Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T02:28:54.340Z Has data issue: false hasContentIssue false

Discrete Maximum Principle Based on Repair Technique for Finite Element Scheme of Anisotropic Diffusion Problems

Published online by Cambridge University Press:  03 June 2015

Xingding Chen*
Affiliation:
Department of Mathematics, School of Science, Beijing Technology and Business University, Beijing 100048, China
Guangwei Yuan*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
Yunlong Yu*
Affiliation:
Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
*
Corresponding author. Email: chenxd@lsec.cc.ac.cn
Get access

Abstract

In this paper, we construct a global repair technique for the finite element scheme of anisotropic diffusion equations to enforce the repaired solutions satisfying the discrete maximum principle. It is an extension of the existing local repair technique. Both of the repair techniques preserve the total energy and are easy to be implemented. The numerical experiments show that these repair techniques do not destroy the accuracy of the finite element scheme, and the computational cost of the global repair technique is cheaper than the local repair technique when the diffusion tensors are highly anisotropic.

Type
Research Article
Copyright
Copyright © Global-Science Press 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kuzmin, D., Shashkov, M. and Svyatskiy, D., A constrained finite element method satisfying the discrete maximum priciple for anisotropic diffusion problems, J. Comput. Phys., 228 (2009), pp. 34483463.Google Scholar
[2]Nagarajan, H. and Nakshatrala, K., Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids, Int. J. Numer. Meth. Flu., 67 (2011), pp. 820847.CrossRefGoogle Scholar
[3]Nakshatrala, K. and Valocchi, A., Non-negative mixed finite element formulation for a tensorial diffusion equation, J. Comput. Phy., 228 (2009), pp. 67266752.Google Scholar
[4]Ciarlet, P. G. and Raviart, P. A., Maximum principle and convergence for the finite element method, Comput. Meth. Appl. Mech. Eng., 2 (1973), pp. 1731.Google Scholar
[5]Burman, E. and Ern, A., Discrete maximum priciple for Galerkin approximation of the Laplace operator on arbitrary meshes, Comptes Rendus Mathematique Academie des Sciences, Paris, 338 (2004), pp. 641646.Google Scholar
[6]Ciarlet, P. G., Basic error estimates for elliptic problems, in: Ciarlet, P. G. and Lions, J. L. (Eds), Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part 1), Elsevier, 1990.Google Scholar
[7]Liska, R. and Shashkov, M., Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems, Commun. Comput. Phys., 3(4) (2008), pp. 852877.Google Scholar
[8]Wang, S., Yuan, GW., Li, YH. and Sheng, ZQ., Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems, Int. J. Numer. Meth. Flu., 70 (2012), pp. 11881205.Google Scholar
[9]Huang, WZ. and Kappen, A., A study of cell-center finite volume methods for diffusion equations, Mathematics Research Report, University of Kansas, Lawrence KS66045, 98-10-01.Google Scholar
[10]Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosciences, 6 (2002), pp. 405432.CrossRefGoogle Scholar
[11]Friis, H. and Ewards, M., A family of mp finite-volume schemes with full presseure support for general tensor oressure equation on cell-centered triangular grids, J. Comput. Phys., 230 (2011), pp. 205231.Google Scholar
[12]Nordbotten, J. and Eigestad, G., Discritization on quadrilateral grids with improved monotoncity properties, J. Comput. Phys., 203 (2005), pp. 744760.Google Scholar
[13]Lipnikov, K., Shashkov, M. and Svyatskiy, D., The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes, J. Comput. Phys., 211 (2006), pp. 473491.Google Scholar
[14]Lipnikov, K., Shashkov, M. and Yotov, I., Local flux mimetic finite difference methods, Numer. Math., 112 (2009), pp. 115152.CrossRefGoogle Scholar
[15]Yuan, GW. and Sheng, ZQ., Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phy., 227 (2008), pp. 62886312.CrossRefGoogle Scholar
[16]Draganescu, A., Dupont, T. F. and Scott, L. R., Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comput., 74(249) (2004), pp. 123.Google Scholar
[17]Hoteit, H., Mose, R., Philippe, B.. Ackerer, PH. and Erhel, J., The maximum principle violations of the mixed-hybrid finite-element method applied to diffusion equations, Numer. Meth. Eng., 55(12) (2002), pp. 13731390.CrossRefGoogle Scholar
[18]Nordbotten, J. M., Aavatsmark, I. and Eigestad, G. T., Monotonicity of control volume methods, Numer. Math., 106 (2007), pp. 255288.Google Scholar
[19]Kucharik, M., Shashkov, M. and Wendroff, B., An efficient linearity-and-bound-preserving remapping method, J. Comput. Phys., 188(2) (2003), pp. 462471.CrossRefGoogle Scholar
[20]Shashkov, M. and Wendroff, B., The repair paradigm and application to conservation laws, J. Comput. Phys., 198(1) (2004), pp. 265277.Google Scholar
[21]Loubere, RL., Staley, M. and Wendroff, B., The repair paradigm: new algorithms and applications to compressible flow, J. Comput. Phys., 211(2) (2006), pp. 385404.Google Scholar