Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T15:57:24.956Z Has data issue: false hasContentIssue false

Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks

Published online by Cambridge University Press:  01 July 2016

Cheng-Der Fuh*
Affiliation:
Academia Sinica
Tze Leung Lai*
Affiliation:
Stanford University
*
Postal address: Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan, ROC.
∗∗ Postal address: Department of Statistics, Sequoia Hall, Stanford University, Stanford, CA 94305-4065, USA. Email address: lait@stat.stanford.edu

Abstract

We prove a d-dimensional renewal theorem, with an estimate on the rate of convergence, for Markov random walks. This result is applied to a variety of boundary crossing problems for a Markov random walk (Xn,Sn), n ≥0, in which Xn takes values in a general state space and Sn takes values in ℝd. In particular, for the case d = 1, we use this result to derive an asymptotic formula for the variance of the first passage time when Sn exceeds a high threshold b, generalizing Smith's classical formula in the case of i.i.d. positive increments for Sn. For d > 1, we apply this result to derive an asymptotic expansion of the distribution of (XT,ST), where T = inf { n : Sn,1 > b } and Sn,1 denotes the first component of Sn.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2001 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsmeyer, G. (1994). On the Markov renewal theorem. Stoch. Proc. Appl. 50, 3756.Google Scholar
Athreya, K. B., McDonald, D. and Ney, P. (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Prob. 6, 788797.Google Scholar
Carlsson, H. (1982). Error estimates in d-dimensional renewal theory. Compositio Math. 46, 227253.Google Scholar
Carlsson, H. (1983). Remainder term estimates of the renewal function. Ann. Prob. 11, 143157.CrossRefGoogle Scholar
Carlsson, H. and Wainger, S. (1982). An asymptotic series expansion of the multidimensional renewal measure. Compositio Math. 47, 355364.Google Scholar
Chen, R. and Tsay, R. S. (1993). Functional coefficient autoregression models. J. Amer. Statist. Assoc. 88, 298308.Google Scholar
Einlar, E., (1969). On semi-Markov processes on arbitrary spaces. Proc. Camb. Phil. Soc. 66, 381392.Google Scholar
Fuh, C. D. and Lai, T. L. (1998). Wald's equations, first passage times and moments of ladder variables in Markov random walks. J. Appl. Prob. 35, 566580.Google Scholar
Fuh, C. D. and Zhang, C. H. (2000). Poisson equation, moment inequalities and quick convergence for Markov random walks. Stoch. Proc. Appl. 87, 5367.Google Scholar
Gelfand, I. M. and Shilov, G. E. (1964). Generalized Functions, Vol. 1. Academic Press, New York.Google Scholar
Greenwood, P. and Shaked, M. (1978). Dual pairs of stopping times for random walk. Ann. Prob. 6, 644650.Google Scholar
Jensen, J. L. (1987). A note on asymptotic expansions for Markov chains using operator theory. Adv. Appl. Math. 8, 377392.Google Scholar
Keener, R. (1988). Asymptotic expansions for renewal measures in the plane. Prob. Theory Rel. Fields 80, 120.CrossRefGoogle Scholar
Keener, R. (1990). Asymptotic expansions in multivariate renewal theory. Stoch. Proc. Appl. 34, 137143.Google Scholar
Kesten, H. (1974). Renewal theory for functionals of a Markov chain with general state space. Ann. Prob. 2, 355386.Google Scholar
Lai, T. L. and Siegmund, D. (1977). A nonlinear renewal theory with applications to sequential analysis I. Ann. Statist. 5, 946954.Google Scholar
Lai, T. L. and Siegmund, D. (1979). A nonlinear renewal theory with applications to sequential analysis II. Ann. Statist. 7, 6076.Google Scholar
Melfi, V. (1992). Nonlinear Markov renewal theory with statistical applications. Ann. Prob. 20, 753771.Google Scholar
Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, New York.Google Scholar
Nagaev, S. V. (1957). Some limit theorems for stationary Markov chains. Theory Prob. Appl. 2, 378406.Google Scholar
Riesz, F. and Sz.-Nagy, B. (1955). Functional Analysis. Ungar, New York.Google Scholar
Schwartz, L. (1966). Théorie des Distributions, 2nd edn. Hermann, Paris.Google Scholar
Shurenkov, V. M. (1984). On the theory of Markov renewal. Theory Prob. Appl. 29, 247265.CrossRefGoogle Scholar
Siegmund, D. (1985). Sequential Analysis. Springer, New York.Google Scholar
Smith, W. L. (1958). Renewal theory and its ramifications (with discussion). J. R. Statist. Soc. B 20, 243302.Google Scholar
Stam, A. J. (1968). Two theorems in r-dimensional renewal theory. Z. Wahrscheinlichkeitsth. 10, 8186.Google Scholar
Stam, A. J. (1971). Renewal theory in r-dimensions (II). Compositio Math. 23, 113.Google Scholar
Stone, C. (1965). On characteristic functions and renewal theory. Trans. Amer. Math. Soc. 120, 327342.Google Scholar
Strichartz, R. (1994). A Guide to Distribution Theory and Fourier Transforms. CRC Press, Boca Raton, FL.Google Scholar