Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:24:23.973Z Has data issue: false hasContentIssue false

A Comparison Study of Numerical Methods for Compressible Two-Phase Flows

Published online by Cambridge University Press:  11 July 2017

Jianyu Lin*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
Hang Ding*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
Xiyun Lu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
Peng Wang*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
*
*Corresponding author. Email:linjiany@mail.ustc.edu.cn (J. Y. Lin), hding@ustc.edu.cn (H. Ding), xlu@ustc.edu.cn (X. Y. Lu), wangpei@iapcm.ac.cn (P. Wang)
*Corresponding author. Email:linjiany@mail.ustc.edu.cn (J. Y. Lin), hding@ustc.edu.cn (H. Ding), xlu@ustc.edu.cn (X. Y. Lu), wangpei@iapcm.ac.cn (P. Wang)
*Corresponding author. Email:linjiany@mail.ustc.edu.cn (J. Y. Lin), hding@ustc.edu.cn (H. Ding), xlu@ustc.edu.cn (X. Y. Lu), wangpei@iapcm.ac.cn (P. Wang)
*Corresponding author. Email:linjiany@mail.ustc.edu.cn (J. Y. Lin), hding@ustc.edu.cn (H. Ding), xlu@ustc.edu.cn (X. Y. Lu), wangpei@iapcm.ac.cn (P. Wang)
Get access

Abstract

In this article a comparison study of the numerical methods for compressible two-phase flows is presented. Although many numerical methods have been developed in recent years to deal with the jump conditions at the fluid-fluid interfaces in compressible multiphase flows, there is a lack of a detailed comparison of these methods. With this regard, the transport five equation model, the modified ghost fluid method and the cut-cell method are investigated here as the typical methods in this field. A variety of numerical experiments are conducted to examine their performance in simulating inviscid compressible two-phase flows. Numerical experiments include Richtmyer-Meshkov instability, interaction between a shock and a rectangle SF6 bubble, Rayleigh collapse of a cylindrical gas bubble in water and shock-induced bubble collapse, involving fluids with small or large density difference. Based on the numerical results, the performance of the method is assessed by the convergence order of the method with respect to interface position, mass conservation, interface resolution and computational efficiency.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125 (1996), pp. 150160.Google Scholar
[2] Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142(1) (1998), pp. 208242.Google Scholar
[3] Saurel, R. and Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150(2) (1999), pp. 425467.Google Scholar
[4] Allaire, G., Clerc, S. and Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181(2) (2002), pp. 577616.CrossRefGoogle Scholar
[5] Saurel, R., Gavrilyuk, S. and Renaud, F., A multiphase model with internal degrees of freedom: Application to shock-bubble interaction, J. Fluid Mech., 495 (2003), pp. 283321.Google Scholar
[6] Marquina, A. and Mulet, P., A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185(1) (2003), pp. 120138.CrossRefGoogle Scholar
[7] Chang, C.-H. and Liou, M.-S., Robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme, J. Comput. Phys., 225(1) (2007), pp. 840873.CrossRefGoogle Scholar
[8] Johnsen, T. and Colonius, E., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219(4) (2006), pp. 715732.Google Scholar
[9] Kokh, S. and Lagoutière, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229(8) (2010), pp. 27732809.Google Scholar
[10] Shukla, R. K., Pantano, C. and Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229(19) (2010), pp. 74117439.Google Scholar
[11] So, K. K., Hu, X. Y. and Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231(11) (2012), pp. 43044323.CrossRefGoogle Scholar
[12] Tiwari, A., Freund, J. B. and Pantano, C., A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252 (2013), pp. 290309.Google Scholar
[13] Shukla, R. K., Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys., 276 (2014), pp. 508540.Google Scholar
[14] Deligant, M., Specklin, M. and Khelladi, S., A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver, Comput. Fluids, 114 (2015), pp. 265273.CrossRefGoogle Scholar
[15] Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152(2) (1999), pp. 457492.Google Scholar
[16] Liu, T. G., Khoo, B. C. and Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190(2) (2003), pp. 651681.Google Scholar
[17] Wang, C. W., Liu, T. G. and Khoo, B. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28(1) (2006), pp. 278302.Google Scholar
[18] Sambasivan, S. K. and Udaykumar, H. S., Ghost fluid method for strong shock interactions part 1: Fluid-fluid interfaces, AIAA J., 47(12) (2009), pp. 29072922.CrossRefGoogle Scholar
[19] Terashima, H. and Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228(11) (2009), pp. 40124037.Google Scholar
[20] Hu, X. Y., Khoo, B. C., Adams, N. A. and Huang, F. L., A conservative interface method for compressible flows, J. Comput. Phys., 219(2) (2006), pp. 553578.CrossRefGoogle Scholar
[21] Chang, C.-H., Deng, X. and Theofanous, T. G., Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method, J. Comput. Phys., 242 (2013), pp. 946990.CrossRefGoogle Scholar
[22] Nourgaliev, R. R., Liou, M.-S. and Theofanous, T. G., Numerical prediction of interfacial instabilities: Sharp interface method (SIM), J. Comput. Phys., 227(8) (2008), pp. 39403970.CrossRefGoogle Scholar
[23] Kim, H. and Liou, M.-S., Adaptive Cartesian sharp interface method for three-dimensional multiphase flows, AIAA Paper, (2009), pp. 20094153.Google Scholar
[24] Bo, W. and Grove, J. W., A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput. Fluids, 90 (2014), pp. 113122.Google Scholar
[25] Lin, J., Shen, Y., Ding, H., Liu, N. and Lu, X., Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method, preparing.Google Scholar
[26] Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), pp. 357372.CrossRefGoogle Scholar
[27] Hartmann, D., Meinke, M. and Schröder, W., The constrained reinitialization equation for level set methods, J. Comput. Phys., 229(5) (2010), pp. 15141535.CrossRefGoogle Scholar
[28] Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.Google Scholar
[29] Harten, A., Lax, P. D. and Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25(1) (1983), pp. 3561.Google Scholar
[30] Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77(2) (1988), pp. 439471.Google Scholar
[31] Holmes, R. L., Grove, J.W. and Sharp, D. H., Numerical investigation of Richtmyer–Meshkov instability using front tracking, J. Fluid Mech., 301 (1995), pp. 5164.Google Scholar
[32] Ullah, M. A., Mao, D.-K and Gao, W.-B., Numerical simulations of Richtmyer–Meshkov instabilities using conservative front-tracking method, Appl. Math. Mech., 32(1) (2011), pp. 119132.Google Scholar
[33] Bates, K. R., Nikiforakis, N. and Holder, D., Richtmyer–Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6 , Phys. Fluids, 19 (2007), 036101.CrossRefGoogle Scholar
[34] Johnsen, T. and Colonius, E., Shock-induced collapse of a gas bubble in shockwave lithotripsy, J. Acoust. Soc. Am., 124(4) (2008), pp. 20112020.CrossRefGoogle ScholarPubMed
[35] Ball, G. J., Howell, B. P., Leighton, T. G. and Schofield, M. J., Shock-induced collapse of a cylindrical air cavity in water: A free-Lagrange simulation, Shock Waves, 10(4) (2000), pp. 265276.Google Scholar
[36] Hu, X. Y. and Khoo, B. C., An interface interaction method for compressible multifluids, J. Comput. Phys., 198(1) (2004), pp. 3564.Google Scholar
[37] Nourgaliev, R. R. and Dinh, T. N., Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys., 213(2) (2006), pp. 500529.Google Scholar
[38] Hawker, N. A. and Ventikos, Y., Interaction of a strong shockwave with a gas bubble in a liquid medium: A numerical study, J. Fluid Mech., 701 (2012), pp. 5997.Google Scholar