Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T11:29:57.784Z Has data issue: false hasContentIssue false

The extremogram and the cross-extremogram for a bivariate GARCH(1, 1) process

Published online by Cambridge University Press:  25 July 2016

Muneya Matsui*
Affiliation:
Nanzan University
Thomas Mikosch*
Affiliation:
University of Copenhagen
*
Department of Business Administration, Nanzan University, 18 Yamazato-cho Showa-ku Nagoya, 466‒8673, Japan. Email address: mmuneya@nanzan-u.ac.jp
Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK--2100 Copenhagen, Denmark. Email address: mikosch@math.ku.dk

Abstract

We derive asymptotic theory for the extremogram and cross-extremogram of a bivariate GARCH(1,1) process. We show that the tails of the components of a bivariate GARCH(1,1) process may exhibit power-law behavior but, depending on the choice of the parameters, the tail indices of the components may differ. We apply the theory to five-minute return data of stock prices and foreign-exchange rates. We judge the fit of a bivariate GARCH(1,1) model by considering the sample extremogram and cross-extremogram of the residuals. The results are in agreement with the independent and identically distributed hypothesis of the two-dimensional innovations sequence. The cross-extremograms at lag zero have a value significantly distinct from zero. This fact points at some strong extremal dependence of the components of the innovations.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Basrak, B. and Segers, J. (2009).Regularly varying multivariate time series.Stoch. Process. Appl. 119,10551080.CrossRefGoogle Scholar
[2] Basrak, B.,Davis, R. A. and Mikosch, T. (2002).A characterization of multivariate regular variation.Ann. Appl. Prob. 12,908920.CrossRefGoogle Scholar
[3] Basrak, B.,Davis, R. A. and Mikosch, T. (2002).Regular variation of GARCH processes.Stoch. Process. Appl. 99,95115.CrossRefGoogle Scholar
[4] Bingham, N. H.,Goldie, C. M. and Teugels, J. L. (1987).Regular Variation. Cambridge University Press.CrossRefGoogle Scholar
[5] Bollerslev, T. (1986).Generalized autoregressive conditional heteroskedasticity.J. Econometrics 31,307327.CrossRefGoogle Scholar
[6] Bollerslev, T. (1990).Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model.Rev. Econom. Statist. 72,498505.CrossRefGoogle Scholar
[7] Boman, J. and Lindskog, F. (2009).Support theorems for the Radon transform and Cramér-Wold theorems.J. Theoret. Prob. 22,683710.CrossRefGoogle Scholar
[8] Bougerol, P. and Picard, N. (1992).Stationarity of GARCH processes and of some non-negative time series.J. Econometrics 52,115127.CrossRefGoogle Scholar
[9] Brandt, A. (1986).The stochastic equation Y n+1=A n Y n +B n with stationary coefficients.Adv. Appl. Prob. 18,211220.Google Scholar
[10] Breiman, L. (1965). On some limit theorems similar to the arc-sin law.Theory Prob. Appl. 10,323331.CrossRefGoogle Scholar
[11] Brockwell, P. J. and Davis, R. A. (1991).Time Series: Theory and Methods,2nd edn.Springer,New York.CrossRefGoogle Scholar
[12] Davis, R. A. and Hsing, T. (1995).Point process and partial sum convergence for weakly dependent random variables with infinite variance.Ann. Prob. 23,879917.CrossRefGoogle Scholar
[13] Davis, R. A. and Mikosch, T. (2009).The extremogram: a correlogram for extreme events.Bernoulli 15,9771009.CrossRefGoogle Scholar
[14] Davis, R. A.,Mikosch, T. and Cribben, I. (2012).Towards estimating extremal serial dependence via the boostrapped extremogram.J. Econometrics 170,142152.CrossRefGoogle Scholar
[15] Davis, R. A.,Mikosch, T. and Zhao, Y. (2013).Measures of serial extremal dependence and their estimation.Stoch. Process. Appl. 123,25752602.CrossRefGoogle Scholar
[16] Fernández, B. and Muriel, N. (2009).Regular variation and related results for the multivariate GARCH(p,q) model with constant conditional correlations.J. Multivariate Anal. 100,15381550.CrossRefGoogle Scholar
[17] Francq, C. and Zakoïan, J. M. (2012).QML estimation of a class of multivariate asymmetric GARCH models.Econometric Theory 28,179206.CrossRefGoogle Scholar
[18] Goldie, C. M. (1991).Implicit renewal theory and tails of solutions of random equations.Ann. Appl. Prob. 1,126166.CrossRefGoogle Scholar
[19] Jeantheau, T. (1998).Strong consistency of estimators for multivariate ARCH models.Econometric Theory 14,7086.CrossRefGoogle Scholar
[20] Jessen, A. H. and Mikosch, T. (2006).Regularly varying functions.Publ. Inst. Math. (Beograd) (N.S.) 80(94),171192.CrossRefGoogle Scholar
[21] Kesten, H. (1973).Random difference equations and renewal theory for products of random matrices.Acta Math. 131,207248.CrossRefGoogle Scholar
[22] Lancaster, P. (1969).Theory of Matrices.Academic Press,New York.Google Scholar
[23] Ling, S. and McAleer, M. (2003).Asymptotic theory for a vector ARMA-GARCH model.Econometric Theory 19,280310.CrossRefGoogle Scholar
[24] Matsui, M. and Mikosch, T. (2015).The extremogram and the cross-extremogram for a bivariate GARCH(1,1) process. Preprint. Avaialable athttp://arxiv.org/abs/1505.05385v1.Google Scholar
[25] McNeil, A. J.,Frey, R. and Embrechts, P. (2015).Quantitative Risk Management: Concepts, Techniques and Tools. Revised edn.,Princeton University Press.Google Scholar
[26] Mikosch, T. and Stărică, C. (2000).Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process.Ann. Statist. 28,14271451.CrossRefGoogle Scholar
[27] Nelson, D. B. (1990).Stationarity and persistence in the GARCH(1,1) model.Econometric Theory 6,318334.CrossRefGoogle Scholar
[28] Resnick, S. I. (1987).Extreme Values, Regular Variation, and Point Processes.Springer,New York.CrossRefGoogle Scholar
[29] Resnick, S. I. (2007).Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.Springer,New York.Google Scholar
[30] Stărică, C. (1999).Multivariate extremes for models with constant conditional correlations.J. Empirical Finance 6,515553.CrossRefGoogle Scholar