Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:01:26.106Z Has data issue: false hasContentIssue false

Expedited generation of terrain digital classes in flat areas from UAV images for precision agriculture purposes

Published online by Cambridge University Press:  01 June 2017

M. C. Pineda*
Affiliation:
Instituto de Edafología, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
C. Perdomo
Affiliation:
Instituto de Edafología, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
R. Caballero
Affiliation:
Instituto de Edafología, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
A. Valera
Affiliation:
Universidad Nacional Experimental de los Llanos Centrales Rómulo Gallegos. San Juan de los Morros, Guárico, Venezuela
J. A. Martínez-Casasnovas
Affiliation:
Universidad de Lleida, Research Group on AgroICT and Precision Agriculture, Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Spain
J. Viloria
Affiliation:
Instituto de Edafología, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
Get access

Abstract

Precision agriculture (PA) requires reasonably homogeneous areas for site-specific management. This work explores the applicability of digital terrain classes obtained from a digital elevation model derived from UAV-acquired images, to define management units in in a relative flat area of about 6 ha. Elevation, together with other terrain variables such as: slope degree, profile curvature, plan curvature, topographic wetness index, sediment transport index, were clustered using the Fuzzy Kohonen Clustering Network (FKCN). Four terrain classes were obtained. The result was compared with a map produced by a classification of soil properties previously interpolated by ordinary kriging. The results suggest that areas for site-specific management can be defined from terrain classes based on environmental covariates, saving time and cost in comparison with interpolation of soil variables.

Type
UAV applications
Copyright
© The Animal Consortium 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, D, Zhang, J, Zhu, L, Ge, SH, Li, PY and Liu, GS 2014. Delineation of management zones using an active canopy sensor for a tobacco field. Computers and Electronics in Agriculture 109, 172178.Google Scholar
Bezdek, JC, Tsao, EC and Pal, NR 1992. Fuzzy Kohonen Clustering Networks, in Proc. IEEE Int. Conf. on Fuzzy Systems (San Diego), USA, pp. 1035–1043.Google Scholar
Davatgar, N, Neishabouri, MR and Sepaskhah, AR 2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 173–174, 111118.Google Scholar
Hengl, T and Evans, I 2009. Mathematical and digital models of the land surface. In: Hengl, T. y H. Reuter (eds). Geomorphometry: Concepts, Software and Applications. Elsevier Ed., pp. 31–63.Amsterdam, The Netherlands.Google Scholar
Jenny, H 1941. Factors of Soil Formation: A System of Quantitative Pedology. McGraw-Hill. pp. 281. New York, USA.Google Scholar
McBratney, AB, Mendonça, ML and Minasny, B 2003. On digital soil mapping. Geoderma 117, 352.Google Scholar
Ortega, RA and Santibáñez, OA 2007. Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in Agriculture 58, 4959.Google Scholar
Ovalles, F and Rey, J 1994. Variabilidad interna de unidades de fertilidad en suelos de la depresión del lago de Valencia. Revista Agronomía Tropical 44 (1), 4165.Google Scholar
Reyniers, M, Maertens, K, Vrindts, E and De Baerdemaeker, J 2006. Yield variability related to landscape properties of a loamy soil in central Belgium. Soil & Tillage Research 88, 262273.Google Scholar
Ruß, G, Kruse, R and Schneider, M 2010. A Clustering Approach for Management Zone Delineation in Precision Agriculture, in: Proceedings of ICPA, International Society of Precision Agriculture, p14.Google Scholar
Song, X, Wang, J, Huang, W, Liu, L, Yan, G and Pu, R 2009. The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture 10, 471487.Google Scholar
Tukey, J 1977. Exploratory Data Analysis. Addison-Wesley Pub, Reading, UK.Google Scholar
Tripathi, R, Nayak, AK, Shahid, M, Lal, B, Gautama, P, Raja, R, Mohanty, S, Kumar, A, Panda, BB and Sahoob, RN 2015. Delineation of soilmanagement zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 133, 128136.Google Scholar
Viloria, J, Núñez, Y, Machado, G, Elizalde, G and Pineda, M 2009. Variación espacial del suelo y el paisaje en la cuenca alta del río Güey, estado Aragua, Venezuela. Revista de la Facultad de Agronomía 35 (2), 6278.Google Scholar
Viloria, A 2007. Estimación de modelos de clasificación de paisaje y predicción de atributos de suelos a partir de imágenes satelitales y Modelos Digitales de Elevación. (Trabajo de grado). Facultad de Ciencias. Universidad Central de Venezuela, Caracas, Venezuela. pp. 95.Google Scholar
Rong-Jiang Yao, RJ, Yanga, JS, Zhang, TJ, Gao, P, Wang, XP, Hong, LZ and Wang, MW 2014. Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma 232–234, 381393.Google Scholar
Valera, A 2015. Inventario de suelos y paisajes con apoyo de técnicas de cartografía digital en áreas montañosas. Caso cuenca del río Caramacate, estado Aragua. Postgrado en Ciencia del Suelo. Facultad de Agronomía. Universidad Central de Venezuela, Venezuela. pp. 246.Google Scholar
Viloria, JA, Viloria-Botello, A, Pineda, MC and Valera, A 2016. Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach. Geomorphology 253, 199207.CrossRefGoogle Scholar
Webster, R and Butler, BE 1976. Soil Classification and Survey Studies at Ginninderra. Australian Journal of Soil Research 14, 124.Google Scholar
Webster, R and Oliver, MA 1990. Statistical Methods in Soil and Land Resource Survey. Oxford University Press, Oxford, UK. pp 316.Google Scholar
Webster, R and Oliver, MA 2007. Geostatistics for Environmental Scientists, Second Edition Wiley, Chichester, UK. pp 36.Google Scholar