notes for a summer course at the University of Michigan.Google Scholar
Kanzawa, Y. and Oishi, S. (1999 a), ‘Imperfect singular solutions of nonlinear equations and a numerical method of proving their existence’, IEICE Trans. Fundamentals E82-A, 10621069.Google Scholar
Kanzawa, Y. and Oishi, S. (1999 b), ‘Calculating bifurcation points with guaranteed accuracy’, IEICE Trans. Fundamentals E82-A, 10551061.Google Scholar
Kato, T. (1966), Perturbation Theory for Linear Operators, Springer, New York.Google Scholar
Kearfott, R. B. (1997), ‘Empirical evaluation of innovations in interval branch and bound algorithms for nonlinear systems’, SIAM J. Sci. Comput. 18, 574594.CrossRefGoogle Scholar
Kearfott, R. B., Dawande, M., Du, K. and Hu, C. (1992), ‘INTLIB: A portable Fortran-77 elementary function library’, Interval Comput. 3, 96105.Google Scholar
Kearfott, R. B., Dian, J. and Neumaier, A. (2000), ‘Existence verification for singular zeros of complex nonlinear systems’, SIAM J. Numer. Anal. 38, 360379.CrossRefGoogle Scholar
Kearfott, R. B., Nakao, M. T., Neumaier, A., Rump, S. M., Shary, S. P. and van Hentenfyck, P. (2005) Standardized notation in interval analysis. In Proc. XIII Baikal International School-Seminar: Optimization Methods and their Applications, Vol. 4, Melentiev Energy Systems Institute SB RAS, Irkutsk.Google Scholar
Keil, C. (2006), Lurupa: Rigorous error bounds in linear programming. In Algebraic and Numerical Algorithms and Computer-assisted Proofs (Buch-berger, B., Oishi, S., Plum, M. and Rump, S. M., eds), Vol. 05391 of Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2006/445.Google Scholar
Keil, C. and Jansson, C. (2006), ‘Computational experience with rigorous error bounds for the Netlib linear programming library’, Reliable Computing 12, 303321. http://www.optimization-online.org/DBHTML/2004/12/1018.html.CrossRefGoogle Scholar
Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C. and Rauch, M. (1993), C-XSC A C++ Class Library for Extended Scientific Computing, Springer, Berlin.Google Scholar
Knüppel, O. (1994), ‘PROFIL/BIAS: A fast interval library’, Computing 53, 277287.CrossRefGoogle Scholar
Knüppel, O. (1998), PROFIL/BIAS and extensions, Version 2.0. Technical report, Institut für Informatik III, Technische Universität Hamburg-Harburg.Google Scholar
Knuth, D. E. (1969), The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, Addison-Wesley, Reading, MA.Google Scholar
Kolev, L. V. and Mladenov, V. (1997), Use of interval slopes in implementing an interval method for global nonlinear DC circuit analysis. Internat. J. Circuit Theory Appl. 12, 3742.3.0.CO;2-G>CrossRefGoogle Scholar
Krämer, W. (1987), Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit a priori Fehlerabschätzung für beliebige Datenformate. Dissertation, Universität Karlsruhe.Google Scholar
Krämer, W. (1991), Verified solution of eigenvalue problems with sparse matrices. In Proc. 13th World Congress on Computation and Applied Mathematics, pp. 3233.Google Scholar
Krawczyk, R. (1969 a), ‘Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken’, Computing 4, 187201.CrossRefGoogle Scholar
Krawczyk, R. (1969 b), ‘Fehlerabschätzung reeller Eigenwerte und Eigenvektoren von Matrizen’, Computing 4, 281293.CrossRefGoogle Scholar
Krawczyk, R. and Neumaier, A. (1985), ‘Interval slopes for rational functions and associated centered forms’, SIAM J. Numer. Anal. 22, 604616.CrossRefGoogle Scholar
Kreinovich, V., Lakeyev, A. V. and Noskov, S. I. (1993), ‘Optimal solution of interval linear systems is intractable (NP-hard)’, Interval Comput. 1, 614.Google Scholar
Kreinovich, V., Neumaier, A. and Xiang, G. (2008), ‘Towards a combination of interval and ellipsoid uncertainty’, Vych. Techn. (Computational Technologies) 13, 516.Google Scholar
Kulisch, U. (1981), Computer Arithmetic in Theory and Practice, Academic Press.Google Scholar
La Porte, M. and Vignes, J. (1974), ‘Etude statistique des erreurs dans l‘arith-métique des ordinateurs: Application au contrôle des résultats d‘algorithmes númeriques’, Numer. Math. 23, 6372.CrossRefGoogle Scholar
Ladyzhenskaya, O. A. and Uraltseva, N. N. (1968), Linear and Quasilinear Elliptic Equations, Academic Press, New York.Google Scholar
Lahmann, J. and Plum, M. (2004), ‘A computer-assisted instability proof for the Orr-Sommerfeld equation with Blasius profile’, Z. Angew. Math. Mech. 84, 188204.CrossRefGoogle Scholar
Lam, C. W. H., Thiel, L. and Swiercz, S. (1989), ‘The nonexistence of finite projective planes of order 10’, Canad. J. Math. 41, 11171123.CrossRefGoogle Scholar
Lehmann, N. J. (1963), ‘Optimale Eigenwerteinschlieβung’, Numer. Math. 5, 246272.CrossRefGoogle Scholar
Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kang, S. Y., Kapur, A., Martin, M. C., Thompson, B. J., Tung, T. and Yoo, D. J. (2002), ‘Design, implementation and testing of extended and mixed precision BLAS’, ACM Trans. Math. Software 28, 152205.CrossRefGoogle Scholar
Loh, E. and Walster, W. (2002), ‘Rump‘s example revisited’, Reliable Computing 8, 245248.CrossRefGoogle Scholar
Lohner, R. (1988), Einschlieβung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anordnungen. PhD thesis, University of Karlsruhe.Google Scholar
Maple (2009), Release 13, Reference Manual.Google Scholar
Markov, S. and Okumura, K. (1999), The contribution of T. Sunaga to interval analysis and reliable computing. In Developments in Reliable Computing (Csendes, T., ed.), Kluwer, pp. 167188.CrossRefGoogle Scholar
Mathematica (2009), Release 7.0, Reference Manual.Google Scholar
MATLAB (2004), User‘s Guide, Version 7, The MathWorks.Google Scholar
Moore, R. E. (1962), Interval arithmetic and automatic error analysis in digital computing. Dissertation, Stanford University.Google Scholar
Moore, R. E. (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs.Google Scholar
Moore, R. E. (1977), ‘A test for existence of solutions for non-linear systems’, SIAM J. Numer. Anal. 4, 611615.CrossRefGoogle Scholar
Moore, R. E. (1999), ‘The dawning’, Reliable Computing 5, 423424.Google Scholar
Moore, R. E., Kearfott, R. B. and Cloud, M. J. (2009), Introduction To Interval Analysis, Cambridge University Press.CrossRefGoogle Scholar
Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Mel-quiond, G., Revol, R., Stehlé, D. and Torres, S. (2009), Handbook of Floating-Point Arithmetic, Birkhäuser, Boston.Google Scholar
Nagatou, K., Nakao, M. T. and Yamamoto, N. (1999), ‘An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness’, Numer. Funct. Anal. Optim. 20, 543565.CrossRefGoogle Scholar
Nakao, M. T. (1988), ‘A numerical approach to the proof of existence of solutions for elliptic problems’, Japan J. Appl. Math. 5, 313332.CrossRefGoogle Scholar
Nakao, M. T. (1993), Solving nonlinear elliptic problems with result verification using an H- 1 type residual iteration. Computing (Suppl.) 9, 161173.Google Scholar
Nakao, M. T. and Yamamoto, N. (1995), ‘Numerical verifications for solutions to elliptic equations using residual iterations with higher order finite elements’, J. Comput. Appl. Math. 60, 271279.Google Scholar
Nakao, M. T., Hashimoto, K. and Watanabe, Y. (2005), ‘A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems’, Computing 75, 114.CrossRefGoogle Scholar
Nedialkov, N. S. (1999), Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. PhD dissertation, University of Toronto, Canada.CrossRefGoogle Scholar
Nedialkov, N. S. and Jackson, K. R. (2000), ODE software that computes guaranteed bounds on the solution. In Advances in Software Tools for Scientic Computing (Langtangen, H. P., Bruaset, A. M. and Quak, E., eds), Springer, pp. 197224.CrossRefGoogle Scholar
NETLIB (2009), Linear Programming Library. http://www.netlib.org/lp.Google Scholar
Neumaier, A. (1974), ‘Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen’, Z. Angew. Math. Mech. 54, 3951.CrossRefGoogle Scholar
Neumaier, A. (1984), ‘New techniques for the analysis of linear interval equations’, Linear Algebra Appl. 58, 273325.CrossRefGoogle Scholar
Neumaier, A. (1987), ‘Overestimation in linear interval equations’, SIAM J. Numer. Anal. 24, 207214.CrossRefGoogle Scholar
Neumaier, A. (1988), ‘An existence test for root clusters and multiple roots’, Z. Angew. Math. Mech. 68, 256257.CrossRefGoogle Scholar
Neumaier, A. (1989), ‘Rigorous sensitivity analysis for parameter-dependent systems of equations’, J. Math. Anal. Appl. 144, 1625.CrossRefGoogle Scholar
Neumaier, A. (1990), Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press.Google Scholar
Neumaier, A. (1993), ‘The wrapping effect, ellipsoid arithmetic, stability and confidence regions’, Computing Supplementum 9, 175190.CrossRefGoogle Scholar
Neumaier, A. (2001), Introduction to Numerical Analysis, Cambridge University Press.CrossRefGoogle Scholar
Neumaier, A. (2002), ‘Grand challenges and scientific standards in interval analysis’, Reliable Computing 8, 313320.CrossRefGoogle Scholar
Neumaier, A. (2003), ‘Enclosing clusters of zeros of polynomials’, J. Comput. Appl. Math. 156, 389401.CrossRefGoogle Scholar
Neumaier, A. (2004), Complete search in continuous global optimization and constraint satisfaction. In Acta Numerica, Vol. 13, Cambridge University Press, pp. 271369.Google Scholar
Neumaier, A. (2009), FMathL: Formal mathematical language. http://www.mat.univie.ac.at/~neum/FMathL.html.Google Scholar
Neumaier, A. (2010), ‘Improving interval enclosures’, Reliable Computing. To appear.Google Scholar
Neumaier, A. and Rage, T. (1993), ‘Rigorous chaos verification in discrete dynamical systems’, Physica D 67, 327346.Google Scholar
Neumaier, A. and Shcherbina, O. (2004), ‘Safe bounds in linear and mixed-integer programming’, Math. Program. A 99, 283296.CrossRefGoogle Scholar
Oettli, W. and Prager, W. (1964), ‘Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides’, Numer. Math. 6, 405409CrossRefGoogle Scholar
Ogita, T., Oishi, S. and Ushiro, Y. (2001), ‘Fast verification of solutions for sparse monotone matrix equations’, Comput. Suppl. 15, 175187.CrossRefGoogle Scholar
Oishi, S. (1998), private communication.Google Scholar
Oishi, S. (2000), Numerical Methods with Guaranteed Accuracy (in Japanese), Corona-sya.Google Scholar
Oishi, S. and Rump, S. M. (2002), ‘Fast verification of solutions of matrix equations’, Numer. Math. 90, 755773.CrossRefGoogle Scholar
Okayama, T., Matsuo, T. and Sugihara, M. (2009), Error estimates with explicit constants for sinc approximation, sinc quadrature and sinc indefinite integration. Technical Report METR2009–01, The University of Tokyo.Google Scholar
Oliveira, J. B. and de Figueiredo, L. H. (2002) ‘Interval computation of Viswanath‘s constant’, Reliable Computing 8, 131138.CrossRefGoogle Scholar
Ordón~ez, F. and Freund, R. M. (2003), ‘Computational experience and the explanatory value of condition measures for linear optimization’, SIAM J. Optim. 14, 307333.CrossRefGoogle Scholar
Overton, M. (2001), Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia.CrossRefGoogle Scholar
Ovseevich, A. and Chernousko, F. (1987), ‘On optimal ellipsoids approximating reachable sets’, Problems of Control and Information Theory 16, 125134.Google Scholar
Payne, M. and Hanek, R. (1983), ‘Radian reduction for trigonometric functions’, SIGNUM Newsletter 18, 1924.CrossRefGoogle Scholar
Petras, K. (2002), ‘Self-validating integration and approximation of piecewise analytic functions’, J. Comput. Appl. Math. 145, 345359.CrossRefGoogle Scholar
Plum, M. (1992), ‘Numerical existence proofs and explicit bounds for solutions of nonlinear elliptic boundary value problems’, Computing 49, 2544.CrossRefGoogle Scholar
Plum, M. (1994), ‘Enclosures for solutions of parameter-dependent nonlinear elliptic boundary value problems: Theory and implementation on a parallel computer’, Interval Comput. 3, 106121.Google Scholar
Plum, M. (1995), ‘Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems’, J. Comput. Appl. Math. 60, 187200.CrossRefGoogle Scholar
Plum, M. (1996), Enclosures for two-point boundary value problems near bifurcation points. In Scientific Computing and Validated Numerics: Proc. International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN-95 (Alefeld, G.et al., eds), Vol. 90 of Math. Res., Akademie Verlag, Berlin, pp. 265279.Google Scholar
Plum, M. (1997), ‘Guaranteed numerical bounds for eigenvalues’, In Spectral Theory and Computational Methods of Sturm-Liouville Problems: Proc. 1996 Conference, Knoxville, TN, USA (Hinton, D.et al., eds), Vol. 191 of Lect. Notes Pure Appl. Math., Marcel Dekker, New York, pp. 313332.Google Scholar
Plum, M. (2008), ‘Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance’, DMV Jahresbericht 110, 1954.Google Scholar
Plum, M. and Wieners, C. (2002), ‘New solutions of the Gelfand problem’, J. Math. Anal. Appl. 269, 588606.CrossRefGoogle Scholar
Poljak, S. and Rohn, J. (1993), ‘Checking robust nonsingularity is NP-hard’, Math. Control, Signals, and Systems 6, 19.CrossRefGoogle Scholar
Rall, L. B. (1981), Automatic Differentiation: Techniques and Applications, Vol. 120 of Lecture Notes in Computer Science, Springer.CrossRefGoogle Scholar
Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Halsted Press, New York.Google Scholar
Rauh, A., Auer, E. and Hofer, E. P. (2006), ValEncIA-IVP: A comparison with other initial value problem solvers. In Proc. 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, SCAN, Duisburg.Google Scholar
Rektorys, K. (1980), Variational methods in mathematics. In Science and Engineering, 2nd edn, Reidel, Dordrecht.Google Scholar
Ris, F. N. (1972), Interval analysis and applications to linear algebra. PhD dissertation, Oxford University.Google Scholar
Risch, R. H. (1969), ‘The problem of integration in finite terms’, Trans. Amer. Math. Soc. 139, 167189.CrossRefGoogle Scholar
Rohn, J. (1994), NP-hardness results for linear algebraic problems with interval data. In Topics in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 463471.Google Scholar
Rohn, J. (2005), A handbook of results on interval linear problems. http://www.cs.cas.cz/rohn/handbook.Google Scholar
Rohn, J. (2009 a), ‘Forty necessary and sufficient conditions for regularity of interval matrices: A survey’, Electron. J. Linear Algebra 18, 500512.CrossRefGoogle Scholar
Rohn, J. (2009 b), VERSOFT: Verification software in MATLAB/INTLAB. http://uivtx.cs.cas.cz/~rohn/matlab.Google Scholar
Rohn, J. and Kreinovich, V. (1995), ‘Computing exact componentwise bounds on solutions of linear system is NP-hard’, SIAM J. Matrix Anal. Appl. 16, 415420.CrossRefGoogle Scholar
Rump, S. M. (1980), Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe.Google Scholar
Rump, S. M. (1983), Solving algebraic problems with high accuracy. Habilitationsschrift, published in A New Approach to Scientific Computation (Kulisch, U. W. and Miranker, W. L., eds), Academic Press, pp. 51120.CrossRefGoogle Scholar
Rump, S. M. (1990), ‘Rigorous sensitivity analysis for systems of linear and nonlinear equations’, Math. Comput. 54, 721736.CrossRefGoogle Scholar
Rump, S. M. (1994), Verification methods for dense and sparse systems of equations. In Topics in Validated Computations (Herzberger, J., ed.), Elsevier, Studies in Computational Mathematics, Amsterdam, pp. 63136.Google Scholar
Rump, S. M. (1999 a), INTLAB: INTerval LABoratory. In Developments in Reliable Computing (Csendes, T., ed.), Kluwer, Dordrecht, pp. 77104. http://www.ti3.tu-harburg.de/rump/intlab/index.html.CrossRefGoogle Scholar
Rump, S. M. (1999 b), ‘Fast and parallel interval arithmetic’, BIT Numer. Math. 39, 539560.Google Scholar
Rump, S. M. (2001 a), Rigorous and portable standard functions. BIT Numer. Math. 41, 540562.CrossRefGoogle Scholar
Rump, S. M. (2001 b), ‘Computational error bounds for multiple or nearly multiple eigenvalues’, Linear Algebra Appl. 324, 209226.CrossRefGoogle Scholar
Rump, S. M. (2003 a), ‘Ten methods to bound multiple roots of polynomials’, J. Comput. Appl. Math. 156, 403432.CrossRefGoogle Scholar
Rump, S. M. (2003 b), ‘Structured perturbations I: Normwise distances’, SIAM J. Matrix Anal. Appl. 25, 130.CrossRefGoogle Scholar
Rump, S. M. (2003 c), ‘Structured perturbations II: Componentwise distances’, SIAM J. Matrix Anal. Appl. 25, 3156.CrossRefGoogle Scholar
Rump, S. M. (2006), ‘Eigenvalues, pseudospectrum and structured perturbations’, Linear Algebra Appl. 413, 567593.CrossRefGoogle Scholar
Rump, S. M. (2009), ‘Ultimately fast accurate summation’, SIAM J. Sci. Comput. 31, 34663502.CrossRefGoogle Scholar
Rump, S. M. and Graillat, S. (2009), Verified error bounds for multiple roots of systems of nonlinear equations. To appear in Numer. Algorithms; published online at Numer Algor DOI 10.1007/s11075–009–9339–3.Google Scholar
Rump, S. M. and Oishi, S. (2009), Verified error bounds for multiple roots of nonlinear equations. In Proc. International Symposium on Nonlinear Theory and its Applications: NOLTA'09.Google Scholar
Rump, S. M. and Sekigawa, H. (2009), ‘The ratio between the Toeplitz and the unstructured condition number’, Operator Theory: Advances and Applications 199, 397419.Google Scholar
Rump, S. M. and Zemke, J. (2004), ‘On eigenvector bounds’, BIT Numer. Math. 43, 823837.CrossRefGoogle Scholar
Rump, S. M., Ogita, T. and Oishi, S. (2008), ‘Accurate floating-point summation I: Faithful rounding’, SIAM J. Sci. Comput. 31, 189224.CrossRefGoogle Scholar
Sahinidis, N. V. and Tawaralani, M. (2005), ‘A polyhedral branch-and-cut approach to global optimization’, Math. Program. B 103, 225249.Google Scholar
Schichl, H. and Neumaier, A. (2004), ‘Exclusion regions for systems of equations’, SIAM J. Numer. Anal. 42, 383408.CrossRefGoogle Scholar
Schichl, H. and Neumaier, A. (2005), ‘Interval analysis on directed acyclic graphs for global optimization’, J. Global Optim. 33, 541562.CrossRefGoogle Scholar
Shary, S. P. (2002), ‘A new technique in systems analysis under interval uncertainty and ambiguity’, Reliable Computing 8, 321419.CrossRefGoogle Scholar
Stewart, G. W. (1990), ‘Stochastic perturbation theory’, SIAM Rev. 32, 579610.CrossRefGoogle Scholar
Sunaga, T. (1956), Geometry of numerals. Master‘s thesis, University of Tokyo.Google Scholar
Sunaga, T. (1958), ‘Theory of an interval algebra and its application to numerical analysis’, RAAG Memoirs 2, 2946.Google Scholar
Takayasu, A., Oishi, S. and Kubo, T. (2009 a), Guaranteed error estimate for solutions to two-point boundary value problem. In Proc. International Symposium on Nonlinear Theory and its Applications: NOLTA'09, pp. 214217.Google Scholar
Takayasu, A., Oishi, S. and Kubo, T. (2009 b), Guaranteed error estimate for solutions to linear two-point boundary value problems with FEM. In Proc. Asia Simulation Conference 2009 (JSST 2009), Shiga, Japan, pp. 18.Google Scholar
Tawaralani, M. and Sahinidis, N. V. (2004), ‘Global optimization of mixed-integer nonlinear programs: A theoretical and computational study’, Math. Program. 99, 563591.CrossRefGoogle Scholar
Todd, M. J. (2001), Semidefinite programming. In Acta Numerica, Vol. 10, Cambridge University Press, pp. 515560.Google Scholar
Trefethen, L. N. (2002), ‘The SIAM 100-dollar, 100-digit challenge’, SIAM-NEWS 35, 2. http://www.siam.org/siamnews/06-02/challengedigits.pdf.Google Scholar
Trefethen, L. N. and Schreiber, R. (1990), ‘Average-case stability of Gaussian elimination’, SIAM J. Matrix Anal. Appl. 11, 335360.CrossRefGoogle Scholar
Tucker, W. (1999), ‘The Lorenz attractor exists’, CR Acad. Sci., Paris, Sér. I, Math. 328, 11971202.CrossRefGoogle Scholar
Tütüncü, R. H., Toh, K. C. and Todd, M. J. (2003), ‘Solving semidefinite-quadratic-linear programs using SDPT3’, Math. Program. B 95, 189217.CrossRefGoogle Scholar
Vandenberghe, L. and Boyd, S. (1996), ‘Semidefinite programming’, SIAM Review 38, 4995.CrossRefGoogle Scholar
Vignes, J. (1978), ‘New methods for evaluating the validity of the results of mathematical computations’, Math. Comp. Simul. XX, 227249.CrossRefGoogle Scholar
Vignes, J. (1980), Algorithmes Numériques: Analyse et Mise en Oeuvre 2: Equations et Systèmes Non Linéaires, Collection Langages et Algorithmes de l'Informatique, Editions Technip, Paris.Google Scholar
Viswanath, D. (1999) ‘Random Fibonacci sequences and the number 1.13198824…’, Math. Comp. 69, 11311155.CrossRefGoogle Scholar
Viswanath, D. and Trefethen, L. N. (1998), ‘Condition numbers of random triangular matrices’, SIAM J. Matrix Anal. Appl. 19, 564581.CrossRefGoogle Scholar
Warmus, M. (1956), ‘Calculus of approximations’, Bulletin de l‘Academie Polonaise des Sciences 4, 253259.Google Scholar
Werner, B. and Spence, A. (1984), ‘The computation of symmetry-breaking bifurcation points’, SIAM J. Numer. Anal. 21, 388399.CrossRefGoogle Scholar
Wilkinson, J. H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.Google Scholar
Wright, S. J. (1993), ‘A collection of problems for which Gaussian elimination with partial pivoting is unstable’, SIAM J. Sci. Comput. 14, 231238.CrossRefGoogle Scholar
Yamanaka, N., Okayama, T., Oishi, S. and Ogita, T. (2009), ‘A fast verified automatic integration algorithm using double exponential formula’, RIMS Kokyuroku 1638, 146158.Google Scholar
Young, R. C. (1931), ‘The algebra of many-valued quantities’, Mathematische Annalen 104, 260290.CrossRefGoogle Scholar
Zhu, Y.-K., Yong, J.-H. and Zheng, G.-Q. (2005), ‘A new distillation algorithm for floating-point summation’, SIAM J. Sci. Comput. 26, 20662078.CrossRefGoogle Scholar
Zielke, G. and Drygalla, V. (2003), ‘Genaue Lösung linearer Gleichungssysteme’, GAMM Mitt. Ges. Angew. Math. Mech. 26, 7108.Google Scholar
Zimmermann, S. and Mertins, U. (1995), ‘Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum’, Z. Anal. Anwendungen 14, 327345.CrossRefGoogle Scholar