Article contents
The convex hull of samples from self-similar distributions
Published online by Cambridge University Press: 01 July 2016
Abstract
Let X1, X2,… be i.i.d. random points in ℝ2 with distribution ν, and let Nn denote the number of points spanning the convex hull of X1, X2,…,Xn. We obtain lim infn→∞E(Nn)n-1/3 ≥ γ1 and E(Nn) ≤ γ2n1/3(logn)2/3 for some positive constants γ1, γ2 and sufficiently large n under the assumption that ν is a certain self-similar measure on the unit disk. Our main tool consists in a geometric application of the renewal theorem. Exactly the same approach can be adopted to prove the analogous result in ℝd.
MSC classification
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 1999
References
- 2
- Cited by