Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T17:18:08.290Z Has data issue: false hasContentIssue false

Contribution of livestock farming systems to the nitrogen cascade and consequences for farming regions

Published online by Cambridge University Press:  25 September 2014

P. Cellier*
Affiliation:
INRA, Research Unit 1091 EGC, F-78850 Grignon, France
P. Rochette
Affiliation:
Agriculture and Agro-Food Industry, Quebec city, G1V 2J3, Canada
P. Durand
Affiliation:
INRA, UMR 1069 SAS, F-35000 Rennes, France
P. Faverdin
Affiliation:
INRA Rennes, Research Unit 1348, F-35042 Rennes cedex, France
P. J. Kuikman
Affiliation:
ALTERRA, Dienst Landbouwkundig Onderzoek, Wageningen UR, 6700 AA Wageningen, The Netherlands
J.-L. Peyraud
Affiliation:
INRA Rennes, Research Unit 1348, F-35042 Rennes cedex, France
Get access

Abstract

This article describes the nitrogen flows in the environment and points to the specificities of the livestock production. Till the beginning of the 20th century, the symbiotic fixation and the recycling of animal excreta supplied the nitrogen necessary for the fertility of soil. In 1913, the Haber-Bosch process allowed the industrial synthesis of ammonia and made possible the fertilisation without association of crop production with the livestock farming. The efficiency of the nitrogen in livestock farming is low with nearly half or more of the inputs losses to the environment. These losses have diverse impacts that intervene at various spatial scales owing to the nitrogen cascade. Quantitative assessment of nitrogen flows at the scale of regions started in the early 1980s in Western Europe and North America. These studies provided estimates of the spatial variability of nitrogen discharge within a region. They confirmed the differences between areas with a high animal density such as Brittany (western region, France) and other regions. It was also found that the same nitrogenous losses could lead to different levels of environmental impacts according to the sensibility of a given environment and its capacity to cope with nitrogen excess. Climate, soils characteristics, animal density, and proportions of agricultural land under annual and perennial crops are drivers of this sensibility.

Type
Full Paper
Copyright
© The Animal Consortium 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurousseau, P 2011. Bilan et flux d'azote en Bretagne – Que signifie basses fuites en nitrate? 12. Carrefour des gestions locales de l’eau, Rennes, France, 26 janvier.Google Scholar
Basset-Mens, C, Anibar, L, Durand, P and van der Werf, HMG 2006. Spatialised fate factors for nitrate in catchments: modelling approach and implication for LCA results. Science of the Total Environment 367 (1), 367382.Google Scholar
Bertrand, S, Miramal, Y, Pflimlin, A, Le Gall, A and Raison, C 2007. Evolution des excèdents d’azote en France et contribution du secteur laitier. Rencontres Recherches Ruminants 14, 4144.Google Scholar
Billen, G, Beusen, A, Bouwman, L and Garnier, J 2010. Anthropogenic nitrogen autotrophy and heterotrophy of the world’s watersheds: past, present, and future trends. Global Biogeochemical Cycles 24 (2), GB0A11.CrossRefGoogle Scholar
Billen, G, Silvestre, M, Grizzetti, B, Leip, A, Garnier, J, Voss, M, Howarth, R, Bouraoui, F, Lepisto, A, Kortelainen, P, Johnes, P, Curtis, C, Humborg, C, Smedberg, E, Kaste, O, Ganeshram, R, Beusen, A and Lancelot, C 2011. Nitrogen flows from European regional watersheds to coastal marine waters. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA Sutton, CM Howard, JW Erisman et al.), pp. 271297. Cambridge University Press, Cambridge.Google Scholar
Billen, G, Thieu, V, Garnier, J and Silvestre, M 2009. Modelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt rivers. Agriculture, Ecosystems & Environment 133 (3–4), 234246.CrossRefGoogle Scholar
Billy, C, Billen, G, Sebilo, M, Birgand, F and Tournebize, J 2010. Nitrogen isotopic composition of leached nitrate and soil organic matter as an indicator of denitrification in a sloping drained agricultural plot and adjacent uncultivated riparian buffer strips. Soil Biology & Biochemistry 42 (1), 108117.Google Scholar
Bobbink, R, Hicks, K, Galloway, J, Spranger, T, Alkemade, R, Ashmore, M, Bustamante, M, Cinderby, S, Davidson, E, Dentener, F, Emmett, B, Erisman, JW, Fenn, M, Gilliam, F, Nordin, A, Pardo, L and de Vries, W 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20 (1), 3059.Google Scholar
Bockstaller, C, Vertès, F, Fiorelli, J-L and Aarts, F 2014. Tools for evaluating and regulating nitrogen impacts in livestock farming systems. Advances in Animal Biosciences 5 (s1), 4853.Google Scholar
Bouraoui, F, Grizzetti, B and Aloe, A 2009. Nutrient discharge from river to seas for year 2000, EUR report 24002 EN. European Commission Joint Research Centre, Luxembourg, 72pp.Google Scholar
Citepa 2011. Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France. Citepa, Paris.Google Scholar
Conseil économique social et environnemental de Bretagne 2011. Les marées vertes en Bretagne: pour un diagnostic partagé, garant d’une action efficace.Conseil économique, social et environnemental de Bretagne, Rennes, 31pp.Google Scholar
de Vries, W, Leip, A, Reinds, GJ, Kros, J, Lesschen, JP, Bouwman, AF, Grizzetti, B, Bouraoui, F, Butterbach-Bahl, K, Bergamaschi, P and Winiwarter, W 2011. Geographical variation in terrestrial nitrogen budgets across Europe. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA Sutton, CM Howard, JW Erisman et al.), pp. 317344. Cambridge University Press, Cambridge.Google Scholar
Dragosits, U, Theobald, MR, Place, CJ, ApSimon, HM and Sutton, MA 2006. The potential for spatial planning at the landscape level to mitigate the effects of atmospheric ammonia deposition. Environmental Science & Policy 9 (7–8), 626638.Google Scholar
Durand, P 2004. Simulating nitrogen budgets in complex farming systems using INCA: calibration and scenario analyses for the Kervidy catchment (W. France). Hydrology and Earth System Sciences 8 (4), 793802.Google Scholar
Durand, P, Breuer, L, Johnes, PJ, Billen, G, Butturini, A, Pinay, G, van Grinsven, H, Garnier, J, Rivett, M, Reay, DS, Curtis, C, Siemens, J, Maberly, S, Kaste, O, Humborg, C, Loeb, R, de Klein, J, Hejzlar, J, Skoulikidis, N, Kortelainen, P, Lepsito, A and Wright, R 2011. Nitrogen processes in aquatic ecosystems. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA Sutton, CM Howard, JW Erisman et al.), pp. 126146. Cambridge University Press, Cambridge.Google Scholar
Erisman, JW, Domburg, Net al. 2005. The Dutch N-cascade in the European perspective. Science in China Series C-Life Sciences 48, 827842.CrossRefGoogle ScholarPubMed
Erisman, JW, Sutton, MA, Galloway, JN, Klimont, Z and Winiwarter, W 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636639.Google Scholar
Erisman, JW, Domburg, N, de Vries, W, Kros, H, de Haan, B and Sanders, K 2011. The European nitrogen problem in a global perspective. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA Sutton, CM Howard, JW Erisman et al.), pp. 931. Cambridge University Press, Cambridge.Google Scholar
FAO 2009. La situation mondiale de l’alimentation et de l’agriculture – Le point sur l’élevage. FAO, Rome.Google Scholar
Galloway, JN, Aber, JD, Erisman, JW, Seitzinger, SP, Howarth, RW, Cowling, EB and Cosby, BJ 2003. The nitrogen cascade. Bioscience 53, 341356.Google Scholar
Galloway, JN, Townsend, AR, Erisman, JW, Bekunda, M, Cai, ZC, Freney, JR, Martinelli, LA, Seitzinger, SP and Sutton, MA 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889892.Google Scholar
Gascuel-Odoux, C, Aurousseau, P, Durand, P, Ruiz, L and Molenat, J 2010. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations. Science of the Total Environment 408 (23), 56575666.Google Scholar
Grizzetti, B, Bouraoui, F, Billen, G, van Grinsven, H, Cardoso, AC, Thieu, V, Garnier, J, Curtis, C, Howarth, R and Johnes, P 2011. Nitrogen as a threat to European water quality. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA Sutton, CM Howard, JW Erisman et al.), pp. 379404. Cambridge University Press, Cambridge.Google Scholar
Haag, D and Kaupenjohann, M 2001. Landscape fate of nitrate fluxes and emissions in Central Europe – a critical review of concepts, data, and models for transport and retention. Agriculture, Ecosystems & Environment 86 (1), 121.Google Scholar
Hayakawa, A, Shimizu, M, Woli, KP, Kuramochi, K and Hatano, R 2006. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration. Journal of Environmental Quality 35 (2), 617627.CrossRefGoogle ScholarPubMed
Howarth, R, Chan, F, Conley, DJ, Garnier, J, Doney, SC, Marino, R and Billen, G 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9 (1), 1826.Google Scholar
Johnson, GD, Myers, WL and Patil, GP 2001. Predictability of surface water pollution loading in Pennsylvania using watershed-based landscape measurements. Journal of the American Water Resources Association 37 (4), 821835.Google Scholar
Kuczynski, T, Dammgen, U, Webb, J and Myczko, A 2005. Emissions from European agriculture. Wageningen Academic Publisher, Wageningen.Google Scholar
Lam, QD, Schmalz, B and Fohrer, N 2010. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management 97 (2), 317325.Google Scholar
Langlais, A, Nicourt, C, Bourblanc, M and Gaigné, C 2014. Livestock farming and nitrogen within the economic and social context. Advances in Animal Biosciences 5 (s1), 2027.Google Scholar
Le Gall, A, Vertès, F, Pflimlin, A, Chambaut, H, Delaby, L, Durand, P, van der Werf, H, Turpin, N, Bras, A 2005. Flux d'azote et de phosphore dans les fermes françaises laitières et mise en oeuvre des règlementations environnementales. Rapport no 190533017, Collection ‘Résultats’, Inra, Institut de l'Elevage, Paris, 64pp.Google Scholar
Leip, A, Achermann, B, Billen, G, Bleeker, A, Bouwman, AF, Achermann, B, de Vries, A, Dragosits, U, Doring, U, Fernall, D, Geupel, M, Herolstab, J, Johnes, P, Le Gall, AC, Monni, S, Neveceral, R, Orlandini, L, Prud’homme, M, Reuter, HI, Simpson, D, Seufert, G, Spranger, T, Sutton, MA, van Aardenne, J, Vos, M and Winiwarter, M 2011a. Integrating nitrogen fluxes at the European scale. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA Sutton, CM Howard, JW Erisman et al.), pp. 345376. Cambridge University Press, Cambridge.Google Scholar
Leip, A, Britz, W, Weiss, F and de Vries, W 2011b. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environmental Pollution 159 (11), 32433253.Google Scholar
Lesschen, JP, van den Berg, M, Westhoek, HJ, Witzke, HP and Oenema, O 2011. Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology 166–167, 1628.Google Scholar
Mayer, PM, Reynolds, SK, McCutchen, MD and Canfield, TJ 2007. Meta-analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality 36 (4), 11721180.Google Scholar
Ménesguen, A and Piriou, JY 1995. Nitrogen loadinfs and macroalgal (Ulva SP) mass accumulation in Brittany (France). Ophelia 42, 227237.Google Scholar
Montreuil, O, Mérot, P and Marmonier, P 2010. Estimation of nitrate removal by riparian wetlands and streams in agricultural catchments: effect of discharge and stream order. Freshwater Biology 55 (11), 23052318.Google Scholar
Mosier, AR, Syers, KJ and Freney, JR 2004. Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC.Google Scholar
Oenema, O, Oudendag, D and Velthof, GL 2007. Nutrient losses from manure management in the European Union. Livestock Science 112 (3), 261272.Google Scholar
Oenema, O, Witzke, HP, Klimont, Z, Lesschen, JP and Velthof, GL 2009. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agriculture, Ecosystems & Environment 133 (3/4), 280288.Google Scholar
Pflimlin, A, Irle, A and Mirabal, Y 2006. Contribution du troupeau laitier aux excédents d’azote et de phosphore et aux risques pour l’eau au niveau régional. Projet Greendairy, Rapport de synthèse. Institut de l’élevage, Paris, 122p.Google Scholar
Piriou, JY, Ménesguen, A and Salomon, JC 1991. Les marées vertes à ulves: conditions nécessaires, évolution et comparaison de sites. In Estuaries and coasts: Spatial and temporal intercomparisons. 19. Symposium Estuaries and Coast Science Association, 4–8/09/1989, Caen (France) (ed. M Elliott and JP Ducrotoy), pp. 117122. Olsen and Olsen, Fredensborg.Google Scholar
Raison, C, Chambaut, H, Le Gall, A and Pflimlin, A 2008. Impact du système fourrager sur la qualité de l’eau. Enseignements issus du projet Green Dairy. Fourrages 193, 318.Google Scholar
Schoumans, OF, Silgram, M, Walvoort, DJJ, Groenendijk, P, Bouraoui, F, Andersen, HE, Porto, AI, Reisser, H, Le Gall, G, Anthony, S, Arheimer, B, Johnsson, H, Panagopoulos, Y, Mimikou, M, Zweynert, U, Behrendt, H and Barr, A 2009. Evaluation of the difference of eight model applications to assess diffuse annual nutrient losses from agricultural land. Journal of Environmental Monitoring 11 (3), 540553.Google Scholar
Shimizu, M, Marutani, S, Desyatkin, AR, Jin, T, Nakano, K, Hata, H and Hatano, R 2010. Nitrous oxide emissions and nitrogen cycling in managed grassland in Southern Hokkaido, Japan. Soil Science and Plant Nutrition 56 (4), 676688.Google Scholar
SOeS, Service de l’observation et des statistiques. www.statistiques.developpement-durable.gouv.fr (consultation on 2014.08.14).Google Scholar
Sutton, MA, Howard, CM, Erisman, JW, Billen, G, Bleeker, A, Grennfelt, P, van Grinsven, H, Grizzetti, B 2011. The European nitrogen assessment. Sources, effects and policy perspectives. In The challenge to integrate nitrogen science and policies: the European Nitrogen Assessment approach (ed. Sutton M, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfeld P, van Grinsven H, Grizzetti B), 612p. Cambridge University Press, Cambridge.Google Scholar
Velthof, GL, Oudendag, D, Witzke, HR, Asman, WAH, Klimont, Z and Oenema, O 2009. Integrated assessment of nitrogen losses from agriculture in EU-27 using Miterra-Europe. Journal of Environmental Quality 38 (2), 402417.Google Scholar
Velthof, GL, Lesschen, JP, Webb, J, Pietrzak, S, Miatkowski, Z, Pinto, M, Kros, J and Oenema, O 2014. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000-2008. Science of the Total Environment 468–469, 12251233.Google Scholar
Viaroli, P, Giordani, G, Bartoli, M, Naldi, M, Nizzoli, D, Ferrari, I, Zaldìvar, JM, Bencivelli, S, Castaldelli, G and Fano, EA 2006. The Sacca di Goro lagoon and an arm of the Po river. In Handbook of environmental chemistry (ed. PJ Wangersky), pp. 197232. Springer-Verlag. H: The Estuaries, Heidelberg.Google Scholar