Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T05:56:34.008Z Has data issue: false hasContentIssue false

An Extrapolation Cascadic Multigrid Method for Elliptic Problems on Reentrant Domains

Published online by Cambridge University Press:  28 November 2017

Kejia Pan*
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
Dongdong He*
Affiliation:
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
Chuanmiao Chen*
Affiliation:
College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China
*
*Corresponding author. Email:pankejia@hotmail.com (K. J. Pan), dongdonghe@tongji.edu.cn (D. D. He), cmchen@hunnu.edu.cn (C. M. Chen)
*Corresponding author. Email:pankejia@hotmail.com (K. J. Pan), dongdonghe@tongji.edu.cn (D. D. He), cmchen@hunnu.edu.cn (C. M. Chen)
*Corresponding author. Email:pankejia@hotmail.com (K. J. Pan), dongdonghe@tongji.edu.cn (D. D. He), cmchen@hunnu.edu.cn (C. M. Chen)
Get access

Abstract

This paper proposes an extrapolation cascadic multigrid (EXCMG) method to solve elliptic problems in domains with reentrant corners. On a class of λ-graded meshes, we derive some new extrapolation formulas to construct a high-order approximation to the finite element solution on the next finer mesh using the numerical solutions on two-level of grids (current and previous grids). Then, this high-order approximation is used as the initial guess to reduce computational cost of the conjugate gradient method. Recursive application of this idea results in the EXCMG method proposed in this paper. Finally, numerical results for a crack problem and an L-shaped problem are presented to verify the efficiency and effectiveness of the proposed EXCMG method.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Babuska, I., Finite element methods for domains with corners, Computing, 6(3-4) (1970), pp. 264273.Google Scholar
[2] Babuska, I., Kellogg, R. B. and Pitkaranta, J., Direct and inverse error estimates for finite elements with mesh refinement, Numer. Math., 33(4) (1979), pp. 447471.CrossRefGoogle Scholar
[3] Blum, H. and Dobrowolski, M., On finite element methods for elliptic equations on domains with corners, Computing, 28(1) (1982), pp. 5363.CrossRefGoogle Scholar
[4] Blum, H. and Rannacher, R., Extrapolation techniques for reducing the pollution effect or reentrant corners in the finite element method, Numer. Math., 52(5) (1988), pp. 539564.Google Scholar
[5] Bornemann, F. and Deuflhard, P., The cascadic multigrid method for elliptic problems, Numer. Math., 75(2) (1996), pp. 135152.CrossRefGoogle Scholar
[6] Braess, D. and Dahmen, W., A cascadic multigrid algorithm for the Stokes equations, Numer. Math., 82(2) (1999), pp. 179192.CrossRefGoogle Scholar
[7] Brenner, S. C., Overcoming corner singularities using multigrid methods, SIAM J. Numer. Anal., 35(5) (1998), pp. 18831892.CrossRefGoogle Scholar
[8] Brenner, S. C., Multigrid methods for the computation of singular solutions and stress intensity factors I: Corner singularities, Math. Comput., 68(226) (1999), pp. 559583.CrossRefGoogle Scholar
[9] Brenner, S. C. and Sung, L. Y., Multigrid methods for the computation of singular solutions and stress intensity factors II: Crack singularities, BIT, 37(3) (1997), pp. 623643.CrossRefGoogle Scholar
[10] Cai, Z. and Kim, S., A finite element method using singular functions for the Poisson equation: Corner singularities, SIAM J. Numer. Anal., 39(1) (2001), pp. 286299.CrossRefGoogle Scholar
[11] Cai, Z., Kim, S. and Shin, B. C., Solution methods for the Poisson equation with corner singularities: numerical results, SIAM J. Sci. Comput., 23(2) (2001), pp. 672682.Google Scholar
[12] Chen, C. M., Superconvergence in finite element in domain with reentrant corner, Natur. Sci. J. Xiangtan Univ., 12 (1990), pp. 134141.Google Scholar
[13] Chen, C. M., Structure Theory of Superconvergence of Finite Elements (in Chinese), Hunan Science and Technique Press, Changsha, (2001).Google Scholar
[14] Chen, C. M., Hu, H. L., Xie, Z. Q. and Li, C. L., Analysis of extrapolation cascadic multigrid method (EXCMG), Sci. China Ser. A, 51(8) (2008), pp. 13491360.CrossRefGoogle Scholar
[15] Chen, C. M., Hu, H. L., Xie, Z. Q. and Li, C. L., L2-error of extrapolation cascadic multigrid, Acta.Math. Sci., 29(B3) (2009), pp. 539551.Google Scholar
[16] Chen, C. M., Shi, Z. C. and Hu, H. L., On extrapolation cascadic multigrid method, J. Comput. Math., 29 (2011), pp. 684697.CrossRefGoogle Scholar
[17] Chen, C. M. and Hu, H. L., Extrapolation cascadic multigrid method on piecewise uniform grid, Sci. China Math., 56(12) (2013), pp. 27112722.CrossRefGoogle Scholar
[18] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, SIAM, 2002.CrossRefGoogle Scholar
[19] Fix, G. J., Gulati, S. and Wakoff, G. I., On the use of singular functions with finite element approximations, J. Comput. Phys., 13(2) (1973), pp. 209228.CrossRefGoogle Scholar
[20] Grisvard, P., Elliptic Problems in Nonsmooth Domains, SIAM, 2011.CrossRefGoogle Scholar
[21] Hu, H. L., Chen, C. M. and Pan, K. J., Time-extrapolation algorithm (TEA) for linear parabolic problems, J. Comput. Math., 32(2) (2014), pp. 183194.CrossRefGoogle Scholar
[22] Hu, H. L., Chen, C. M. and Pan, K. J., Asymptotic expansions of finite element solutions to Robin problems in H3 and their application in extrapolation cascadic multigrid method, Sci. China Math., 57(4) (2014), pp. 687698.CrossRefGoogle Scholar
[23] Hu, H. L., Ren, Z. Y., He, D. D. and Pan, K. J., On the convergence of an extrapolation cascadic multigrid method for elliptic problems, Comput. Math. Appl., (2017), http://dx.doi.org/10.1016/j.camwa.2017.05.023.CrossRefGoogle Scholar
[24] Huang, H. C., Han, W. M. and Zhou, J. S., Extrapolation of numerical solutions for elliptic problems on corner domains, Appl. Math. Comput., 83(1) (1997), pp. 5367.Google Scholar
[25] Li, C. L., A new parallel cascadic multigrid method, Appl. Math. Comput., 219(20) (2013), pp. 1015010157.Google Scholar
[26] Li, M., Li, C. L., Cui, X. Z. and Zhao, J., Cascadic multigrid methods combined with sixth order compact scheme for poisson equation, Numer. Algorithms, 71(4) (2016) pp. 715727.Google Scholar
[27] Huang, H. C. and Mu, M., Extrapolation acceleration and pag methods for calculating stress intensity factors on re-entrant domains (in Chinese), Math. Numer. Sinica, 1 (1990), pp. 5460.Google Scholar
[28] Huang, Y. Q. and Lin, Q., A finite element method on polygonal domains with extrapolation (in Chinese), Math. Numer. Sinica, 3 (1990), pp. 239249.Google Scholar
[29] Huang, Y. Q. and Lin, Q., Elliptic boundary value problems in polygonal domains and finite element approximations (in Chinese), J. Systems Sci. Math. Sci., 12 (1992), pp. 263268.Google Scholar
[30] Pan, K. J. and Tang, J. T., 2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method, Geophys. J. Int., 197(3) (2014), pp. 14591470.CrossRefGoogle Scholar
[31] Pan, K. J., Tang, J. T., Hu, H. L. and Chen, C. M., Extrapolation cascadic multigrid method for 2.5D direct current resistivity modeling (in Chinese), Chinese J. Geophys., 55(8) (2012), pp. 27692778.Google Scholar
[32] Pan, K. J., He, D. D., Hu, H. L. and Ren, Z. Y., A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems, J. Comput. Phys., 344 (2017), pp. 499515.CrossRefGoogle Scholar
[33] Pan, K. J., He, D. D. and Hu, H. L., An extrapolation cascadic multigrid method combined with a fourth-order compact scheme for 3D Poisson equation, J. Sci. Comput., 70(3) (2017), pp. 11801203.Google Scholar
[34] Schatz, A. H. and Wahlbin, L. B., Maximum norm estimates in the finite element method on plane polygonal domains II: Refinements, Math. Comput., 33(146) (1979), pp. 465492.Google Scholar
[35] Shaidurov, V., Some estimates of the rate of convergence for the cascadic conjugate gradient method, Comput. Math. Appl., 31(4) (1996), pp. 161171.Google Scholar
[36] Shaidurov, V. and Tobiska, L., The convergence of the cascadic conjugate-gradient method applied to elliptic problems in domains with re-entrant corners, Math. Comput., 69(230) (1999), pp. 501520.Google Scholar
[37] Shi, Z. C. and Xu, X. J., Cascadic multigrid for parabolic problems, J. Comput. Math., 18(5) (2000), pp. 551560.Google Scholar
[38] Shi, Z. C. and Xu, X. J., A new cascadic multigrid, Sci. China Ser. A, 44(1) (2011), pp. 2130.CrossRefGoogle Scholar
[39] Shi, Z. C., Xu, X. J. and Huang, Y. Q., Economical cascadic multigrid methods (ECMG), Sci. China Ser. A, 50(12) (2007), pp. 17651780.CrossRefGoogle Scholar
[40] Yu, H. X. and Zeng, J. P., A cascadic multigrid method for a kind of semilinear elliptic problem, Numer. Algorithms, 58(2) (2011), pp. 143162.Google Scholar