Published online by Cambridge University Press: 03 June 2015
This paper is concerned with a stabilized finite element method based on two local Gauss integrations for the two-dimensional non-stationary conduction-convection equations by using the lowest equal-order pairs of finite elements. This method only offsets the discrete pressure space by the residual of the simple and symmetry term at element level in order to circumvent the inf-sup condition. The stability of the discrete scheme is derived under some regularity assumptions. Optimal error estimates are obtained by applying the standard Galerkin techniques. Finally, the numerical illustrations agree completely with the theoretical expectations.